1
|
Chuang TD, Ton N, Rysling S, Khorram O. The Functional Role of the Long Non-Coding RNA LINCMD1 in Leiomyoma Pathogenesis. Int J Mol Sci 2024; 25:11539. [PMID: 39519092 PMCID: PMC11545963 DOI: 10.3390/ijms252111539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Existing evidence indicates that LINCMD1 regulates muscle differentiation-related gene expression in skeletal muscle by acting as a miRNA sponge, though its role in leiomyoma development is still unknown. This study investigated LINCMD1's involvement in leiomyoma by analyzing paired myometrium and leiomyoma tissue samples (n = 34) from patients who had not received hormonal treatments for at least three months prior to surgery. Myometrium smooth muscle cells (MSMCs) were isolated, and gene expression of LINCMD1 and miR-135b was assessed via qRT-PCR, while luciferase assays determined the interaction between LINCMD1 and miR-135b. To examine the effects of LINCMD1 knockdown, siRNA transfection was applied to a 3D MSMC spheroid culture, followed by qRT-PCR and Western blot analyses of miR-135b, APC, β-Catenin and COL1A1 expression. The results showed that leiomyoma tissues had significantly reduced LINCMD1 mRNA levels, regardless of patient race or MED12 mutation status, while miR-135b levels were elevated compared to matched myometrium samples. Luciferase assays confirmed LINCMD1's role as a sponge for miR-135b. LINCMD1 knockdown in MSMC spheroids increased miR-135b levels, reduced APC expression, and led to β-Catenin accumulation and higher COL1A1 expression. These findings highlight LINCMD1 as a potential therapeutic target to modulate aberrant Wnt/β-Catenin signaling in leiomyoma.
Collapse
Affiliation(s)
- Tsai-Der Chuang
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (T.-D.C.); (N.T.); (S.R.)
| | - Nhu Ton
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (T.-D.C.); (N.T.); (S.R.)
| | - Shawn Rysling
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (T.-D.C.); (N.T.); (S.R.)
| | - Omid Khorram
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (T.-D.C.); (N.T.); (S.R.)
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Dundr P, Machado-Lopez A, Mas A, Věcková Z, Mára M, Richtárová A, Matěj R, Stružinská I, Kendall Bártů M, Němejcová K, Dvořák J, Hojný J. Uterine leiomyoma with RAD51B::NUDT3 fusion: a report of 2 cases. Virchows Arch 2024; 484:1015-1022. [PMID: 37466765 PMCID: PMC11186871 DOI: 10.1007/s00428-023-03603-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
Three main uterine leiomyoma molecular subtypes include tumors with MED12 mutation, molecular aberrations leading to HMGA2 overexpression, and biallelic loss of FH. These aberrations are mutually exclusive and can be found in approximately 80-90% of uterine leiomyoma, in which they seem to be a driver event. Approximately 10% of uterine leiomyoma, however, does not belong to any of these categories. Uterine leiomyoma with HMGA2 overexpression is the most common subtype in cellular and second most common category of usual leiomyoma. In some of these tumors, rearrangement of HMGA2 gene is present. The most common fusion partner of HMGA2 gene is RAD51B. Limited data suggests that RAD51B fusions with other genes may be present in uterine leiomyoma. In our study, we described two cases of uterine leiomyoma with RAD51B::NUDT3 fusion, which occur in one case of usual and one case of highly cellular leiomyoma. In both cases, no other driver molecular aberrations were found. The results of our study showed that RAD51::NUDT3 fusion can occur in both usual and cellular leiomyoma. RAD51B may be a fusion partner of multiple genes other than HMGA2 and HMGA1. In these cases, RAD51B fusion seems to be mutually exclusive with other driver aberrations defining molecular leiomyoma subtypes. RAD51B::NUDT3 fusion should be added to the spectrum of fusions which may occur in uterine leiomyoma, which can be of value especially in cellular leiomyoma in the context of differential diagnosis against endometrial stromal tumors.
Collapse
Affiliation(s)
- Pavel Dundr
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 128 00, Prague 2, Czech Republic.
| | - Alba Machado-Lopez
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010, Valencia, Spain
| | - Aymara Mas
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010, Valencia, Spain
| | - Zuzana Věcková
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 128 00, Prague 2, Czech Republic
| | - Michal Mára
- Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Adéla Richtárová
- Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Radoslav Matěj
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 128 00, Prague 2, Czech Republic
- Department of Pathology, Charles University, 3rd Faculty of Medicine, University Hospital Kralovske Vinohrady, Prague, Czech Republic
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University, Thomayer University Hospital, Prague, Czech Republic
| | - Ivana Stružinská
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 128 00, Prague 2, Czech Republic
| | - Michaela Kendall Bártů
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 128 00, Prague 2, Czech Republic
| | - Kristýna Němejcová
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 128 00, Prague 2, Czech Republic
| | - Jiří Dvořák
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 128 00, Prague 2, Czech Republic
| | - Jan Hojný
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 128 00, Prague 2, Czech Republic
| |
Collapse
|
3
|
Amendola ILS, Spann M, Segars J, Singh B. The Mediator Complex Subunit 12 (MED-12) Gene and Uterine Fibroids: a Systematic Review. Reprod Sci 2024; 31:291-308. [PMID: 37516697 DOI: 10.1007/s43032-023-01297-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/09/2023] [Indexed: 07/31/2023]
Abstract
Uterine leiomyomas are the most common tumor of reproductive-age women worldwide. Although benign, uterine fibroids cause significant morbidity and adversely impact the quality of life for affected women. Somatic mutations in the exon 2 of the mediator complex subunit 12 (MED-12) gene represent the most common single gene mutation associated with uterine leiomyomas. The objective of this review was to evaluate the current role of MED-12 mutation in the pathophysiology of uterine fibroids, to assess the prevalence of MED-12 mutation among different populations, and to identify the most common subtypes of MED-12 mutations found in uterine fibroids. A comprehensive search was conducted using Pubmed, Embase, Scopus, and the Web of Science. English-language publications that evaluated MED-12 mutation and uterine fibroids in humans, whether experimental or clinical, were considered. We identified 380 studies, of which 23 were included, comprising 1353 patients and 1872 fibroid tumors. Of the total number of tumors analyzed, 1045 (55.8%) harbored a MED-12 mutation. Among the 23 studies included, the frequency of MED-12 mutation varied from 31.1 to 80% in fibroid samples. The most common type of MED-12 mutation was a heterozygous missense mutation affecting codon 44 of exon 2, specifically the nucleotide 131. Studies reported that MED-12 mutation acts by increasing levels of AKT and disrupting the cyclin C-CDK8/19 kinase activity. The overall average prevalence of MED-12 mutation in uterine fibroids was found to be 55.8% across the global population, though the frequency varied greatly among different countries.
Collapse
Affiliation(s)
- Isabela Landsteiner Sampaio Amendola
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building, Room 624, Baltimore, MD, 21205, USA
| | - Marcus Spann
- Informationist Services, Welch Medical Library, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James Segars
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building, Room 624, Baltimore, MD, 21205, USA
| | - Bhuchitra Singh
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building, Room 624, Baltimore, MD, 21205, USA.
| |
Collapse
|
4
|
Goelzer M, Goelzer J, Ferguson ML, Neu CP, Uzer G. Nuclear envelope mechanobiology: linking the nuclear structure and function. Nucleus 2021; 12:90-114. [PMID: 34455929 PMCID: PMC8432354 DOI: 10.1080/19491034.2021.1962610] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 01/10/2023] Open
Abstract
The nucleus, central to cellular activity, relies on both direct mechanical input as well as its molecular transducers to sense external stimuli and respond by regulating intra-nuclear chromatin organization that determines cell function and fate. In mesenchymal stem cells of musculoskeletal tissues, changes in nuclear structures are emerging as a key modulator of their differentiation and proliferation programs. In this review we will first introduce the structural elements of the nucleoskeleton and discuss the current literature on how nuclear structure and signaling are altered in relation to environmental and tissue level mechanical cues. We will focus on state-of-the-art techniques to apply mechanical force and methods to measure nuclear mechanics in conjunction with DNA, RNA, and protein visualization in living cells. Ultimately, combining real-time nuclear deformations and chromatin dynamics can be a powerful tool to study mechanisms of how forces affect the dynamics of genome function.
Collapse
Affiliation(s)
- Matthew Goelzer
- Materials Science and Engineering, Boise State University, Boise, ID, US
| | | | - Matthew L. Ferguson
- Biomolecular Science, Boise State University, Boise, ID, US
- Physics, Boise State University, Boise, ID, US
| | - Corey P. Neu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, CO, US
| | - Gunes Uzer
- Mechanical and Biomedical Engineering, Boise State University, Boise, ID, US
| |
Collapse
|
5
|
Awonuga AO, Chatzicharalampous C, Thakur M, Rambhatla A, Qadri F, Awonuga M, Saed G, Diamond MP. Genetic and Epidemiological Similarities, and Differences Between Postoperative Intraperitoneal Adhesion Development and Other Benign Fibro-proliferative Disorders. Reprod Sci 2021; 29:3055-3077. [PMID: 34515982 DOI: 10.1007/s43032-021-00726-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/22/2021] [Indexed: 12/11/2022]
Abstract
Intraperitoneal adhesions complicate over half of abdominal-pelvic surgeries with immediate, short, and long-term sequelae of major healthcare concern. The pathogenesis of adhesion development is similar to the pathogenesis of wound healing in all tissues, which if unchecked result in production of fibrotic conditions. Given the similarities, we explore the published literature to highlight the similarities in the pathogenesis of intra-abdominal adhesion development (IPAD) and other fibrotic diseases such as keloids, endometriosis, uterine fibroids, bronchopulmonary dysplasia, and pulmonary, intraperitoneal, and retroperitoneal fibrosis. Following a literature search using PubMed database for all relevant English language articles up to November 2020, we reviewed relevant articles addressing the genetic and epidemiological similarities and differences in the pathogenesis and pathobiology of fibrotic diseases. We found genetic and epidemiological similarities and differences between the pathobiology of postoperative IPAD and other diseases that involve altered fibroblast-derived cells. We also found several genes and single nucleotide polymorphisms that are up- or downregulated and whose products directly or indirectly increase the propensity for postoperative adhesion development and other fibrotic diseases. An understanding of the similarities in pathophysiology of adhesion development and other fibrotic diseases contributes to a greater understanding of IPAD and these disease processes. At a very fundamental level, blocking changes in the expression or function of genes necessary for the transformation of normal to altered fibroblasts may curtail adhesion formation and other fibrotic disease since this is a prerequisite for their development. Similarly, applying measures to induce apoptosis of altered fibroblast may do the same; however, apoptosis should be at a desired level to simultaneously ameliorate development of fibrotic diseases while allowing for normal healing. Scientists may use such information to develop pharmacologic interventions for those most at risk for developing these fibrotic conditions.
Collapse
Affiliation(s)
- Awoniyi O Awonuga
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Charalampos Chatzicharalampous
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Mili Thakur
- Reproductive Genomics Program, The Fertility Center, Grand Rapids, MI, USA.,Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Anupama Rambhatla
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Farnoosh Qadri
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Modupe Awonuga
- Division of Neonatology, Department of Pediatrics and Human Development, Michigan State University, 1355 Bogue Street, East Lansing, MI, USA
| | - Ghassan Saed
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Michael P Diamond
- Department of Obstetrics and Gynecology, Augusta University, 1120 15th Street, CJ-1036, Augusta, GA, 30912, USA
| |
Collapse
|
6
|
El Sabeh M, Saha SK, Afrin S, Islam MS, Borahay MA. Wnt/β-catenin signaling pathway in uterine leiomyoma: role in tumor biology and targeting opportunities. Mol Cell Biochem 2021; 476:3513-3536. [PMID: 33999334 DOI: 10.1007/s11010-021-04174-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
Uterine leiomyoma is the most common tumor of the female reproductive system and originates from a single transformed myometrial smooth muscle cell. Despite the immense medical, psychosocial, and financial impact, the exact underlying mechanisms of leiomyoma pathobiology are poorly understood. Alterations of signaling pathways are thought to be instrumental in leiomyoma biology. Wnt/β-catenin pathway appears to be involved in several aspects of the genesis of leiomyomas. For example, Wnt5b is overexpressed in leiomyoma, and the Wnt/β-catenin pathway appears to mediate the role of MED12 mutations, the most common mutations in leiomyoma, in tumorigenesis. Moreover, Wnt/β-catenin pathway plays a paracrine role where estrogen/progesterone treatment of mature myometrial or leiomyoma cells leads to increased expression of Wnt11 and Wnt16, which induces proliferation of leiomyoma stem cells and tumor growth. Constitutive activation of β-catenin leads to myometrial hyperplasia and leiomyoma-like lesions in animal models. Wnt/β-catenin signaling is also closely involved in mechanotransduction and extracellular matrix regulation and relevant alterations in leiomyoma, and crosstalk is noted between Wnt/β-catenin signaling and other pathways known to regulate leiomyoma development and growth such as estrogen, progesterone, TGFβ, PI3K/Akt/mTOR, Ras/Raf/MEK/ERK, IGF, Hippo, and Notch signaling. Finally, evidence suggests that inhibition of the canonical Wnt pathway using β-catenin inhibitors inhibits leiomyoma cell proliferation. Understanding the molecular mechanisms of leiomyoma development is essential for effective treatment. The specific Wnt/β-catenin pathway molecules discussed in this review constitute compelling candidates for therapeutic targeting.
Collapse
Affiliation(s)
- Malak El Sabeh
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Subbroto Kumar Saha
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Sadia Afrin
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Md Soriful Islam
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Mostafa A Borahay
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA.
| |
Collapse
|
7
|
Paul EN, Burns GW, Carpenter TJ, Grey JA, Fazleabas AT, Teixeira JM. Transcriptome Analyses of Myometrium from Fibroid Patients Reveals Phenotypic Differences Compared to Non-Diseased Myometrium. Int J Mol Sci 2021; 22:3618. [PMID: 33807176 PMCID: PMC8036618 DOI: 10.3390/ijms22073618] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 12/30/2022] Open
Abstract
Uterine fibroid tissues are often compared to their matched myometrium in an effort to understand their pathophysiology, but it is not clear whether the myometria of uterine fibroid patients represent truly non-disease control tissues. We analyzed the transcriptomes of myometrial samples from non-fibroid patients (M) and compared them with fibroid (F) and matched myometrial (MF) samples to determine whether there is a phenotypic difference between fibroid and non-fibroid myometria. Multidimensional scaling plots revealed that M samples clustered separately from both MF and F samples. A total of 1169 differentially expressed genes (DEGs) (false discovery rate < 0.05) were observed in the MF comparison with M. Overrepresented Gene Ontology terms showed a high concordance of upregulated gene sets in MF compared to M, particularly extracellular matrix and structure organization. Gene set enrichment analyses showed that the leading-edge genes from the TGFβ signaling and inflammatory response gene sets were significantly enriched in MF. Overall comparison of the three tissues by three-dimensional principal component analyses showed that M, MF, and F samples clustered separately from each other and that a total of 732 DEGs from F vs. M were not found in the F vs. MF, which are likely understudied in the pathogenesis of uterine fibroids and could be key genes for future investigation. These results suggest that the transcriptome of fibroid-associated myometrium is different from that of non-diseased myometrium and that fibroid studies should consider using both matched myometrium and non-diseased myometrium as controls.
Collapse
Affiliation(s)
| | | | | | | | | | - Jose M. Teixeira
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA; (E.N.P.); (G.W.B.); (T.J.C.); (J.A.G.); (A.T.F.)
| |
Collapse
|
8
|
Leppert PC, Al-Hendy A, Baird DD, Bulun S, Catherino W, Dixon D, Ducharme M, Harmon QE, Jayes FL, Paul E, Perucho AM, Segars J, Simón C, Stewart EA, Teixeira J, Tinelli A, Tschumperlin D, Zota AR. Summary of the Proceedings of the Basic Science of Uterine Fibroids Meeting: New Developments February 28, 2020. F&S SCIENCE 2021; 2:88-100. [PMID: 34124698 PMCID: PMC8192074 DOI: 10.1016/j.xfss.2020.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Scientists from multiple basic disciplines and an international group of physician-scientists from the field of obstetrics and gynecology presented recent studies and discussed new and evolving theories of uterine fibroid etiology, growth and development at The Basic Science of the Uterine Fibroids meeting, sponsored by the Campion Fund and the National Institute of Environmental Health Sciences. The purpose was to share up-to date knowledge and to stimulate new concepts regarding the basic molecular biology and pathophysiology of uterine fibroids, and to promote future collaborations. The meeting was held at the National Institute of Environmental Health Sciences in North Carolina on February 28, 2020. Speakers reviewed recent advances in cellular and molecular processes that contribute to fibroid growth and new opportunities for treatment. At the conclusion of the conference, attendees identified important new directions for future research.
Collapse
Affiliation(s)
- Phyllis C. Leppert
- Campion Fund of the Phyllis and Mark Leppert Foundation for Fertility Research, Salt Lake City, Utah
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Illinois
| | - Donna D. Baird
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Serdar Bulun
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, Il
| | - William Catherino
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Darlene Dixon
- National Toxicology Program, National Institutes of Environmental Health Sciences, National Institutes of Health. Research Triangle Park, NC
| | - Merrick Ducharme
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Mayo Clinic
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| | - Quaker E. Harmon
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Friederike L. Jayes
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC
| | - Emmanuel Paul
- Grand Rapids Research Center, Michigan State University, Grand Rapids, MI
| | | | - James Segars
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD
| | - Carlos Simón
- IgenomixFoundation, INCLIVA Health Research Institute, Valencia, Spain
- Department of Obstetrics and Gynecology, Valencia University, Valencia
- Harvard University, Boston MA
| | - Elizabeth A. Stewart
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Mayo Clinic
| | - Jose Teixeira
- Grand Rapids Research Center, Michigan State University, Grand Rapids, MI
| | - Andrea Tinelli
- Department of Obstetrics and Gynecology, Vitto Fazzi Hospital, Lecce, Italy
| | - Daniel Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| | - Ami R. Zota
- Department of Environmental and Occupational Health, George Washington University, Milken School of Public Health
| |
Collapse
|
9
|
Tinelli A, Kosmas IP, Mynbaev OA, Malvasi A, Sparic R, Vergara D. The Biological Impact of Ulipristal Acetate on Cellular Networks Regulating Uterine Leiomyoma Growth. Curr Pharm Des 2020; 26:310-317. [PMID: 31987017 DOI: 10.2174/1381612826666200121141533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022]
Abstract
Uterine Fibroids (UFs), or leiomyomas, represent the most frequent pelvic tumor in reproductive-aged women. Although of benign origin, UFs decrease fertility and cause significant reproductive dysfunctions. Compared to normal myometrium, UFs are characterized by a clinical and molecular heterogeneity as demonstrated by the presence of multiple genetic alterations and altered signaling pathways. Recently, selective progesteronereceptor modulators (SPRM), as ulipristal acetate (UPA), have demonstrated their clinical benefits by reducing tumor growth and extracellular matrix deposition. For these reasons, UPA is used in the clinical practice as an intermittent treatment for women symptomatic for UFs or, sometimes, before a myomectomy. However, drug effects on signaling pathways frequently upregulated in UFs remain largely unknown. In fact, the mechanisms of action of the UPA on UFs and on the surrounding areas are not yet understood. To learn more about UPA molecular mechanisms, UF samples were treated ex vivo with UPA and profiled for drug effects on selected markers. During this preliminary ex vivo UPA administration, significant changes were observed in the expression levels of proteins related to cell cycle regulation, cytoskeleton remodeling, and drug resistance. The UPA administration reduced cofilin, Erk and Src phosphorylation, p27 and ezrin protein levels, but not Akt phosphorylation and cyclin D1 and β-catenin levels. This preliminary ex vivo biological analysis provided new insights into the mechanism of action of UPA in the treatment of UFs, which could better explain the biological functioning of the drug on UFs.
Collapse
Affiliation(s)
- Andrea Tinelli
- Department of Obstetrics and Gynecology, Division of Experimental Endoscopic Surgery, Imaging, Technology and Minimally Invasive Therapy, Vito Fazzi Hospital, P.zza Muratore, Lecce, Italy
| | - Ioannis P Kosmas
- Ioannina State General Hospital G. Hatzikosta, Department of Obstetrics and Gynecology, University of Ioannina, Greece
| | - Ospan A Mynbaev
- Laboratory of Human Physiology, Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russian Federation
| | - Antonio Malvasi
- Department of Obstetrics & Gynecology, Santa Maria Hospital, GVM Care & Research, Bari, Italy
| | - Radmila Sparic
- Clinic of Gynecology and Obstetrics, Clinical Center of Serbia, Višegradska 26, 11000 Belgrade, Serbia
| | - Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| |
Collapse
|
10
|
Extracellular matrix stiffness and Wnt/β-catenin signaling in physiology and disease. Biochem Soc Trans 2020; 48:1187-1198. [DOI: 10.1042/bst20200026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022]
Abstract
The Wnt/β-catenin signaling pathway plays fundamental roles during development, stem cell differentiation, and homeostasis, and its abnormal activation can lead to diseases. In recent years, it has become clear that this pathway integrates signals not only from Wnt ligands but also from other proteins and signaling routes. For instance, Wnt/β-catenin signaling involves YAP and TAZ, which are transcription factors with crucial roles in mechanotransduction. On the other hand, Wnt/β-catenin signaling is also modulated by integrins. Therefore, mechanical signals might similarly modulate the Wnt/β-catenin pathway. However, and despite the relevance that mechanosensitive Wnt/β-catenin signaling might have during physiology and diseases such as cancer, the role of mechanical cues on Wnt/β-catenin signaling has received less attention. This review aims to summarize recent evidence regarding the modulation of the Wnt/β-catenin signaling by a specific type of mechanical signal, the stiffness of the extracellular matrix. The review shows that mechanical stiffness can indeed modulate this pathway in several cell types, through differential expression of Wnt ligands, receptors and inhibitors, as well as by modulating β-catenin levels. However, the specific mechanisms are yet to be fully elucidated.
Collapse
|
11
|
Ciebiera M, Ali M, Prince L, Jackson-Bey T, Atabiekov I, Zgliczyński S, Al-Hendy A. The Evolving Role of Natural Compounds in the Medical Treatment of Uterine Fibroids. J Clin Med 2020; 9:E1479. [PMID: 32423112 PMCID: PMC7290481 DOI: 10.3390/jcm9051479] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
Uterine fibroids (UFs) remain a significant health issue for many women, with a disproportionate impact on women of color, likely due to both genetic and environmental factors. The prevalence of UFs is estimated to be approximately 70% depending on population. UF-derived clinical symptoms include pelvic pain, excessive uterine bleeding, gastrointestinal and voiding problems, as well as impaired fertility. Nowadays numerous methods of UF treatment are available-from conservative treatment to invasive surgeries. Selecting an appropriate treatment option should be individualized and adjusted to the patient's expectations as much as possible. So far, the mainstay of treatment is surgery, but their negative impact of future fertility is clear. On the other hand, emerging new pharmaceutical options have significant adverse effects like liver function impairment, hot flashes, bone density loss, endometrial changes, and inability to attempt conception during treatment. Several natural compounds are found to help treat UFs and relieve their symptoms. In this review we summarize all the current available data about natural compounds that may be beneficial for patients with UFs, especially those who want to preserve their future fertility or have treatment while actively pursuing conception. Vitamin D, epigallocatechin gallate, berberine, curcumin, and others are being used as alternative UF treatments. Moreover, we propose the concept of using combined therapies of natural compounds on their own or combined with hormonal agents to manage UFs. There is a strong need for more human clinical trials involving these compounds before promoting widespread usage.
Collapse
Affiliation(s)
- Michał Ciebiera
- Second Department of Obstetrics and Gynecology, The Center of Postgraduate Medical Education, 01-809 Warsaw, Poland;
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Mohamed Ali
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Lillian Prince
- School of Public Health, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Tia Jackson-Bey
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Ihor Atabiekov
- Moscow Region Cancer Center, Balashikha 143900, Russian;
| | - Stanisław Zgliczyński
- Department of Internal Diseases and Endocrinology, Central Teaching Clinical Hospital, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Ayman Al-Hendy
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
12
|
Ali M, Shahin SM, Sabri NA, Al-Hendy A, Yang Q. Activation of β-Catenin Signaling and its Crosstalk With Estrogen and Histone Deacetylases in Human Uterine Fibroids. J Clin Endocrinol Metab 2020; 105:5639769. [PMID: 31761932 PMCID: PMC7064306 DOI: 10.1210/clinem/dgz227] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/23/2019] [Indexed: 12/23/2022]
Abstract
CONTEXT Uterine fibroids (UF) are the most common benign tumor of the myometrium (MM) in women of reproductive age. However, the mechanism underlying the pathogenesis of UF is largely unknown. OBJECTIVE To explore the link between nuclear β-catenin and UF phenotype and β-catenin crosstalk with estrogen and histone deacetylases (HDACs). DESIGN Protein/RNA levels of β-catenin (CTNNB1 gene), its responsive markers cyclin D1 and c-Myc, androgen receptor (AR), p27, and class-I HDACs were measured in matched UF/MM tissues or cell populations. The effects of chemical inhibition/activation and genetic knockdown of CTNNB1 on UF phenotype were measured. The anti-UF effect of 2 HDAC inhibitors was evaluated. MAIN OUTCOME MEASURE β-catenin nuclear translocation in response to β-catenin inhibition/activation, estrogen, and HDAC inhibitors in UF cells. RESULTS UF tissues/cells showed significantly higher expression of nuclear β-catenin, cyclin D1, c-Myc, and HDACs 1, 2, 3, and 8 than MM. Estradiol induced β-catenin nuclear translocation and consequently its responsive genes in both MM and UF cells, while an estrogen receptor antagonist reversed this induction effect. Treatment with β-catenin or HDAC inhibitors led to dose-dependent growth inhibition, while Wnt3a treatment increased proliferation compared with control. Chemical inhibition of β-catenin decreased cyclin D1 and c-Myc expression levels, while β-catenin activation increased expression of the same markers. Genetic knockdown of CTNNB1 resulted in a marked decrease in β-catenin, cyclin D1, c-Myc, and AR expression. Treatment of UF cells with HDAC inhibitors decreased nuclear β-catenin, cyclin D1, and c-Myc expression. Moreover, HDAC inhibitors induced apoptosis of UF cells and cell cycle arrest. CONCLUSION β-catenin nuclear translocation contributes to UF phenotype, and β-catenin signaling is modulated by estradiol and HDAC activity.
Collapse
Affiliation(s)
- Mohamed Ali
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, Chicago, Illinois
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois
- Clinical Pharmacy Department, Faculty of Pharmacy, ASU, Cairo, Egypt
| | | | - Nagwa Ali Sabri
- Clinical Pharmacy Department, Faculty of Pharmacy, ASU, Cairo, Egypt
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, Chicago, Illinois
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, Chicago, Illinois
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois
- Correspondence: Dr Qiwei Yang, 1Department of Obstetrics and Gynecology, University of Illinois at Chicago, 909 S. Wolcott Ave, Chicago, IL 60612, USA. E-mail:
| |
Collapse
|
13
|
Liu C, Pei H, Tan F. Matrix Stiffness and Colorectal Cancer. Onco Targets Ther 2020; 13:2747-2755. [PMID: 32280247 PMCID: PMC7131993 DOI: 10.2147/ott.s231010] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 01/04/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, a growing consensus is emerging that the mechanical microenvironment of tumors is far more critical in the onset of tumor, tumor progression, invasion, and metastasis. Matrix stiffness, one of the sources of mechanical stimulation, affects tumor cells as well as non-tumor cells in multiple different molecular signaling pathways in solid tumors such as colorectal tumors, which lead to tumor invasion and metastasis, immune evasion and drug resistance. This review will illustrate the relationship between matrix stiffness and colorectal cancer from the following aspects. First, briefly introduce the mechanical microenvironment and colorectal cancer, then explain the origin of colorectal cancer extracellular matrix stiffness, and then synthesize the study of matrix stiffness of colorectal cancer in recent years to elaborate the effects of extracellular matrix stiffness in colorectal cancer’s biological behavior and signaling pathways, and finally we will discuss the transformation treatment for the matrix stiffness of colorectal cancer. An in-depth understanding of matrix stiffness and colorectal cancer can help researchers conduct further experiments to find new targets for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Chongshun Liu
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Haiping Pei
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Fengbo Tan
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
14
|
Chen HY, Lin PH, Shih YH, Wang KL, Hong YH, Shieh TM, Huang TC, Hsia SM. Natural Antioxidant Resveratrol Suppresses Uterine Fibroid Cell Growth and Extracellular Matrix Formation In Vitro and In Vivo. Antioxidants (Basel) 2019; 8:antiox8040099. [PMID: 31013842 PMCID: PMC6523898 DOI: 10.3390/antiox8040099] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 11/16/2022] Open
Abstract
Resveratrol (RSV) is a polyphenolic phytoalexin found in peanuts, grapes, and other plants. Uterine fibroids (UF) are benign growths that are enriched in extracellular matrix (ECM) proteins. In this study, we aimed to investigate the effects of RSV on UF using in vivo and in vitro approaches. In mouse xenograft models, tumors were implanted through the subcutaneous injection of Eker rat-derived uterine leiomyoma cells transfected with luciferase (ELT-3-LUC) in five-week-old female nude (Foxn1nu) mice. When the tumors reached a size of 50-100 mm3, the mice were randomly assigned to intraperitoneal treatment with RSV (10 mg·kg-1) or vehicle control (dimethyl sulfoxide). Tumor tissues were assayed using an immunohistochemistry analysis. We also used primary human leiomyoma cells as in vitro models. Cell viability was determined using the sodium bicarbonate and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The protein expression was assayed using Western blot analysis. The messenger ribonucleic acid (mRNA) expression was assayed using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Cell apoptosis was assayed using Annexin V-fluorescein isothiocyanate (FITC) and propidium iodide (PI) and Hoechst 33342 staining. RSV significantly suppressed tumor growth in vivo and decreased the proportion of cells showing expression of proliferating cell nuclear antigen (PCNA) and α-smooth muscle actin (α-SMA). In addition, RSV decreased the protein expression of PCNA, fibronectin, and upregulated the ratio of Bax (Bcl-2-associated X) and Bcl-2 (B-cell lymphoma/leukemia 2) in vivo. Furthermore, RSV reduced leiomyoma cell viability, and decreased the mRNA levels of fibronectin and the protein expression of collagen type 1 (COL1A1) and α-SMA (ECM protein marker), as well as reducing the levels of β-catenin protein. RSV induced apoptosis and cell cycle arrest at sub-G1 phase. Our findings indicated the inhibitory effects of RSV on the ELT-3-LUC xenograft model and indicated that RSV reduced ECM-related protein expression in primary human leiomyoma cells, demonstrating its potential as an anti-fibrotic therapy for UF.
Collapse
Affiliation(s)
- Hsin-Yuan Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
| | - Po-Han Lin
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yin-Hwa Shih
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan.
| | - Kei-Lee Wang
- Department of Nursing, Ching Kuo Institute of Managemnet and Health, Keelung 20301, Taiwan.
| | - Yong-Han Hong
- Department of Nutrition, I-Shou University, Kaohsiung 84001, Taiwan.
| | - Tzong-Ming Shieh
- Department of Dental Hygiene, College of Health Care, China Medical University, Taichung 40402, Taiwan.
| | - Tsui-Chin Huang
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan.
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
- School of Food and Safety, Taipei Medical University, Taipei 11031, Taiwan.
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| |
Collapse
|
15
|
Dai J, Qin L, Chen Y, Wang H, Lin G, Li X, Liao H, Fang H. Matrix stiffness regulates epithelial-mesenchymal transition via cytoskeletal remodeling and MRTF-A translocation in osteosarcoma cells. J Mech Behav Biomed Mater 2018; 90:226-238. [PMID: 30384218 DOI: 10.1016/j.jmbbm.2018.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022]
Abstract
Matrix stiffness is known to alter cellular behaviors in various biological contexts. Previous investigations have shown that epithelial-mesenchymal transition (EMT) promotes the progression and invasion of tumor. Mechanical signaling is identified as a regulator of EMT. However, the molecular mechanisms underlying the influence exerted by matrix stiffness on EMT in osteosarcoma remains largely unknown. Using polyacrylamide hydrogel model, we investigate the effects of matrix stiffness on EMT and migration in osteosarcoma. Our data indicates that high matrix stiffness regulates cell morphology and promotes EMT and migration in osteosarcoma MG63 cell line in vitro. Notably, matrix stiffness promotes polymerization of actin and nuclear accumulation of myocardin-related transcription factor A (MRTF-A). Furthermore, inhibiting MRTF-A by CCG 203971 significantly reduces EMT and migration on rigid gels. These data suggest that matrix stiffness of the tumor microenvironment actively regulate osteosarcoma EMT and migration through cytoskeletal remodeling and translocation of MRTF-A, which may contribute to cancer progression.
Collapse
Affiliation(s)
- Jun Dai
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan 430030, China
| | - Liang Qin
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan 430030, China
| | - Yan Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan 430030, China
| | - Huan Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan 430030, China
| | - Guanlin Lin
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan 430030, China
| | - Xiao Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan 430030, China
| | - Hui Liao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan 430030, China.
| | - Huang Fang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan 430030, China.
| |
Collapse
|
16
|
Jamaluddin MFB, Nahar P, Tanwar PS. Proteomic Characterization of the Extracellular Matrix of Human Uterine Fibroids. Endocrinology 2018; 159:2656-2669. [PMID: 29788081 DOI: 10.1210/en.2018-00151] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/08/2018] [Indexed: 01/04/2023]
Abstract
Uterine leiomyomas (fibroids) are the most common benign tumors that are associated with increased production of extracellular matrix (ECM). Excessive ECM deposition plays a major role in the enlargement and stiffness of these tumors and contributes to clinical symptoms, such as abnormal bleeding and abdominal pain. However, no study so far has explored the global composition of the ECM of fibroids and normal myometrium. In this study, we performed a systematic ECM enrichment procedure and comparative proteomic analyses to profile the ECM composition of genetically annotated different-sized fibroids (small, medium, and large) and adjacent normal myometrium (ANM). Our matrisome analysis identified a combined total of 108, 126, 126, and 130 unique ECM and ECM-associated proteins with a confidence corresponding to a false discovery rate <1% in ANM and in small, medium, and large fibroids, respectively. The majority of fibroid ECM proteins belong to the core matrisome that includes glycoproteins, collagens, and proteoglycans. Considering that the small-sized fibroids represent the initial stages of leiomyogenesis, we highlighted some of the most abundant and important upregulated ECM proteins in small fibroids (i.e., POSTN, TNC, COL3A1, COL24A1, and ASPN). Furthermore, we revealed 30 unique ECM proteins that exist only in fibroids but that are not present in ANM regardless of MED12 mutation. We propose that some of the proteins identified represent potential novel ECM drug targets that may change the paradigm of fibroid treatment.
Collapse
Affiliation(s)
- M Fairuz B Jamaluddin
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Pravin Nahar
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Department of Maternity and Gynecology, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Pradeep S Tanwar
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
17
|
Jamaluddin MFB, Nagendra PB, Nahar P, Oldmeadow C, Tanwar PS. Proteomic Analysis Identifies Tenascin-C Expression Is Upregulated in Uterine Fibroids. Reprod Sci 2018; 26:476-486. [PMID: 29730954 DOI: 10.1177/1933719118773420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Uterine leiomyomas (fibroids) are the most common gynecological tumors, which are enriched in the extracellular matrix (ECM). Fibroids are leading cause of abnormal uterine bleeding and hysterectomy. One of the major questions yet to be answered is the overproduction of specific ECM components in human uterine fibroids, particularly in relation to mutations in the driver gene mediator complex subunit 12 ( MED12). Surgical specimens from 14 patients with uterine leiomyoma having fibroids and corresponding adjacent normal myometrium (ANM) were utilized to analyze genetic and proteomic expression patterns in the tissue samples. MED12 mutations in the fibroids were screened by Sanger sequencing. iTRAQ was used to label the peptides in small-, medium-, and large-sized fibroid samples of annotated MED12 mutation from the same patient. The mixtures of the peptides were fractionated by hydrophilic interaction liquid chromatography (HILIC) and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify the differential expression proteins. Using isobaric tagged-based quantitative mass spectrometry on 3 selected patients, ECM-related protein tenascin-C (TNC) was observed significantly upregulated (>1.5-fold) with a confidence corresponding to false discovery rate (FDR) <1% in small-, medium-, and large-sized fibroid samples regardless of MED12 mutation status. The TNC was validated on additional patient samples using Western blotting (WB) and immunohistochemistry (IHC) and confirmed significant overexpression of this protein in fibroids compared to matched ANM. Proteomic analyses have identified the increased ECM protein expression, TNC, as a hallmark of uterine fibroids regardless of MED12 mutations. Further functional studies focusing on the upregulated ECM proteins in leiomyogenesis will lead to the identification of novel ECM drug targets for fibroid treatment.
Collapse
Affiliation(s)
- M Fairuz B Jamaluddin
- 1 School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Prathima B Nagendra
- 1 School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Pravin Nahar
- 2 School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia.,3 Department of Maternity and Gynaecology, John Hunter Hospital, New South Wales, Australia
| | - Christopher Oldmeadow
- 4 Clinical Research Design, Information Technology and Statistical Support (CReDITSS) Unit, Hunter Medical Research Institute, New South Wales, Australia
| | - Pradeep S Tanwar
- 1 School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|