1
|
Zhang Y, Wang HH, Wan X, Xu Y, Pan MH, Sun SC. Inhibition of protein kinase D disrupts spindle formation and actin assembly during porcine oocyte maturation. Aging (Albany NY) 2019; 10:3736-3744. [PMID: 30555056 PMCID: PMC6326681 DOI: 10.18632/aging.101667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/15/2018] [Indexed: 12/17/2022]
Abstract
Protein kinase D (PKD) subfamily which includes PKD1, PKD2 and PKD3 is a novel family of serine/threonine kinases. PKD has been widely implicated in the regulation of multiple physiological effects including immune responses, apoptosis and cell proliferation. However, the roles of PKD in oocytes have not been fully clarified. In this study we investigated the regulatory functions of PKD during porcine oocyte maturation. Our results indicated that PKD expressed in porcine oocytes and the inhibition of PKD family activity led to the failure of meiosis resumption and the first polar body extrusion. Further analysis indicated that the spindle assembly and chromosome alignment were disrupted after PKD family inhibition, and this might be through its regulatory role on MAPK phosphorylation. We also found that PKD phosphorylated cofilin for actin assembly, which further affected cortical actin distribution, indicating the roles of PKD family on cytoskeleton. In addition, a decreased expression of PKD in postovulatory aging porcine oocytes was observed, which might connect PKD with cytoskeleton defects in aged oocytes. Taken together, these results suggest that PKD possesses important functions in porcine oocyte maturation by regulating spindle organization and actin assembly.
Collapse
Affiliation(s)
- Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong-Hui Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang Wan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yao Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Zhang Y, Wu L, Wan X, Wang H, Li X, Pan Z, Sun S. Loss of PKC mu function induces cytoskeletal defects in mouse oocyte meiosis. J Cell Physiol 2019; 234:18513-18523. [DOI: 10.1002/jcp.28487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Lan‐Lan Wu
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Xiang Wan
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Hong‐Hui Wang
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Xiao‐Han Li
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Zhen‐Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| | - Shao‐Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University Nanjing China
| |
Collapse
|
3
|
Yi ZY, Liang QX, Meng TG, Li J, Dong MZ, Hou Y, Ouyang YC, Zhang CH, Schatten H, Sun QY, Qiao J, Qian WP. PKCβ1 regulates meiotic cell cycle in mouse oocyte. Cell Cycle 2019; 18:395-412. [PMID: 30730241 DOI: 10.1080/15384101.2018.1564492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PKCβI, a member of the classical protein kinase C family, plays key roles in regulating cell cycle transition. Here, we report the expression, localization and functions of PKCβI in mouse oocyte meiotic maturation. PKCβI and p-PKCβI (phosphor-PKCβI) were expressed from germinal vesicle (GV) stage to metaphase II (MII) stage. Confocal microscopy revealed that PKCβI was localized in the GV and evenly distributed in the cytoplasm after GV breakdown (GVBD), and it was concentrated at the midbody at telophase in meiotic oocytes. While, p-PKCβI was concentrated at the spindle poles at the metaphase stages and associated with midbody at telophase. Depletion of PKCβI by specific siRNA injection resulted in defective spindles, accompanied with spindle assembly checkpoint activation, metaphase I arrest and failure of first polar body (PB1) extrusion. Live cell imaging analysis also revealed that knockdown of PKCβI resulted in abnormal spindles, misaligned chromosomes, and meiotic arrest of oocytes arrest at the Pro-MI/MI stage. PKCβI depletion did not affect the G2/M transition, but its overexpression delayed the G2/M transition through regulating Cyclin B1 level and Cdc2 activity. Our findings reveal that PKCβI is a critical regulator of meiotic cell cycle progression in oocytes. Abbreviations: PKC, protein kinase C; COC, cumulus-oocyte complexes; GV, germinal vesicle; GVBD, germinal vesicle breakdown; Pro-MI, first pro-metaphase; MI, first metaphase; Tel I, telophase I; MII, second metaphase; PB1, first polar body; SAC, spindle assembly checkpoint.
Collapse
Affiliation(s)
- Zi-Yun Yi
- a The Reproductive Medicine Center , Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center , Shenzhen , China
| | - Qiu-Xia Liang
- a The Reproductive Medicine Center , Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center , Shenzhen , China
| | - Tie-Gang Meng
- b State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Jian Li
- a The Reproductive Medicine Center , Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center , Shenzhen , China
| | - Ming-Zhe Dong
- b State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Yi Hou
- b State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Ying-Chun Ouyang
- b State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Chun-Hui Zhang
- a The Reproductive Medicine Center , Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center , Shenzhen , China
| | - Heide Schatten
- c Department of Veterinary Pathobiology , University of Missouri-Columbia , Columbia , MO , USA
| | - Qing-Yuan Sun
- b State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Jie Qiao
- d Reproductive Medical Center , Peking University Third Hospital , Beijing , China
| | - Wei-Ping Qian
- a The Reproductive Medicine Center , Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center , Shenzhen , China
| |
Collapse
|
4
|
Duarte ML, Pena DA, Nunes Ferraz FA, Berti DA, Paschoal Sobreira TJ, Costa-Junior HM, Abdel Baqui MM, Disatnik MH, Xavier-Neto J, Lopes de Oliveira PS, Schechtman D. Protein folding creates structure-based, noncontiguous consensus phosphorylation motifs recognized by kinases. Sci Signal 2014; 7:ra105. [PMID: 25372052 DOI: 10.1126/scisignal.2005412] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Linear consensus motifs are short contiguous sequences of residues within a protein that can form recognition modules for protein interaction or catalytic modification. Protein kinase specificity and the matching of kinases to substrates have been mostly defined by phosphorylation sites that occur in linear consensus motifs. However, phosphorylation can also occur within sequences that do not match known linear consensus motifs recognized by kinases and within flexible loops. We report the identification of Thr(253) in α-tubulin as a site that is phosphorylated by protein kinase C βI (PKCβI). Thr(253) is not part of a linear PKC consensus motif. Instead, Thr(253) occurs within a region on the surface of α-tubulin that resembles a PKC phosphorylation site consensus motif formed by basic residues in different parts of the protein, which come together in the folded protein to form the recognition motif for PKCβI. Mutations of these basic residues decreased substrate phosphorylation, confirming the presence of this "structurally formed" consensus motif and its importance for the protein kinase-substrate interaction. Analysis of previously reported protein kinase A (PKA) and PKC substrates identified sites within structurally formed consensus motifs in many substrates of these two kinase families. Thus, the concept of consensus phosphorylation site motif needs to be expanded to include sites within these structurally formed consensus motifs.
Collapse
Affiliation(s)
- Mariana Lemos Duarte
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil
| | - Darlene Aparecida Pena
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil
| | - Felipe Augusto Nunes Ferraz
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-970, Brazil
| | - Denise Aparecida Berti
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil
| | - Tiago José Paschoal Sobreira
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-970, Brazil
| | | | - Munira Muhammad Abdel Baqui
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Marie-Hélène Disatnik
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - José Xavier-Neto
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-970, Brazil
| | | | - Deborah Schechtman
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil.
| |
Collapse
|
5
|
Sheremet YA, Emets AI, Azmi A, Vissenberg K, Verbelen JP, Blume YB. Effect of serine/threonine protein kinases and protein phosphatases inhibitors on mitosis progression in a synchronized tobacco BY-2 culture. CYTOL GENET+ 2012. [DOI: 10.3103/s009545271202003x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Lv H, Wang JC, Wu KL, Gao X, Wang LC, You L, Chen ZJ. Numb regulates meiotic spindle organisation in mouse oocytes. Reprod Fertil Dev 2010; 22:664-72. [PMID: 20353726 DOI: 10.1071/rd09236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 10/12/2009] [Indexed: 11/23/2022] Open
Abstract
Numb is an adaptor protein that controls the fate of cells in different species through asymmetrical inheritance by sibling cells during division. It has been investigated extensively in mitosis, mostly in neural progenitor cells, but its function in meiosis remains unknown. The present study was designed to investigate the expression, subcellular localisation and functional roles of Numb during mouse oocyte meiotic maturation. Using real-time polymerase chain reaction and western blotting, we found that the expression of Numb increased from the germinal vesicle (GV) to MII stages. Immunofluorescent staining revealed that Numb was mainly concentrated in the GV before meiosis resumption, aggregated in the vicinity of the chromosomes after GV breakdown and then localised to the spindle poles from prometaphase I to MII. Nocodazole treatment resulted in spindle destruction and Numb diffusion into the cytoplasm. However, Numb appeared at the spindle poles again once the spindles had formed when nocodazole-treated oocytes were washed and cultured for spindle recovery. Depletion of Numb by RNA interference resulted in chromosome misalignment, spindle deformation and even doubled spindle formation. Our results suggest that Numb is critical for spindle organisation during mouse oocytes meiosis. The present study provides evidence of a new function for Numb in addition to its action as a cell fate-determining factor.
Collapse
Affiliation(s)
- H Lv
- Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, Key Laboratory of Reproductive Medicine, Shandong Province, Jinan 250021, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Stricker SA. Roles of protein kinase C isotypes during seawater-versus cAMP-induced oocyte maturation in a marine worm. Mol Reprod Dev 2009; 76:693-707. [DOI: 10.1002/mrd.20993] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Xiong B, Li S, Ai JS, Yin S, Ouyang YC, Sun SC, Chen DY, Sun QY. BRCA1 is required for meiotic spindle assembly and spindle assembly checkpoint activation in mouse oocytes. Biol Reprod 2008; 79:718-26. [PMID: 18596218 DOI: 10.1095/biolreprod.108.069641] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BRCA1 as a tumor suppressor has been widely investigated in mitosis, but its functions in meiosis are unclear. In the present study, we examined the expression, localization, and function of BRCA1 during mouse oocyte meiotic maturation. We found that expression level of BRCA1 was increased progressively from germinal vesicle to metaphase I stage, and then remained stable until metaphase II stage. Immunofluorescent analysis showed that BRCA1 was localized to the spindle poles at metaphase I and metaphase II stages, colocalizing with centrosomal protein gamma-tubulin. Taxol treatment resulted in the presence of BRCA1 onto the spindle microtubule fibers, whereas nocodazole treatment induced the localization of BRCA1 onto the chromosomes. Depletion of BRCA1 by both antibody injection and siRNA injection caused severely impaired spindles and misaligned chromosomes. Furthermore, BRCA1-depleted oocytes could not arrest at the metaphase I in the presence of low-dose nocodazole, suggesting that the spindle checkpoint is defective. Also, in BRCA1-depleted oocytes, gamma-tubulin dissociated from spindle poles and MAD2L1 failed to rebind to the kinetochores when exposed to nocodazole at metaphase I stage. Collectively, these data indicate that BRCA1 regulates not only meiotic spindle assembly, but also spindle assembly checkpoint, implying a link between BRCA1 deficiency and aneuploid embryos.
Collapse
Affiliation(s)
- Bo Xiong
- State Key Laboratory of Reproductive Biology, Chinese Academy of Sciences, 100080 Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Baluch DP, Capco DG. GSK3β mediates acentromeric spindle stabilization by activated PKCζ. Dev Biol 2008; 317:46-58. [DOI: 10.1016/j.ydbio.2008.01.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 01/25/2008] [Accepted: 01/30/2008] [Indexed: 11/28/2022]
|
10
|
Ducibella T, Fissore R. The roles of Ca2+, downstream protein kinases, and oscillatory signaling in regulating fertilization and the activation of development. Dev Biol 2008; 315:257-79. [PMID: 18255053 DOI: 10.1016/j.ydbio.2007.12.012] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 12/12/2007] [Accepted: 12/13/2007] [Indexed: 12/12/2022]
Abstract
Reviews in Developmental Biology have covered the pathways that generate the all-important intracellular calcium (Ca(2+)) signal at fertilization [Miyazaki, S., Shirakawa, H., Nakada, K., Honda, Y., 1993a. Essential role of the inositol 1,4,5-trisphosphate receptor/Ca(2+) release channel in Ca(2+) waves and Ca(2+) oscillations at fertilization of mammalian eggs. Dev. Biol. 158, 62-78; Runft, L., Jaffe, L., Mehlmann, L., 2002. Egg activation at fertilization: where it all begins. Dev. Biol. 245, 237-254] and the different temporal responses of Ca(2+) in many organisms [Stricker, S., 1999. Comparative biology of calcium signaling during fertilization and egg activation in animals. Dev. Biol. 211, 157-176]. Those reviews raise the importance of identifying how Ca(2+) causes the events of egg activation (EEA) and to what extent these temporal Ca(2+) responses encode developmental information. This review covers recent studies that have analyzed how these Ca(2+) signals are interpreted by specific proteins, and how these proteins regulate various EEA responsible for the onset of development. Many of these proteins are protein kinases (CaMKII, PKC, MPF, MAPK, MLCK) whose activity is directly or indirectly regulated by Ca(2+), and whose amount increases during late oocyte maturation. We cover biochemical progress in defining the signaling pathways between Ca(2+) and the EEA, as well as discuss how oscillatory or multiple Ca(2+) signals are likely to have specific advantages biochemically and/or developmentally. These emerging concepts are put into historical context, emphasizing that key contributions have come from many organisms. The intricate interdependence of Ca(2+), Ca(2+)-dependent proteins, and the EEA raise many new questions for future investigations that will provide insight into the extent to which fertilization-associated signaling has long-range implications for development. In addition, answers to these questions should be beneficial to establishing parameters of egg quality for human and animal IVF, as well as improving egg activation protocols for somatic cell nuclear transfer to generate stem cells and save endangered species.
Collapse
Affiliation(s)
- Tom Ducibella
- Department of OB/GYN, Tufts-New England Medical Center, Boston, MA 02111, USA.
| | | |
Collapse
|
11
|
Cui XS, Li XY, Yin XJ, Kong IK, Kang JJ, Kim NH. Maternal gene transcription in mouse oocytes: genes implicated in oocyte maturation and fertilization. J Reprod Dev 2006; 53:405-18. [PMID: 17179655 DOI: 10.1262/jrd.18113] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Maternal gene expression is an important biological process in oocyte maturation and early cleavage. To gain insights into oocyte maturation and early embryo development, we used microarray analysis to compare the gene expression profiles of germinal vesicle (GV)- and metaphase II (MII)-stage oocytes. The differences in spot intensities were normalized and grouped using the Avadis Prophetic software platform. Of the 12164 genes examined, we found 1682 genes with more highly expression in GV-stage oocytes than in MII-stage oocytes, while 1936 genes were more highly expressed in MII-stage oocytes (P<0.05). The genes were grouped on the basis of the Panther classification system according to their involvement in particular biological processes. The genes that were up-regulated in GV oocytes were more likely to be involved in protein metabolism and modification, the mitotic cell cycle, electron transport, or fertilization or belong to the microtubule/cytoskeletal protein family. The genes specifically upregulated in the MII oocytes were more likely to be involved in DNA replication, amino acid metabolism, or expression of G protein-coupled receptors and signaling molecules. Identification of genes that are preferentially expressed at particular oocyte maturation stages provides insights into the complex gene regulatory networks that drive oocyte maturation and fertilization.
Collapse
Affiliation(s)
- Xiang-Shun Cui
- National Research Laboratory of Molecular Embryology, Department of Animal Science, Chungbuk National University, Cheongju, Korea
| | | | | | | | | | | |
Collapse
|
12
|
Na J, Zernicka-Goetz M. Asymmetric positioning and organization of the meiotic spindle of mouse oocytes requires CDC42 function. Curr Biol 2006; 16:1249-54. [PMID: 16782018 DOI: 10.1016/j.cub.2006.05.023] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 05/03/2006] [Accepted: 05/03/2006] [Indexed: 11/24/2022]
Abstract
The mature mammalian oocyte is highly polarized because asymmetrical spindle migration to the oocyte cortex ensures extrusion of small polar bodies in the two meiotic divisions, essential for generation of the large egg. Actin filaments, myosin motors, and formin-2, but not microtubules, are required for spindle migration. Here, we show that Cdc42, a key regulator of cytoskeleton and cell polarity in other systems , is essential for meiotic maturation and oocyte asymmetry. Disrupting CDC42 function by ectopic expression of its GTPase-defective mutants causes both halves of the first meiotic spindle to extend symmetrically toward opposing cortical regions and prevents an asymmetrical division. The elongated spindle has numerous astral-like microtubules, and aPKCzeta, normally associated with the spindle poles, is distributed along its length. Dynactin is displaced from kinetochores, consistently homologous chromosomes do not segregate, and polar body extrusion is prevented. Perturbing the function of aPKCzeta also causes elongation of the meiotic spindle but still permits spindle migration and polar body extrusion. Thus, at least two pathways appear to be downstream of CDC42: one affecting the actin cytoskeleton and required for migration of the meiotic spindle, and a second affecting the spindle microtubules in which aPKCzeta plays a role.
Collapse
Affiliation(s)
- Jie Na
- The Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology and Department of Genetics, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| | | |
Collapse
|
13
|
Liu XF, Xie X, Miki T. Inhibition of protein kinase C zeta blocks the attachment of stable microtubules to kinetochores leading to abnormal chromosome alignment. Cell Signal 2006; 18:2314-23. [PMID: 16820280 DOI: 10.1016/j.cellsig.2006.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 05/19/2006] [Accepted: 05/19/2006] [Indexed: 11/18/2022]
Abstract
The attachment of spindle microtubules to kinetochores is crucial for accurate segregation of chromosomes to daughter cells during mitosis. While a growing number of proteins involving this step are being identified, its molecular mechanisms are still not clear. Here we show that protein kinase C zeta (PKCzeta) is localized at the mitotic spindle during mitosis and plays a role in stable kinetochore-microtubule attachment. Striking staining for PKCzeta was observed at the mitotic spindle and spindle poles in cells at prometaphase and metaphase. PKCzeta molecules at these stages were phosphorylated at Thr-410, as detected by a phosphospecific antibody. PKCzeta was also detected at the spindle midzone and the midbody during anaphase and telophase, respectively, and PKCzeta at these stages was no longer phosphorylated at Thr-410. The polarity determinants Par3 and Par6, which are known to associate with PKCzeta, were also localized to the spindles and spindle poles at prometaphase and metaphase. Knockdown of PKCzeta by RNA interference affected normal chromosome alignment leading to generation of cells with aberrant nuclei. A specific PKCzeta inhibitor strongly blocked the formation of cold-sensitive stable kinetochore microtubules, and thus prevented microtubule-kinetochore attachment. Treatment of cells with the PKCzeta inhibitor also dislocated the minus-end directed motor protein dynein from kinetochores, but not the mitotic checkpoint proteins Mad2 and CENP-E. Prolonged exposure to the PKCzeta inhibitor eventually resulted in cell death. These results suggest a critical role of PKCzeta in spindle microtubule-kinetochore attachment and subsequent chromosomal separation.
Collapse
Affiliation(s)
- Xiu Fen Liu
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, Maryland, 20892-4255, United States
| | | | | |
Collapse
|