1
|
Meng J, Zhao Y, Song X, An Q, Wu Z. Deciphering the miRNA transcriptome of granulosa cells from dominant and subordinate follicles at first follicular wave in goat. Anim Biotechnol 2024; 35:2259967. [PMID: 37750325 DOI: 10.1080/10495398.2023.2259967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
In goats, most follicles in the ovaries will be atresia and only a few dominant follicles (DFs) may eventually mature and ovulate at a follicular wave. To investigate the potential microRNAs (miRNAs) that regulate the expression of genes associated with follicular dominance or atresia, small RNA sequencing was performed on granulosa cells of DF and subordinate follicle at the first follicular wave in goats. A total of 108 differentially expressed miRNAs were detected in the two types of follicle granulosa cells: 16 upregulated miRNAs and 92 downregulated miRNAs. Kyoto Encyclopedia of Genes and Genomes analysis of the target genes showed that TKTL1, LOC102187810, LOC102184409 and ALDOA are closely associated with follicle dominance and are involved in the pentose phosphate pathway. Furthermore, a coexpression network of miRNAs and follicular dominance-related genes was constructed. The qPCR results well correlated with the small RNA sequencing data. Our findings provide new insight for exploring the molecular mechanism of miRNAs in regulating follicular development in goats.
Collapse
Affiliation(s)
- Jinzhu Meng
- Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, P.R. China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, P.R. China
| | - Yuanyuan Zhao
- Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, P.R. China
| | - Xingchao Song
- Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, P.R. China
| | - Qingming An
- Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, P.R. China
| | - Zhenyang Wu
- Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, P.R. China
| |
Collapse
|
2
|
Yang C, Zheng H, Amin A, Faheem MS, Duan A, Li L, Xiao P, Li M, Shang J. Follicular Atresia in Buffalo: Cocaine- and Amphetamine-Regulated Transcript (CART) and the Underlying Mechanisms. Animals (Basel) 2024; 14:2138. [PMID: 39123664 PMCID: PMC11311020 DOI: 10.3390/ani14152138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Atresia is a process in ovarian follicles that is regulated by hormone-induced apoptosis. During atresia, granulosa cell (GC) apoptosis is a key mechanism orchestrated through diverse signaling pathways. Cocaine- and amphetamine-regulated transcript (CART) signaling within ovarian GCs has been demonstrated to play a key role in the regulation of follicular atresia in cattle, pigs, and sheep. The present work aimed to investigate the potential local regulatory role of CART in GC apoptosis-induced follicular atresia in buffalo, focusing on the modulation of the AKT/GSK3β/β-catenin signaling pathways, which are the intracellular signaling pathways involved in cell viability. Our findings revealed increased expression of CARTPT and BAX and decreased levels of AKT, β-catenin, and CYP19A1 genes in atretic follicles compared to healthy follicles. Subsequently, CART treatment in the presence of FSH inhibited the FSH-induced increase in GC viability by reducing estradiol production and increasing apoptosis. This change was accompanied by an increase in the gene expression levels of both CARTPT and BAX. At the protein level, treatment with CART in the presence of FSH negatively affected the activity of AKT, β-catenin, and LEF1, while the activity of GSK3β was enhanced. In conclusion, our study shows how CART negatively influences buffalo GC viability, underlying the modulation of the AKT/GSK3β/β-catenin pathway and promoting apoptosis-a key factor in follicular atresia.
Collapse
Affiliation(s)
- Chunyan Yang
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (H.Z.); (A.A.); (A.D.); (L.L.); (P.X.); (M.L.)
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning 530001, China
| | - Haiying Zheng
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (H.Z.); (A.A.); (A.D.); (L.L.); (P.X.); (M.L.)
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning 530001, China
| | - Ahmed Amin
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (H.Z.); (A.A.); (A.D.); (L.L.); (P.X.); (M.L.)
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning 530001, China
- Animal Production Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Marwa S. Faheem
- Animal Production Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Anqin Duan
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (H.Z.); (A.A.); (A.D.); (L.L.); (P.X.); (M.L.)
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning 530001, China
| | - Lingyu Li
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (H.Z.); (A.A.); (A.D.); (L.L.); (P.X.); (M.L.)
| | - Peng Xiao
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (H.Z.); (A.A.); (A.D.); (L.L.); (P.X.); (M.L.)
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning 530001, China
| | - Mengqi Li
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (H.Z.); (A.A.); (A.D.); (L.L.); (P.X.); (M.L.)
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning 530001, China
| | - Jianghua Shang
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (H.Z.); (A.A.); (A.D.); (L.L.); (P.X.); (M.L.)
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning 530001, China
| |
Collapse
|
3
|
Uju CN, Unniappan S. Growth factors and female reproduction in vertebrates. Mol Cell Endocrinol 2024; 579:112091. [PMID: 37863469 DOI: 10.1016/j.mce.2023.112091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Female reproductive efficiency is influenced by the outcomes of various processes, including folliculogenesis, apoptosis, response to gonadotropin signaling, oocyte maturation, and ovulation. The role of hormones in regulating these processes and other reproductive activities has been well established. It is becoming increasingly evident that in addition to well-characterized hormones, growth factors play vital roles in regulating some of these reproductive activities. Growth factors and their receptors are widely distributed in vertebrate ovaries at different stages of ovarian development, indicating their involvement in intraovarian reproductive functions. In the ovary, cell surface receptors allow growth factors to regulate intraovarian reproductive activities. Understanding these actions in the reproductive axis would provide a tool to target growth factors and/or their receptors to yield desirable reproductive outcomes. These include enrichment of in vitro maturation and fertilization culture media, and management of infertility. This review discusses some widely characterized growth factors belonging to the TGF, EGF, IGF, FGF, and BDNF family of peptides and their role in female reproduction in vertebrates, with a focus on mammals.
Collapse
Affiliation(s)
- Chinelo N Uju
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada.
| |
Collapse
|
4
|
Ginther OJ. Contributions to Mare Reproduction Research by the Ginther Team. J Equine Vet Sci 2023; 126:104295. [PMID: 36990252 DOI: 10.1016/j.jevs.2023.104295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
Examples of research discoveries and first reports on mare reproduction by the O.J. Ginther team are (1) determined daily circulating concentrations of four hormones during the estrous cycle, (2) showed that mares can be induced to ovulate and superovulate by hormone treatment during both ovulatory and anovulatory seasons, (3) demonstrated that prostaglandin F2α was the luteolysin in mares, (4) described the mare's elaborate hormonal and biochemical mechanism for selecting the ovulatory follicle from a pool of like follicles, (5) developed the method for diagnosing fetal sex by Day 60 using location of the genital tubercle, (6) refuted the dogma that the primary corpus luteum regresses at about one month of pregnancy, (7) demonstrated that the uterus induces luteolysis in nonpregnant mares through a systemic pathway unlike the local uteroovarian venoarterial pathway in ruminants, (8) developed the method for greatly reducing the devastating twinning problem, and (9) discovered intrauterine embryo mobility and fixation and thereby solved several enigmas in mare reproduction. During 56 years on the University of Wisconsin faculty, Ginther was sole author of seven hard cover texts and reference books. He supervised 112 graduate-students, postdoctorates, and research trainees from 17 countries. His team published 680 full-length journal papers that were cited 43,034 times according to Google Scholar. The Institute for Scientific Information ranked him among the top 1% of the world's scientists in all fields. According to a survey in 2012-23 by Expertscape, he published more scientific manuscripts than anyone on ovarian follicles, corpora lutea, and luteolysis.
Collapse
Affiliation(s)
- O J Ginther
- Eutheria Foundation, Cross Plains, Madison, Wisconsin; Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
5
|
Gomez-Leon VE, Ginther OJ, Domingues RR, Sanglard LP, Wiltbank MC. Temporality of ovarian steroids and LH/FSH pulse profiles encompassing selection of the dominant follicle in heifers†. Biol Reprod 2023; 108:269-278. [PMID: 36401876 DOI: 10.1093/biolre/ioac201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/15/2022] [Accepted: 10/31/2022] [Indexed: 11/21/2022] Open
Abstract
The tested hypotheses were (1) LH/FSH pulses and F2 diameter are diminished by P4 and, (2) E2 increases during the transition to deviation and alters LH/FSH pulses. On Day 5 (Day 0 = ovulation), heifers were randomized into an untreated group (HiP4, n = 11), and a prostaglandin analog treated group (NoP4, n = 10). On Day 6, a follicular wave was induced by follicle ablation. Ultrasound and blood collections were performed every 12 h from Days 7 to 11. Blood was collected every 15 min for 10 h on Day 9 (largest follicle expected to be ~7.5 mm). Estradiol was ~75% greater (0.36 ± 0.14 vs 0.63 ± 0.19 pg/mL) in heifers with F1 ≥ 7.2 mm than in heifers with F1 < 7.2 mm. The HiP4 had smaller second largest follicle (F2) diameter, lower estradiol (P = 0.06), LH pulse baseline and peak concentrations (P < 0.007), in addition to half the frequency of LH/FSH pulses (4.1 ± 0.3 vs 9.6 ± 0.7 in 10 h) than the NoP4. Within HiP4, heifers with F1 ≥ 7.2 mm had ~25% fewer (P = 0.03) LH pulses compared to heifers with F1 < 7.2 mm. In contrast, within the NoP4, heifers with F1 ≥ 7.2 mm had ~75% greater LH (P = 0.05) and FSH (P = 0.08) pulse amplitude. We propose that greater F2 diameter at deviation in low P4 is related to greater LH baseline and peak concentrations, and greater frequency of LH/FSH pulses. A greater increase in E2 after F1 reaches ~7.2 mm results in further stimulation of LH/FSH pulse amplitude. Elevated P4 not only diminished frequency of LH/FSH pulses but also converted an E2 increase into a negative feedback effect on LH/FSH pulse frequency leading to smaller F2 at deviation.
Collapse
Affiliation(s)
- Victor E Gomez-Leon
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, USA.,Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, USA.,Eutheria Foundation, Cross Plains, WI, USA
| | - O J Ginther
- Eutheria Foundation, Cross Plains, WI, USA.,Department of Pathobiological Science, School of Veterinary Medicine, UW-Madison, WI, USA
| | - Rafael R Domingues
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, USA.,Eutheria Foundation, Cross Plains, WI, USA
| | | | - Milo C Wiltbank
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
6
|
Ginther OJ. Follicle Selection in Mares as a Model for Illustrating the Many Hormonal and Biochemical Interactions That Drive a Single Physiological Mechanism. J Equine Vet Sci 2023; 121:104196. [PMID: 36566910 DOI: 10.1016/j.jevs.2022.104196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The mechanism for selection of the future dominant or ovulatory follicle in mares involves a relatively abrupt separation in growth rates between the future dominant follicle and several subordinate follicles and is termed diameter deviation. The event is used to illustrate that a coordinated complex of many follicular, hormonal, and biochemical factors interact and interbalance during a single physiological mechanism. For example, a positive effect of follicle stimulating hormone (FSH) on development of all follicles during the growing phase can later involve a positive effect of luteinizing hormone (LH) but apparently only on the future dominant follicle. In turn, the developing and future dominant follicle produces estradiol which at appropriate times and degrees reduces FSH concentrations to accommodate follicle functions at certain levels of FSH. Meanwhile, the estradiol prevents LH from increasing from a useful to an adverse concentration. These interactions enmesh with the production and roles of other factors (e.g., inhibin, insulin-like growth factor) during follicle selection. The wide array of morphological, hormonal, and biochemical activities occur in harmony even when in the same tissue and often at the same time.
Collapse
|
7
|
Shakeel M, Yoon M. Functions of somatic cells for spermatogenesis in
stallions. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:654-670. [PMID: 35969700 PMCID: PMC9353347 DOI: 10.5187/jast.2022.e57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022]
Abstract
Spermatogenesis and testis development are highly structured physiological
processes responsible for post-pubertal fertility in stallions. Spermatogenesis
comprises spermatocytogenesis, meiosis, and spermiogenesis. Although germ cell
degeneration is a continuous process, its effects are more pronounced during
spermatocytogenesis and meiosis. The productivity and efficiency of
spermatogenesis are directly linked to pubertal development, degenerated germ
cell populations, aging, nutrition, and season of the year in stallions. The
multiplex interplay of germ cells with somatic cells, endocrine and paracrine
factors, growth factors, and signaling molecules contributes to the regulation
of spermatogenesis. A cell-to-cell communication within the testes of these
factors is a fundamental requirement of normal spermatogenesis. A noteworthy
development has been made recently on discovering the effects of different
somatic cells including Leydig, Sertoli, and peritubular myoid cells on
manipulation the fate of spermatogonial stem cells. In this review, we discuss
the self-renewal, differentiation, and apoptotic roles of somatic cells and the
relationship between somatic and germ cells during normal spermatogenesis. We
also summarize the roles of different growth factors, their
paracrine/endocrine/autocrine pathways, and the different cytokines associated
with spermatogenesis. Furthermore, we highlight important matters for further
studies on the regulation of spermatogenesis. This review presents an insight
into the mechanism of spermatogenesis, and helpful in developing better
understanding of the functions of somatic cells, particularly in stallions and
would offer new research goals for developing curative techniques to address
infertility/subfertility in stallions.
Collapse
Affiliation(s)
- Muhammad Shakeel
- Department of Animal Science and
Biotechnology, Kyungpook National University, Sangju 37224,
Korea
- Department of Clinical Studies, Faculty of
Veterinary and Animal Sciences, Pir Mehr Ali Shah, Arid Agriculture
University, Rawalpindi 44000, Pakistan
| | - Minjung Yoon
- Department of Animal Science and
Biotechnology, Kyungpook National University, Sangju 37224,
Korea
- Department of Horse, Companion and Wild
Animal Science, Kyungpook National University, Sangju 37224,
Korea
- Reseach Center for Horse Industry,
Kyungpook National University, Sangju 37224, Korea
- Corresponding author: Minjung Yoon,
Department of Animal Science and Biotechnology, Kyungpook National University,
Sangju 37224, Korea. Tel: +82-54-530-1233, E-mail:
| |
Collapse
|
8
|
Wischral A, Pastorello M, Gastal MO, Beg MA, Gastal EL. Hemodynamic, endocrine, and gene expression mechanisms regulating equine ovarian follicular and cellular development. Mol Reprod Dev 2021; 89:23-38. [PMID: 34911155 DOI: 10.1002/mrd.23549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/16/2021] [Accepted: 11/21/2021] [Indexed: 11/09/2022]
Abstract
Ovulatory follicle development and associated oocyte maturation involve complex coordinated molecular and cellular mechanisms not yet fully understood. This study addresses the relationships among follicle diameter, follicle wall blood flow, follicular-fluid factors, and gene expression for follicle growth, steroidogenesis, angiogenesis, and apoptosis in granulosa/cumulus cells and oocytes during different stages from the beginning of largest/ovulatory follicle to impending ovulation in mares. The most remarkable findings were (i) a positive association between follicle development, follicle blood flow, intrafollicular follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol, progesterone, and messenger RNA (mRNA) expression for FSHR and LHCGR in granulosa cells of the largest/ovulatory follicle; (ii) a plateau or decrease in follicle diameter and blood flow and granulosa cell mRNA for FSHR, LHCGR, IGF1R, VEGFR2, CYP19A1, and CASP3 at the preovulatory stage; (iii) higher StAR and BCL2 and lower CASP3 mRNA in granulosa cells at the time of impending ovulation; (iv) greater IGF1R mRNA for granulosa cells at the predeviation stage; and (v) lower FSHR, LHCGR, IGF1R, and VEGFR2 mRNA in cumulus cells and greater LHCGR and IGF1R mRNA in oocytes at the ovulatory stage. This study is a critical advance in the understanding of molecular mechanisms of follicle development and oocyte maturation and is expected to be vital for future studies targeting potential markers.
Collapse
Affiliation(s)
- Aurea Wischral
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, USA.,Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | - Marilia Pastorello
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, USA
| | - Melba O Gastal
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, USA
| | - Mohd A Beg
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eduardo L Gastal
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, USA
| |
Collapse
|
9
|
Spicer LJ, Schutz LF, Aad PY. Effects of bone morphogenetic protein 4, gremlin, and connective tissue growth factor on estradiol and progesterone production by bovine granulosa cells. J Anim Sci 2021; 99:6415266. [PMID: 34724558 DOI: 10.1093/jas/skab318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-β family of proteins that have been implicated in the paracrine regulation of granulosa cell (GC) function, but whether responses to BMPs change with follicular size or interact with connective tissue growth factor (CTGF) or BMP antagonists (e.g., gremlin [GREM]) to directly affect GC function of cattle is unknown. Therefore, to determine the effects of BMP4 on proliferation and steroidogenesis of GCs and its interaction with GREM or CTGF, experiments were conducted using bovine GC cultures. In vitro, BMP4 (30 ng/mL) inhibited (P < 0.05) follicle-stimulating hormone (FSH) plus insulin-like growth factor 1 (IGF1)-induced progesterone and estradiol production by large- and small-follicle GCs, but the inhibitory effect of BMP4 on estradiol production was much more pronounced in large-follicle GCs. In small-follicle GCs, BMP4 had no effect (P > 0.10) on IGF1-induced proliferation, but GREM inhibited (P < 0.05) cell proliferation and estradiol and progesterone production in IGF1 plus FSH-treated GCs. In large-follicle GCs, BMP4 (10 to 30 ng/mL) increased (P < 0.05) GC numbers and GREM (100 ng/mL) blocked this effect. In large-follicle GCs, CTGF inhibited (P < 0.05) FSH plus IGF1-induced progesterone and estradiol production, and CTGF blocked the stimulatory effect of BMP4 on GC proliferation. These results indicate that BMP4, GREM, and CTGF inhibit GC aromatase activity and progesterone production. Also, the stimulatory effect of BMP4 on GC proliferation and the inhibitory effects of BMP4 on GC steroidogenesis are more pronounced in large vs. small follicles.
Collapse
Affiliation(s)
- Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Luis F Schutz
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Pauline Y Aad
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
10
|
Lee EB, Chakravarthi VP, Wolfe MW, Rumi MAK. ERβ Regulation of Gonadotropin Responses during Folliculogenesis. Int J Mol Sci 2021; 22:ijms221910348. [PMID: 34638689 PMCID: PMC8508937 DOI: 10.3390/ijms221910348] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/11/2022] Open
Abstract
Gonadotropins are essential for regulating ovarian development, steroidogenesis, and gametogenesis. While follicle stimulating hormone (FSH) promotes the development of ovarian follicles, luteinizing hormone (LH) regulates preovulatory maturation of oocytes, ovulation, and formation of corpus luteum. Cognate receptors of FSH and LH are G-protein coupled receptors that predominantly signal through cAMP-dependent and cAMP-independent mechanisms that activate protein kinases. Subsequent vital steps in response to gonadotropins are mediated through activation or inhibition of transcription factors required for follicular gene expression. Estrogen receptors, classical ligand-activated transcriptional regulators, play crucial roles in regulating gonadotropin secretion from the hypothalamic-pituitary axis as well as gonadotropin function in the target organs. In this review, we discuss the role of estrogen receptor β (ERβ) regulating gonadotropin response during folliculogenesis. Ovarian follicles in Erβ knockout (ErβKO) mutant female mice and rats cannot develop beyond the antral state, lack oocyte maturation, and fail to ovulate. Theca cells (TCs) in ovarian follicles express LH receptor, whereas granulosa cells (GCs) express both FSH receptor (FSHR) and LH receptor (LHCGR). As oocytes do not express the gonadotropin receptors, the somatic cells play a crucial role during gonadotropin induced oocyte maturation. Somatic cells also express high levels of estrogen receptors; while TCs express ERα and are involved in steroidogenesis, GCs express ERβ and are involved in both steroidogenesis and folliculogenesis. GCs are the primary site of ERβ-regulated gene expression. We observed that a subset of gonadotropin-induced genes in GCs, which are essential for ovarian follicle development, oocyte maturation and ovulation, are dependent on ERβ. Thus, ERβ plays a vital role in regulating the gonadotropin responses in ovary.
Collapse
Affiliation(s)
- Eun B. Lee
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (V.P.C.)
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - V. Praveen Chakravarthi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (V.P.C.)
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA;
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Michael W. Wolfe
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA;
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - M. A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (V.P.C.)
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Correspondence: ; Tel.: +1-913-588-8059
| |
Collapse
|
11
|
Ginther OJ. Switching of follicle destiny so that the second largest follicle becomes dominant in monovulatory species. Theriogenology 2021; 171:147-154. [PMID: 34058507 DOI: 10.1016/j.theriogenology.2021.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 11/15/2022]
Abstract
During an ovulatory follicular wave in the monovulatory species of heifers, mares, and women, the two largest follicles deviate in diameter at the end of a common follicle growth phase. The largest follicle before deviation becomes the future ovulatory follicle in most ovulatory waves. In 10-30% of the ovulatory waves, the destiny of the two follicles switches just before or at deviation so that the second-largest follicle becomes the future ovulatory follicle, and the largest follicle becomes a subordinate. In FSH-driven switching in heifers, mares, and women, the wave-stimulating FSH surge decreases to a low concentration before the largest follicle has developed the ability to utilize the low concentrations. The concentrations of FSH then increase (mares, women) or cease to decrease (heifers), and the next largest follicle acquires the capability of becoming the future ovulatory follicle. Luteolysis-driven switching has been reported in heifers but not in mares and women. The switching in heifers occurs during ovulatory wave 3 of three wave interovulatory intervals (IOI) when the wave of follicles is in the common growth phase in synchrony with the time of luteolysis. Regression of the CL during the common growth phase of ovulatory wave 3 is accompanied by decreased activity of follicles that are adjacent to the regressing CL but not when follicles and CL are separated or in opposite ovaries. The role of luteolysis in switching in heifers has been tested by treating with PGF2α when the largest follicle of wave 2 was near the end of the common growth phase. Switching in destiny of the largest follicle from the expected future dominant to a future subordinate occurred in most waves (10 of 17) when the largest follicle and regressing CL were in the same ovary and adjacent but not when separated in the same ovary or when in opposite ovaries (0 of 11). The newly selected future ovulatory follicle may develop in the opposite ovary. Thereby, frequency of the contralateral vs ipsilateral relationship between the preovulatory follicle and CL in heifers is greater in three-wave IOI than in two-wave IOI. In summary, the second largest predeviation follicle becomes the postdeviation dominant follicle when the decreasing FSH is out of phase with the largest predeviation follicle in heifers, mares, and women or when luteolysis and predeviation are in synchrony in heifers.
Collapse
Affiliation(s)
- O J Ginther
- Eutheria Foundation, Cross Plains, WI, USA; Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
12
|
Orisaka M, Miyazaki Y, Shirafuji A, Tamamura C, Tsuyoshi H, Tsang BK, Yoshida Y. The role of pituitary gonadotropins and intraovarian regulators in follicle development: A mini-review. Reprod Med Biol 2021; 20:169-175. [PMID: 33850449 PMCID: PMC8022101 DOI: 10.1002/rmb2.12371] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The process of follicle development is tightly regulated by pituitary gonadotropins (follicle-stimulating hormone [FSH] and luteinizing hormone [LH]) and intraovarian regulators (eg, steroids, growth factors, and cytokines). METHODS This review outlines recent findings on the mechanisms of human follicle development, based on the research on animal models such as mice, rats, cows, and sheep. MAIN FINDINGS Phosphatidylinositol 3-kinase/protein kinase B signaling pathway and anti-Müllerian hormone are involved in primordial follicle activation during the gonadotropin-independent phase. The intraovarian regulators, such as androgen, insulin-like growth factor system, activin, oocyte-derived factors (growth differentiation factor-9 and bone morphogenetic protein 15), and gap junction membrane channel protein (connexin), play a central role in the acquisition of FSH dependence in preantral follicles during the gonadotropin-responsive phase. Antral follicle development can be divided into FSH-dependent growth and LH-dependent maturation. The indispensable tetralogy for follicle selection and final maturation of antral follicles involves (a) acquisition of LH dependence, (b) greater capacity for E2 production, (c) activation of the IGF system, and (d) an antiapoptotic follicular microenvironment. CONCLUSION We reproductive endocrinologists should accumulate further knowledge from animal model studies to develop methods that promote early folliculogenesis and connect to subsequent gonadotropin therapy in infertile women.
Collapse
Affiliation(s)
- Makoto Orisaka
- Department of Obstetrics and GynecologyUniversity of FukuiYoshida‐GunJapan
| | - Yumiko Miyazaki
- Department of Obstetrics and GynecologyUniversity of FukuiYoshida‐GunJapan
| | - Aya Shirafuji
- Department of Obstetrics and GynecologyUniversity of FukuiYoshida‐GunJapan
| | - Chiyo Tamamura
- Department of Obstetrics and GynecologyUniversity of FukuiYoshida‐GunJapan
| | - Hideaki Tsuyoshi
- Department of Obstetrics and GynecologyUniversity of FukuiYoshida‐GunJapan
| | - Benjamin K. Tsang
- Reproductive Biology UnitDepartments of Obstetrics & Gynecology and Cellular & Molecular MedicineUniversity of OttawaOttawaONCanada
- Chronic Disease ProgramOttawa Hospital Research InstituteCritical Care WingThe Ottawa Hospital ‐ General CampusOttawaONCanada
| | - Yoshio Yoshida
- Department of Obstetrics and GynecologyUniversity of FukuiYoshida‐GunJapan
| |
Collapse
|
13
|
D Occhio MJ, Campanile G, Baruselli PS. Transforming growth factor-β superfamily and interferon-τ in ovarian function and embryo development in female cattle: review of biology and application. Reprod Fertil Dev 2021; 32:539-552. [PMID: 32024582 DOI: 10.1071/rd19123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/16/2019] [Indexed: 12/21/2022] Open
Abstract
Survival of the embryo and establishment of a pregnancy is a critical period in the reproductive function of female cattle. This review examines how the transforming growth factor-β (TGFB) superfamily (i.e. bone morphogenetic protein (BMP) 15, growth differentiation factor (GDF) 9, anti-Müllerian hormone (AMH)) and interferon-τ (IFNT) affect ovarian function and embryo development. The oocyte in a primary follicle secretes BMP15 and GDF9, which, together, organise the surrounding granulosa and theca cells into the oocyte-cumulus-follicle complex. At the same time, the granulosa secretes AMH, which affects the oocyte. This autocrine-paracrine dialogue between the oocyte and somatic cells continues throughout follicle development and is fundamental in establishing the fertilisation potential and embryo developmental competency of oocytes. The early bovine embryo secretes IFNT, which acts at the uterine endometrium, corpus luteum and blood leucocytes. IFNT is involved in the maternal recognition of pregnancy and immunomodulation to prevent rejection of the embryo, and supports progesterone secretion. Manipulation of BMP15, GDF9, AMH and IFNT in both invivo and invitro studies has confirmed their importance in reproductive function in female cattle. This review makes the case that a deeper understanding of the biology of BMP15, GDF9, AMH and IFNT will lead to new strategies to increase embryo survival and improve fertility in cattle. The enhancement of oocyte quality, early embryo development and implantation is considered necessary for the next step change in the efficiency of natural and assisted reproduction in cattle.
Collapse
Affiliation(s)
- Michael J D Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, 410 Werombi Road, Camden, NSW 2006, Australia
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, V. F. Delpino, 1 80137 Naples, Italy
| | - Pietro S Baruselli
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Zootecnia, University of Sao Paulo, Sao Paulo, CEP 05508-270 Brazil; and Corresponding author.
| |
Collapse
|
14
|
Gallelli MF, Bianchi C, Zampini E, Aba M, Gambarotta M, Miragaya M. Plasma IGF1 and 17β-Estradiol Concentrations During the Follicular Wave in Llamas. Front Vet Sci 2020; 7:555261. [PMID: 33195527 PMCID: PMC7661775 DOI: 10.3389/fvets.2020.555261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/05/2020] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to characterize the temporal association between follicular waves and circulating concentrations of 17β-estradiol (E2) and IGF1 in llamas. Follicular waves could be clearly divided in three phases: growth, plateau and regression; with a mean duration of 18.8 ± 0.32 days. All follicular waves showed overlapping, so that as one dominant follicle was regressing, another one was growing. E2 plasma concentration showed a wavelike pattern, similar to that followed by the dominant follicle; reaching its maximum concentration at the end of the growth phase and decreasing at the end of the plateau phase. IGF1 also showed variations during the follicular wave. It tended to increase during the growth phase and decreased toward Days 14 and 16. IGF1 reached its maximum concentration before E2 did (5 ± 0.8 vs. 7.2 ± 0.5 days after wave emergence) and before the maximum follicular diameter was attained (10.2 ± 0.46 days after wave emergence). Both hormones started to rise again in coincidence with the development of a new follicular wave. The observed profiles allow to suggest that IGF1 could have a role on folliculogenesis and ovarian steroideogenesis in llamas, as reported for other species.
Collapse
Affiliation(s)
- María F Gallelli
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina Bianchi
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Laboratorio de Endocrinología, Facultad de Veterinaria, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| | - Enzo Zampini
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcelo Aba
- Laboratorio de Endocrinología, Facultad de Veterinaria, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| | - M Gambarotta
- Departamento de Bioestadística, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcelo Miragaya
- Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
15
|
Morrell BC, Zhang L, Schütz LF, Perego MC, Maylem ERS, Spicer LJ. Regulation of the transcription factor E2F8 gene expression in bovine ovarian cells. Mol Cell Endocrinol 2019; 498:110572. [PMID: 31493442 DOI: 10.1016/j.mce.2019.110572] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022]
Abstract
Overexpression of the transcription factor, E2F8, has been associated with ovarian cancer. Objectives of this study were to determine: 1) if E2F8 gene expression in granulosa cells (GC) and theca cells (TC) change with follicular development, and 2) if E2F8 mRNA abundance in TC and GC is hormonally regulated. Using real-time PCR, E2F8 mRNA abundance in GC and TC was greater (P < 0.05) in small than large follicles. FGF9 induced an increase (P < 0.05) in E2F8 mRNA abundance by 1.6- to 7-fold in large-follicle (8-20 mm) TC and GC as well as in small-follicle (1-5 mm) GC. Abundance of E2F8 mRNA in TC was increased (P < 0.05) with FGF2, FGF9 or VEGFA treatments alone in vitro, and concomitant treatment of VEGFA with FGF9 increased (P < 0.05) abundance of E2F8 mRNA above any of the singular treatments; BMP4, WNT3A and LH were without effect. IGF1 amplified the stimulatory effect of FGF9 on E2F8 mRNA abundance by 2.7-fold. Collectively, our studies show for the first time that follicular E2F8 is developmentally and hormonally regulated indicating that E2F8 may be involved in follicular development.
Collapse
Affiliation(s)
- Breanne C Morrell
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Lingna Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Luis F Schütz
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - M Chiara Perego
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Excel Rio S Maylem
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
16
|
Gomez-León VE, Ginther OJ, Guimarães JD, Wiltbank MC. Hormonal mechanisms regulating follicular wave dynamics II: Progesterone decreases diameter at follicle selection regardless of whether circulating FSH or LH are decreased or elevated. Theriogenology 2019; 143:148-156. [PMID: 31964484 DOI: 10.1016/j.theriogenology.2019.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 02/05/2023]
Abstract
Selection of a single dominant follicle is morphologically manifested by diameter deviation between the future dominant follicle (F1) and the future largest subordinate follicle (F2). Conventional deviation is defined as F2≥7 mm when F1 reaches ∼8.5 mm whereas, undersized deviation is if F2<7 mm when F1 reaches ∼8.5 mm. Greater frequency of undersized deviation has been temporally associated with greater circulating progesterone (P4) and greater FSH but reduced LH in observational studies. Experiment 1 was conducted to directly test if elevating P4 increased the likelihood of undersized deviation and altered circulating concentrations of LH and FSH. Experiment 2 was conducted to test if increasing LH action by treatment with exogenous porcine LH or human chorionic gonadotropin (hCG) in the presence of elevated P4, would stimulate growth of F2 and increase the likelihood of conventional deviation. Ovaries were evaluated by ultrasound and blood samples collected every 12 h after development of a new wave following follicle ablation on D6 (D0 = ovulation). Data were normalized to F1≥7.5 mm and compared using SAS software. In experiment 1 (n = 20), the CL was regressed by prostaglandin F2α treatment and heifers were randomized on D6 into control (no P4 treatment) or P4 treatment (75 mg every 12 h for 5.5 d) beginning when F1 reached ∼3 mm (P4-3 mm group) or ∼6 mm (P4-6 mm group). The P4 treatment significantly increased the frequency of undersized deviation from 0% (controls) to 54%, decreased LH by 44%, and increased FSH by 32%. In experiment 2 (n = 27) heifers were randomized on D6 into control (saline) or treatment with the LH analogs - pLH (1.25 mg porcine LH/12 h) or hCG (160 IU initially and subsequently 96 IU/24 h). Treatment with LH analogs significantly increased P4 (control, 4.6 ± 0.3 ng/mL; pLH, 6.6 ± 0.4 ng/mL; and hCG, 8.9 ± 0.4 ng/mL) and decreased FSH (control, 0.46 ± 0.03 ng/mL; combined-pLH/hCG, 0.34 ± 0.02 ng/mL). However, F1 and F2 diameter and frequency of conventional (37%) and undersized (48%) deviations were similar between the control and combined-pLH/hCG groups. In conclusion, elevated P4 was directly linked to undersized deviation but the P4 effect on decreasing F2 diameter occurred independently of the P4 effects on FSH and LH concentrations.
Collapse
Affiliation(s)
- V E Gomez-León
- Eutheria Foundation, Cross Plains, WI, 53528, USA; Department of Dairy Science, University of Wisconsin-Madison, Wisconsin, 53706, USA; Department of Veterinary Medicine, Universidade Federal de Viçosa, Minas Gerais, 36570-000, Brazil
| | - O J Ginther
- Eutheria Foundation, Cross Plains, WI, 53528, USA; Department of Pathobiological Science, School of Veterinary Medicine, University of Wisconsin-Madison, Wisconsin, 53706, USA
| | - J D Guimarães
- Department of Veterinary Medicine, Universidade Federal de Viçosa, Minas Gerais, 36570-000, Brazil
| | - M C Wiltbank
- Department of Dairy Science, University of Wisconsin-Madison, Wisconsin, 53706, USA.
| |
Collapse
|
17
|
Satué K, Fazio E, Ferlazzo A, Medica P. Hematochemical Patterns in Follicular Fluid and Blood Stream in Cycling Mares: A Comparative Note. J Equine Vet Sci 2019; 80:20-26. [PMID: 31443828 DOI: 10.1016/j.jevs.2019.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/02/2019] [Accepted: 06/17/2019] [Indexed: 01/20/2023]
Abstract
The aim of this study was to verify the existence of possible cross-talk between biochemical contents of follicular fluid (FF) and systemic concentrations according to the follicular development of the metabolites: glucose (GLU), lactate (LACT), cholesterol (CHOL), triglycerides (TG), total bilirubin (T BIL), blood urea nitrogen (BUN), and creatinine (CREAT); enzymatic activities: gamma-glutamyl transferase (GGT), lactate dehydrogenase (LDH), alkaline phosphatase (ALP), and aspartate aminotransferase (AST); electrolytes: calcium (Ca), phosphorus (P), sodium (Na), chloride (Cl), potassium (K), magnesium (Mg), and iron (Fe); total proteins (TP) and their fractions: albumin (ALB), α1-, α2-, β-, and γ-globulins (GLOB) of FF and blood strain and their correlations with follicular size in cycling mares. Systemic concentrations of GLU, T BIL, BUN, Fe, TP, ALB, α-1, and α-2 and δ-GLOB and of ALP, GGT, and AST activities were higher than in the FF (P < .05); LACT, CHOL, and TG were higher in FF than systemic ones (P < .05). Glucose, CHOL, TG, LACT, and T BIL were higher in large follicles than in medium and small follicles (P < .05); however, BUN, Fe, ALP, and AST were lower in large follicles than in medium or small follicles (P < .05). Alkaline phosphatase, GGT, and AST activities decreased in medium and large follicles compared with small follicles (P < .05). These results suggest that the metabolic, enzymatic, electrolytic, and protein composition of FF of growing follicles could occur according to the bloodstream changes; hence, it is possible to presume that the nutritional environment of oocyte and follicular cells could improve the clinical diagnoses of infertility in the mare.
Collapse
Affiliation(s)
- Katiuska Satué
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, CEU-Cardenal Herrera University, Valencia, Spain.
| | - Esterina Fazio
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Messina University, Messina, Italy
| | - Adriana Ferlazzo
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Messina University, Messina, Italy
| | - Pietro Medica
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Messina University, Messina, Italy
| |
Collapse
|
18
|
Ginther OJ, Dangudubiyyam SV. Role of intraovarian mechanisms and side of ovary on characteristics of follicle selection in Bos taurus heifers. Theriogenology 2019; 135:56-64. [PMID: 31201997 DOI: 10.1016/j.theriogenology.2019.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/29/2022]
Abstract
Intraovarian effects on diameter of future dominant follicle (DF or F1) and future largest subordinate follicle (F2) during the few days before selection of the future DF and subordinate follicles were studied in 147 bovine interovulatory intervals. Follicle selection involves diameter deviation or the beginning of separation of growth rates between F1 and F2. Diameter deviation is classified as conventional (F2 ≥ 7.0 mm when F1 is 8.5 mm or at expected deviation) and as undersized (F2 < 7.0 mm when F1 is 8.5 mm). Diameter separation of F1 and F2 in conventional and undersized deviations is characteristically abrupt and gradual, respectively. The predeviation diameter of F2 when located in an ovary that later becomes the F1 intraovarian patterns of DF-CL, devoid (ovary without a DF or CL), DF alone, or CL alone and in left or right ovaries (LO, RO) was compared between conventional and undersized deviations. In conventional deviation, ovaries with the future DF (combined DF-CL and DF patterns) were associated with greater (P < 0.02) predeviation growth rate of F2 when the DF was in the right ovary (DF/RO, 1.6 ± 0.1 mm/d) than when in the left ovary (DF/LO, 1.2 ± 0.1 mm/d). The F2 was in DF/RO more frequently (75%, P < 0.002) than in non-DF/RO. When F2 was in the future devoid F1 pattern and F1 was 6 mm, F2 was smaller (P < 0.002) in the undersized class (5.3 ± 0.2 mm) than in the conventional class (6.3 ± 0.1) but not when F2 was in one of the other future F1 patterns. Only the devoid pattern was greater in frequency (P < 0.03) in the undersized class than in the conventional class. The novel hypothesis was supported that location of F2 in ovaries with different future F1 intraovarian patterns and on different sides affects the predeviation diameter and growth rate of F2 and thereby the frequencies of conventional and undersized deviations during follicle selection.
Collapse
Affiliation(s)
- O J Ginther
- Eutheria Foundation, Cross Plains, WI, 53528, USA; Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | | |
Collapse
|
19
|
Follicle blood flow and FSH concentration associated with variations in characteristics of follicle selection in heifers. Theriogenology 2019; 125:93-101. [DOI: 10.1016/j.theriogenology.2018.10.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/12/2018] [Accepted: 10/25/2018] [Indexed: 12/31/2022]
|
20
|
Are female camels capital breeders? Influence of seasons, age, and body condition on reproduction in an extremely arid region. Mamm Biol 2018. [DOI: 10.1016/j.mambio.2018.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
21
|
Sirard MA, Grand FX, Labrecque R, Vigneault C, Blondin P. ASAS-SSR Triennial Reproduction Symposium: The use of natural cycle's follicular dynamic to improve oocyte quality in dairy cows and heifers. J Anim Sci 2018. [PMID: 29514310 DOI: 10.1093/jas/sky050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The selection of the best dairy heifers is mainly driven by the genetic value of their parents. The phenotype analysis of cows and of the daughters of bulls has been used to identify the best genetic value for decades before being replaced by genomic selection of individuals that are not yet parents. Because it is possible to predict the future value of an individual by its genetic makeup, it becomes feasible to do it as early as the blastocyst stage and to decide which should be transferred or not. Because we know the genotype of an animal at birth, or even before, it is becoming desirable to reproduce this animal as soon as possible to reduce generation interval and improve selection speed. Nature provides constraints that can be overcome: a single oocyte per cycle and age at puberty. Indeed, it is now possible to super-stimulate the ovary at any age and to start collecting oocytes at 6 mo by trans-vaginal ultrasonography. The challenge becomes the production of good eggs and embryos capable of implanting and developing into healthy calves. Our understanding of ovarian follicular physiology has been instrumental in designing stimulation protocols that may be adjusted to any physiological context including age, and even the individual animal, to obtain a good response. Therefore, the combination of procedures developed in cows to optimize oocyte quality, for example, FSH coasting, in association with in vitro fertilization and optimal culture conditions can now result in the production of several female embryos twice a month from animals 6 to12 mo of age. The transcriptomic and epigenetic analyses of embryos produced from the same females at different ages were compared and few differences were noted in particular in relation to embryo metabolism. These embryos are as good as the ones obtained from adult animals and can be produced with sexed sperm of bulls 12 mo of age. This combination of these technical optimizations with blastocyst genotyping allows the selection of a second generation within a year.
Collapse
Affiliation(s)
- Marc André Sirard
- Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Département des Sciences Animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Canada
| | | | | | | | | |
Collapse
|
22
|
Vega WHO, Quirino CR, Bartholazzi-Junior A, Rua MAS, Serapião RV, Oliveira CS. Variants in the CYP19A1 gene can affect in vitro embryo production traits in cattle. J Assist Reprod Genet 2018; 35:2233-2241. [PMID: 30232641 DOI: 10.1007/s10815-018-1320-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/13/2018] [Indexed: 11/30/2022] Open
Abstract
PURPOSE This study aimed to associate DNA variants in promoter and exon flanking regions of the CYP19A1 gene with in vitro embryo production traits in cattle. The role of transcription factor binding sites created or lost due to DNA sequence variation and their possible effect on gene expression was also evaluated. METHODS We collected date from Gyr dairy oocyte donor cows (Bos taurus indicus) at a commercial in vitro embryo production farm and analyzed the genotype-phenotype association with in vitro production traits. Using Sanger sequencing and web-based software, we assessed important CYP19A1 gene regions in oocyte donor cows and analyzed the effects of variants on the transcription factor binding sites. RESULTS Two SNP mutations significantly associated with oocyte production, oocyte viability, embryo development, and pregnancies were found (T > C in the untranslated exon 1 flanking region ([GenBank: AJ250379.1]: rs718446508 T > C), and a T > C in the 5'-upstream region (1.1 promoter) ([GenBank: AC_000167.1]: rs41651668 T > C). Six new transcription factor binding sites were created. A binding site for transcription factors associated with the development of the placenta and embryo implantation was eliminated due to variations in the DNA sequence identified. CONCLUSIONS The CYP19A1 gene contributes to genetic variation of in vitro embryo production traits in cattle. The complexity of the physiological phenomena related to estrogen pathways and their influence on reproduction in cattle allow indication of the mutations evaluated here as possible genetic markers for embryo production traits, which should be validated in the next steps of marker-assisted selection.
Collapse
Affiliation(s)
- Wilder Hernando Ortiz Vega
- Laboratory for Animal Breeding and Genetic Improvement, Norte Fluminense State University, Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil.
| | - Celia Raquel Quirino
- Laboratory for Animal Breeding and Genetic Improvement, Norte Fluminense State University, Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil
| | - Aylton Bartholazzi-Junior
- Laboratory for Animal Breeding and Genetic Improvement, Norte Fluminense State University, Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil
| | - Miguel Alejandro Silva Rua
- Laboratory for Animal Breeding and Genetic Improvement, Norte Fluminense State University, Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil
| | - Raquel Varella Serapião
- PESAGRO-RIO, Laboratory for Animal Reproduction, Santa Mônica Experimental Farm (CESM), Valença, Rio de Janeiro, Brazil
| | - Clara Slade Oliveira
- Embrapa Dairy Cattle Research Unit, Laboratory for Animal Reproduction, Santa Mônica Experimental Farm (CESM), Valença, Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Free IGF1 and Insulin Concentrations in the Follicular Fluid and Follicle IGF1 Receptor Expression Differ According to Follicle Size in the Mare. J Equine Vet Sci 2018. [DOI: 10.1016/j.jevs.2018.05.169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Ginther OJ. Spontaneous switching of future dominance to a smaller follicle: commonality among monovular species†. Biol Reprod 2018; 99:1129-1136. [DOI: 10.1093/biolre/ioy151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/28/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- O J Ginther
- Eutheria Foundation, Cross Plains, Wisconsin, USA
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
25
|
Hattori K, Orisaka M, Fukuda S, Tajima K, Yamazaki Y, Mizutani T, Yoshida Y. Luteinizing Hormone Facilitates Antral Follicular Maturation and Survival via Thecal Paracrine Signaling in Cattle. Endocrinology 2018; 159:2337-2347. [PMID: 29668890 DOI: 10.1210/en.2018-00123] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/09/2018] [Indexed: 11/19/2022]
Abstract
LH supplementation in assisted reproductive technology cycles improves the ongoing pregnancy rate in women with poor ovarian response (POR). However, our knowledge of the precise role of LH during the follicular phase of the menstrual cycle is incomplete. To explore the role of LH in the maturation of small antral follicles, we used an in vitro two-cell system that involved coculturing bovine granulosa cells (GCs) and theca cells (TCs) on a collagen membrane. Treatment of TCs with LH stimulated androgen production in TCs by inducing the expression of androgenic factors, subsequently increasing estrogen biosynthesis in GCs by providing androgen substrates, and inducing aromatase expression. LH stimulation of TCs induced functional LH receptor expression in GCs, a response modulated by the synthesis and action of estrogen. In the presence of TCs, LH stimulation of TCs and FSH stimulation of GCs increased the expression of IGF-1, IGF-2, and IGF-1 receptor in GCs. LH-induced expression of thecal IGF-1 protected GCs from apoptosis and promoted GC survival. Furthermore, LH stimulation of TCs increased FSH sensitivity in GCs. Thus, the LH-TC axis may be involved in the acquisition of LH dependence and the survival of small antral follicles by upregulating androgen/estrogen biosynthesis and activating the IGF system. The use of LH supplementation in ovarian stimulation may increase gonadotropin sensitivity in small antral follicles and promote follicular growth and survival by suppressing GC apoptosis and follicular atresia, resulting in multiple follicular development, even in patients with POR.
Collapse
Affiliation(s)
- Katsushige Hattori
- Department of Obstetrics and Gynecology, University of Fukui, Fukui, Japan
- Department of Obstetrics and Gynecology, Japanese Red Cross Fukui Hospital, Fukui, Japan
| | - Makoto Orisaka
- Department of Obstetrics and Gynecology, University of Fukui, Fukui, Japan
| | - Shin Fukuda
- Department of Obstetrics and Gynecology, Japanese Red Cross Fukui Hospital, Fukui, Japan
| | - Kimihisa Tajima
- Department of Obstetrics and Gynecology, Japanese Red Cross Fukui Hospital, Fukui, Japan
| | - Yukiko Yamazaki
- Department of Obstetrics and Gynecology, University of Fukui, Fukui, Japan
| | - Tetsuya Mizutani
- Department of Cell Biology and Biochemistry, University of Fukui, Fukui, Japan
| | - Yoshio Yoshida
- Department of Obstetrics and Gynecology, University of Fukui, Fukui, Japan
| |
Collapse
|
26
|
Macmillan K, Kastelic JP, Colazo MG. Update on Multiple Ovulations in Dairy Cattle. Animals (Basel) 2018; 8:ani8050062. [PMID: 29695075 PMCID: PMC5981273 DOI: 10.3390/ani8050062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 12/28/2022] Open
Abstract
This review updates the causal mechanisms and risk factors for multiple ovulations (MOV) in cattle. Clearly, MOV can lead to twin pregnancies, which negatively affects the health, production, and reproduction of cows. Therefore, a better understanding of the factors causing MOV may help to reduce twinning. Multiple ovulations occur after two or more follicles deviate and achieve codominance. The MOV rate is influenced by a complex network of hormones. For example, MOV is more common during periods of low progesterone (P4), that is, in anovulatory cattle or when luteolysis coincides with the selection of the future ovulatory follicle. There is also strong evidence for the luteinizing hormone (LH) being the primary factor leading to codominance, as high P4 concentrations suppress the transient LH surges and can reduce the ovulation rate in cattle or even inhibit deviation. Rates of MOV are increased in older and higher-producing dairy cows. Increased milk production and dry matter intake (DMI) increases hormone clearance, including P4; however, the association between milk yield and MOV has not been consistent. Additional risk factors for MOV include ovarian cysts, diet, season, and genetics.
Collapse
Affiliation(s)
- Kira Macmillan
- Livestock Research Section, Alberta Agriculture and Forestry, Edmonton, AB T6H 5T6, Canada.
| | - John P Kastelic
- Department of Production Animal Health, University of Calgary, Calgary, AB T2N 4Z6, Canada.
| | - Marcos G Colazo
- Livestock Research Section, Alberta Agriculture and Forestry, Edmonton, AB T6H 5T6, Canada.
| |
Collapse
|
27
|
Oberhaus EL, Thompson DL, Foster BA, Pinto CR. Effects of Combined Estradiol-Sulpiride Treatment and Follicle Ablation on Vernal Transition in Mares: Evaluation of Plasma and Follicular Fluid Hormones and Luteinizing Hormone Receptor Gene Expression. J Equine Vet Sci 2018; 64:69-76. [PMID: 30973156 DOI: 10.1016/j.jevs.2018.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 11/25/2022]
Abstract
This experiment assessed the hormonal production, secretory aspects, and changes in luteinizing hormone (LH) receptor gene expression of early induced ovulatory-sized follicles relative to the first ovulatory-sized follicles occurring naturally in the spring. Anovulatory mares were treated on January 21 with (1) 50 mg of estradiol cypionate (ECP, n = 8) alone or (2) with ECP followed by two 3-g sulpiride injections (n = 8), 5 and 12 days later. Half of each group also received complete follicle ablation via transvaginal aspiration before ECP treatment. Ovaries were scanned regularly until detection of a 32-35 mm follicle; follicular fluid was recovered via aspiration for analysis of hormonal concentrations. Blood was collected regularly to characterize plasma prolactin, LH, follicle stimulating hormone, progesterone, and estradiol concentrations. Mean date to first 35-mm follicle was earlier (P < .05) in sulpiride-treated mares: five of eight (63%) responded within 28 days of the first sulpiride injection. Ablation did not affect ovarian response. Plasma prolactin was stimulated (P < .0001) in ECP-sulpiride-treated mares for 16 days but did not dictate ovarian response. Estradiol stimulated plasma LH (P < .05), which was higher (P < .05) in treated mares that responded. There was no effect of treatment or ablation on follicular fluid concentrations of estradiol, progesterone, leptin, or insulin-like growth factor 1 or on LH receptor gene expression. These latter similarities indicate that ECP-sulpiride early induced follicles have apparently reached a degree of maturity equivalent to naturally occurring ovulatory-sized follicles later in the spring.
Collapse
Affiliation(s)
- Erin L Oberhaus
- School of Animal Sciences, Louisiana Agricultural Experiment Station, Louisiana State University Agricultural Center, Baton Rouge, LA.
| | - Donald L Thompson
- School of Animal Sciences, Louisiana Agricultural Experiment Station, Louisiana State University Agricultural Center, Baton Rouge, LA
| | - Brittany A Foster
- School of Animal Sciences, Louisiana Agricultural Experiment Station, Louisiana State University Agricultural Center, Baton Rouge, LA
| | - Carlos R Pinto
- Department of Theriogenology, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| |
Collapse
|
28
|
Yousefi S, Soleimanirad J, Hamdi K, Farzadi L, Ghasemzadeh A, Kazemi M, Mahdipour M, Rahbarghazi R, Nouri M. Distinct effect of fetal bovine serum versus follicular fluid on multipotentiality of human granulosa cells in in vitro condition. Biologicals 2018; 52:44-48. [PMID: 29398344 DOI: 10.1016/j.biologicals.2018.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 12/30/2017] [Accepted: 01/19/2018] [Indexed: 12/01/2022] Open
Abstract
This study aimed to develop an appropriate medium for preservation of multipotentiality in human granulosa cells. To compare the possible effect of different media supplemented with follicular fluid or fetal bovine serum, granulosa cells were cultured in vitro over a period of 14 days. Stemness feature and any alteration in the cell phenotype were monitored using colony count assay and flow cytometry analysis by monitoring the expression of Oct3/4 and GATA-4 factors. Transcript expression level of Sox-2, Klf-4, and Nanog were investigated using quantitative real-time PCR analysis. Cells were cultured in the medium supplement with follicular fluid showed normal cell morphology and epithelial-like appearance, however, cells treated with fetal bovine serum, exhibited the clonogenic potential of granulosa cells which was increased after exposure to follicular fluid after 14 days (p < 0.05). Flow cytometry analysis revealed a significant reduction in the protein level of GATA-4 in cells cultured in presence of follicular fluid compared with cells received fetal bovine serum (p < 0.001). Quantitative real-time PCR analysis disclosed reduction of Sox-2, Klf-4 and Nanog levels in cells exposed to fetal bovine serum. Our experiment showed the exposure of human granulosa cells to follicular fluid efficiently preserves the stemness characteristics of the cells.
Collapse
Affiliation(s)
- Soudabe Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimanirad
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Hamdi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Laya Farzadi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aalie Ghasemzadeh
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Kazemi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
29
|
Feng T, Schutz LF, Morrell BC, Perego MC, Spicer LJ. Effect of melatonin on bovine theca cells in vitro. Reprod Fertil Dev 2018; 30:643-650. [DOI: 10.1071/rd17203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/11/2017] [Indexed: 12/19/2022] Open
Abstract
Melatonin affects granulosa cell function in several species but its function in theca cells is less clear, particularly in monotocous animals. Thus, the objectives of this study were to determine the effects of melatonin on theca cell steroidogenesis, gene expression and cell proliferation in a monotocous species, namely cattle. Ovaries were collected from a local bovine abattoir, from which theca cells were isolated from large (8–22 mm) follicles and treated with various hormones in serum-free medium for 24 h or 48 h. Melatonin caused a dose-dependent inhibition (P < 0.05) of LH+insulin-like growth factor 1 (IGF1)-induced androstenedione and progesterone production. Also, melatonin inhibited (P < 0.05) LH+IGF1-induced expression of steroidogenic acute regulatory protein (StAR) mRNA (via real-time polymerase chain reaction) in theca cells, but it had no effect (P > 0.10) on cytochrome P450 11A1 (CYP11A1) and cytochrome P450 17A1 (CYP17A1) mRNA abundance. In LH+IGF1-treated theca cells, melatonin decreased caspase 3 (CASP3) mRNA to levels similar to those observed in LH-treated theca cells. In contrast, melatonin increased (P < 0.05) the number of bovine theca cells in both LH- and LH+IGF1-treated cultures. In conclusion, melatonin may act as an endocrine regulator of ovarian function in cattle by stimulating theca cell proliferation and inhibiting differentiation via inhibition of hormone-induced steroidogenesis.
Collapse
|
30
|
Kamalludin MH, Garcia-Guerra A, Wiltbank MC, Kirkpatrick BW. Proteomic analysis of follicular fluid in carriers and non-carriers of the Trio allele for high ovulation rate in cattle. Reprod Fertil Dev 2018; 30:1643-1650. [DOI: 10.1071/rd17252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 05/05/2018] [Indexed: 12/17/2022] Open
Abstract
This study was conducted to characterise differences in follicular fluid proteins between carriers and non-carriers of a bovine allele for high ovulation rate. A total of four non-carrier and five carrier females were used in an initial study with four and six additional non-carriers and carriers respectively used in a validation study. Emergence of the follicular wave was synchronised and the ovaries containing the dominant follicle(s) were extracted by ovariectomy for follicular fluid collection. A hexapeptide ligand library was used to overcome the masking effect of high-abundance proteins and to increase detection of low-abundance proteins in tandem mass spectrometry. After correcting for multiple comparisons, only two proteins, glia-derived nexin precursor (SERPINE2) and inhibin β B chain precursor (INHBB), were significantly differentially expressed (false-discovery rate <0.05). In a replicate study of analogous design differential expression was confirmed (P < 0.05). Joint analysis of results from the two studies indicated that three additional proteins were consistently differentially expressed between genotypes. For three of these five, previous studies have indicated that expression is increased by transforming growth factor-β–bone morphogenetic protein signalling; their reduction in follicular fluid from carrier animals is consistent with the ~9-fold overexpression of SMAD family member 6 (SMAD6) in carriers that is inhibitory to this pathway.
Collapse
|
31
|
Luciano AM, Sirard MA. Successful in vitro maturation of oocytes: a matter of follicular differentiation. Biol Reprod 2017; 98:162-169. [DOI: 10.1093/biolre/iox149] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/17/2017] [Indexed: 01/08/2023] Open
Affiliation(s)
- Alberto Maria Luciano
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Sciences and Food Safety, University of Milan, Milan, Italy
| | - Marc-André Sirard
- Centre de Recherche en reproduction, Développement et Santé Intergénérationnelle, Département des Sciences Animales, Université Laval, Québec, Québec, Canada
| |
Collapse
|
32
|
Campos-Chillon F, Farmerie TA, Bouma GJ, Clay CM, Carnevale EM. Effects of aging on gene expression and mitochondrial DNA in the equine oocyte and follicle cells. Reprod Fertil Dev 2017; 27:925-33. [PMID: 25786490 DOI: 10.1071/rd14472] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/18/2015] [Indexed: 11/23/2022] Open
Abstract
We hypothesised that advanced mare age is associated with follicle and oocyte gene alterations. The aims of the study were to examine quantitative and temporal differences in mRNA for LH receptor (LHR), amphiregulin (AREG) and epiregulin (EREG) in granulosa cells, phosphodiesterase (PDE) 4D in cumulus cells and PDE3A, G-protein-coupled receptor 3 (GPR3), growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15) and mitochondrial (mt) DNA in oocytes. Samples were collected from dominant follicles of Young (3-12 years) and Old (≥20 years) mares at 0, 6, 9 and 12h after administration of equine recombinant LH. LHR mRNA declined after 0h in Young mares, with no time effect in Old mares. For both ages, gene expression of AREG was elevated at 6 and 9h and EREG was expression was elevated at 9h, with higher expression in Old than Young mares. Cumulus cell PDE4D expression increased by 6h (Old) and 12h (Young). Oocyte GPR3 expression peaked at 9 and 12h in Young and Old mares, respectively. Expression of PDE3A increased at 6h, with the increase greater in oocytes from Old than Young mares at 6 and 9h. Mean GDF9 and BMP15 transcripts were higher in Young than Old, with a peak at 6h. Copy numbers of mtDNA did not vary over time in oocytes from Young mares, but a temporal decrease was observed in oocytes from Old mares. The results support an age-associated asynchrony in the expression of genes that are essential for follicular and oocyte maturation before ovulation.
Collapse
Affiliation(s)
| | - Todd A Farmerie
- Washington State University, PO Box 647520, Pullman, WA 99164, USA
| | - Gerrit J Bouma
- Colorado State University, 1693 Campus Delivery, Fort Collins, CO 80523, USA
| | - Colin M Clay
- Colorado State University, 1693 Campus Delivery, Fort Collins, CO 80523, USA
| | - Elaine M Carnevale
- Colorado State University, 1693 Campus Delivery, Fort Collins, CO 80523, USA
| |
Collapse
|
33
|
Ginther OJ. Systemic and intrafollicular components of follicle selection in mares. Domest Anim Endocrinol 2017; 59:116-133. [PMID: 28113119 DOI: 10.1016/j.domaniend.2016.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/06/2016] [Accepted: 12/10/2016] [Indexed: 12/29/2022]
Abstract
Mares are superb models for study of follicle selection owing to similarities between mares and women in relative follicle diameters at specific events during the follicular wave and follicle accessibility for experimental sampling and manipulation. Usually, only 1 major follicular wave with a dominant follicle (DF) greater than 30 mm develops during the 22 to 24 d of the equine estrous cycle and is termed the primary or ovulatory wave. A major secondary wave occasionally (25%) develops early in the cycle. Follicles of the primary wave emerge at 6 mm on day 10 or 11 (day 0 = ovulation). The 2 largest follicles begin to deviate in diameter on day 16 when the future DF and largest subordinate follicle (SF) are 23 mm and 20 mm, respectively. The deviation process begins the day before diameter deviation as indicated in the future DF but not in the future SF by (1) increase in prominence of an anechoic layer and vascular perfusion of the wall and (2) increase in follicular-fluid concentrations of IGF1, vascular endothelial growth factor, estradiol, and inhibin-A. A systemic component of the deviation process is represented by suppression of circulating FSH from secretion of inhibin and estradiol from the developing DF. Production of inhibin is stimulated by IGF1 and LH, and estradiol is stimulated by LH and not by IGF1 in mares. A local intrafollicular component involves the production of IGF1, which apparently increases the responsiveness of the future DF to FSH. The roles of the IGF system have been well studied in mares, but the effect of IGF1 on increasing the sensitivity of the follicle cells to FSH is based primarily on studies in other species. The greater response of the future DF than the SF to the low concentrations of FSH is the essence of selection. During the common growth phase that precedes deviation, diameter of the 2 largest follicles increases in parallel on average when normalized to emergence or retrospectively to deviation. Study of individual waves indicates that (1) the 2 follicles change ranks (relative diameters) during the common growth phase in about 30% of primary waves and (2) after ablation of 1, 2, or 3 of the largest follicles at the expected beginning of deviation, the next largest retained follicle becomes the DF indicating that several follicles have the capacity for dominance; therefore, it is proposed that the deviation process represents the entire mechanism of follicle selection in mares.
Collapse
Affiliation(s)
- O J Ginther
- Eutheria Foundation, Cross Plains, WI 53528, USA; Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
34
|
Spicer LJ, Schütz LF, Williams JA, Schreiber NB, Evans JR, Totty ML, Gilliam JN. G protein-coupled receptor 34 in ovarian granulosa cells of cattle: changes during follicular development and potential functional implications. Domest Anim Endocrinol 2017; 59:90-99. [PMID: 28040605 PMCID: PMC5357439 DOI: 10.1016/j.domaniend.2016.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 01/08/2023]
Abstract
Abundance of G protein-coupled receptor 34 (GPR34) mRNA is greater in granulosa cells (GCs) of cystic vs normal follicles of cattle. The present experiments were designed to determine if GPR34 mRNA in granulosa cell [GC] changes during selection and growth of dominant follicles in cattle as well as to investigate the hormonal regulation of GPR34 mRNA in bovine GC in vitro. In Exp. 1, estrous cycles of nonlactating cows were synchronized and then ovariectomized on either day 3-4 or 5-6 after ovulation. GPR34 mRNA abundance in GC was 2.8- to 3.8-fold greater (P < 0.05) in small (1-5 mm) and large (≥8 mm) estrogen-inactive dominant follicles than in large estrogen-active follicles. Also, GPR34 mRNA tended to be greater (P < 0.10) in F2 than F1 follicles on day 3-4 postovulation. In Exp. 2-7, ovaries were collected at an abattoir and GC were isolated and treated in vitro. Expression of GPR34 was increased (P < 0.05) 2.2-fold by IGF1. Tumor necrosis factor (TNF)-α decreased (P < 0.05) the IGF1-induced GPR34 mRNA abundance in small-follicle GC, whereas IGF1 decreased (P < 0.05) GPR34 expression by 45% in large-follicle GC. Treatment of small-follicle GC with either IL-2, prostaglandin E2 or angiogenin decreased (P < 0.05) GPR34 expression, whereas FSH, cortisol, wingless 3A, or hedgehog proteins did not affect (P > 0.10) GPR34 expression. In Exp. 6 and 7, 2 presumed ligands of GPR34, L-a-lysophosphatidylserine (LPPS) and LPP-ethanolamine, increased (P < 0.05) GC numbers and estradiol production by 2-fold or more in small-follicle GC, and this response was only observed in IGF1-treated GC. In conclusion, GPR34 is a developmentally and hormonally regulated gene in GC, and its presumed ligands enhance IGF1-induced proliferation and steroidogenesis of bovine GC.
Collapse
Affiliation(s)
- L J Spicer
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA.
| | - L F Schütz
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - J A Williams
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - N B Schreiber
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - J R Evans
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - M L Totty
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - J N Gilliam
- Department of Veterinary Clinical Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
35
|
Interrelationships between ovarian follicles grown in culture and possible mediators. Reprod Biol 2017; 17:97-104. [DOI: 10.1016/j.repbio.2017.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/15/2017] [Accepted: 01/26/2017] [Indexed: 11/21/2022]
|
36
|
Complexities of follicle deviation during selection of a dominant follicle in Bos taurus heifers. Theriogenology 2016; 86:2012-9. [DOI: 10.1016/j.theriogenology.2016.06.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/17/2016] [Accepted: 06/24/2016] [Indexed: 01/20/2023]
|
37
|
Temporality of two-way functional coupling between FSH and follicles in heifers. Theriogenology 2016; 86:1645-53. [DOI: 10.1016/j.theriogenology.2015.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/18/2015] [Accepted: 10/01/2015] [Indexed: 11/23/2022]
|
38
|
Ginther OJ. The theory of follicle selection in cattle. Domest Anim Endocrinol 2016; 57:85-99. [PMID: 27565235 DOI: 10.1016/j.domaniend.2016.06.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/01/2016] [Accepted: 06/05/2016] [Indexed: 12/24/2022]
Abstract
Selection of the dominant follicle (DF) during a follicular wave is manifested by diameter deviation or continued growth rate of the largest follicle (F1) and decreased growth rate of the next largest follicle (F2) when F1 reaches about 8.5 mm in cattle. The process of deviation in the future DF begins about 12 h before diameter deviation and involves an F1 increase in granulosa LH receptors and estradiol and maintenance of intrafollicular free insulin-like growth factor 1 (IGF1). Thereby, only F1 is developmentally prepared to use the declining FSH in the wave-stimulating FSH surge and to respond to a transient increase in LH to become the DF. A follicle that emerges first may maintain an F1 ranking and become the DF by being first to reach a critical developmental stage. However, an early size advantage is not a requisite component of the deviation process as indicated by (1) F1 and F2 may switch diameter rankings during a common growth phase that precedes diameter deviation owing to intraovarian factors that affect growth of individual follicles; (2) any follicle that reaches 5 mm regardless of diameter ranking may become a DF unless it is selected against during deviation; (3) a subordinate follicle may become dominant if the DF is ablated; (4) when F1 is ablated at 8.5 mm, the next largest follicle that is greater than 7.0 mm or the first follicle to subsequently reach 7.0 mm becomes the DF; (5) after ablation of F1 at 8.5 mm, IGF1 and estradiol increase in the intrafollicular fluid of F2 beginning at 6 h, and F2 grows to 8.5 mm in 12 h to become the DF. These considerations indicate that selection of a DF or partitioning into a DF and subordinate follicles is not initiated before the end of the common growth phase. That is, the deviation process represents the entire follicle selection mechanism.
Collapse
Affiliation(s)
- O J Ginther
- Eutheria Foundation, Cross Plains, Wisconsin 53528, USA; Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| |
Collapse
|
39
|
Ginther OJ, Baldrighi JM, Siddiqui MAR, Wolf CA. Characteristics and functions of a minor FSH surge near the end of an interovulatory interval in Bos taurus heifers. Domest Anim Endocrinol 2016; 56:63-9. [PMID: 27131335 DOI: 10.1016/j.domaniend.2016.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 11/24/2022]
Abstract
The apparent function of a minor FSH surge based on temporality with follicular events was studied in 10 heifers with 2 follicular waves per interovulatory interval. Individual follicles were tracked from their emergence at 2 mm until their outcome was known, and a blood sample was collected for FSH and LH assay every 12 h from day -14 (day 0 = ovulation) to day 4. A minor FSH surge occurred in each heifer (peak, day -4.6 ± 0.2). Concentration of LH increased (P < 0.05) during the FSH increase of the minor surge but did not decrease during the FSH decrease. A minor follicular wave with 8.2 ± 2.0 follicles occurred in 6 of 10 heifers. The maximal diameter (mean, 3.4 ± 0.9 mm) of 77% of the minor-wave follicles occurred in synchrony on day -4.4 ± 0.4. Most (59%) of minor-wave follicles regressed before ovulation and 41% decreased and then increased in diameter (recovered) on day -1.9 ± 0.3 to become part of the subsequent wave 1. A mean of 3.7 ± 0.9 regressing subordinate follicles from wave 2 recovered on the day before or at the peak of the minor FSH surge. The growth rate of the preovulatory follicle decreased (P < 0.02) for 3 d before the peak of the minor FSH surge and then increased (P < 0.03). Concentration of LH increased slightly but significantly temporally with the resurgence in growth rate of the preovulatory follicle. A minor LH surge peaked (P < 0.0002) on day 3 at the expected deviation in growth rates between the future dominant and subordinate follicles. Results indicated on a temporal basis that the recovery of some regressing subordinate follicles of wave 2 was attributable to the minor FSH surge. The hypothesis was supported that some regressing follicles from the minor follicular wave recover to become part of wave 1.
Collapse
Affiliation(s)
- O J Ginther
- Eutheria Foundation, Cross Plains, WI 53528, USA; Pathobiological Sciences Department, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | - M A R Siddiqui
- Eutheria Foundation, Cross Plains, WI 53528, USA; Pathobiological Sciences Department, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - C A Wolf
- Pathobiological Sciences Department, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; CAPES Foundation, Ministry of Education of Brazil, Brasilia, DF 70040-020
| |
Collapse
|
40
|
Ginther O, Siddiqui M, Baldrighi J. Functional angiocoupling between follicles and adjacent corpus luteum in heifers. Theriogenology 2016; 86:465-71. [DOI: 10.1016/j.theriogenology.2016.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/02/2016] [Indexed: 11/27/2022]
|
41
|
Navakanitworakul R, Hung WT, Gunewardena S, Davis JS, Chotigeat W, Christenson LK. Characterization and Small RNA Content of Extracellular Vesicles in Follicular Fluid of Developing Bovine Antral Follicles. Sci Rep 2016; 6:25486. [PMID: 27158133 PMCID: PMC4860563 DOI: 10.1038/srep25486] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/18/2016] [Indexed: 12/24/2022] Open
Abstract
Exosomes and microvesicles (i.e., extracellular vesicles: EVs) have been identified within ovarian follicular fluid and recent evidence suggests that EVs are able to elicit profound effects on ovarian cell function. While existence of miRNA within EVs has been reported, whether EV size and concentration as well as their cargos (i.e., proteins and RNA) change during antral follicle growth remains unknown. Extracellular vesicles isolated from follicular fluid of small, medium and large bovine follicles were similar in size, while concentration of EVs decreased progressively as follicle size increased. Electron microscopy indicated a highly purified population of the lipid bilayer enclosed vesicles that were enriched in exosome biomarkers including CD81 and Alix. Small RNA sequencing identified a large number of known and novel miRNAs that changed in the EVs of different size follicles. Ingenuity Pathway Analysis (IPA) indicated that miRNA abundant in small follicle EV preparations were associated with cell proliferation pathways, while those miRNA abundant in large follicle preparations were related to inflammatory response pathways. These studies are the first to demonstrate that EVs change in their levels and makeup during antral follicle development and point to the potential for a unique vesicle-mediated cell-to-cell communication network within the ovarian follicle.
Collapse
Affiliation(s)
- Raphatphorn Navakanitworakul
- Department Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160 USA.,Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand.,Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Hatyai, Songkhla, 90112 Thailand
| | - Wei-Ting Hung
- Department Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160 USA
| | - Sumedha Gunewardena
- Department Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160 USA.,Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas 66160 USA
| | - John S Davis
- VA Nebraska-Western Iowa Health Care System and Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Wilaiwan Chotigeat
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand.,Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
| | - Lane K Christenson
- Department Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160 USA
| |
Collapse
|
42
|
Superovulatory response and embryonic progressive in Iranian Qezel ewes treated with two different concentrations of bovine somatotropin. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2016. [DOI: 10.1016/j.apjr.2016.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
43
|
Ginther OJ, Siddiqui MAR, Baldrighi JM, Hoffman MM. Stimulation of regressing subordinate follicles of wave 2 with a gonadotropin product in heifers. Domest Anim Endocrinol 2016; 55:46-50. [PMID: 26773367 DOI: 10.1016/j.domaniend.2015.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/19/2015] [Accepted: 11/21/2015] [Indexed: 10/22/2022]
Abstract
The recovery of regressing wave-2 subordinate follicles was studied by treating heifers with a gonadotropin product that had about 84% and 16% of follicle-stimulating hormone and luteinizing hormone activity, respectively. A treated group (n = 8) received a single dose of 50 mg (2.5 mL) of the gonadotropin product, and a control group (n = 8) received 2.5 mL of saline vehicle. The group assignment of heifers was not known to the ultrasonographer who tracked the follicles and measured follicle diameters. Follicle measurements began on the day of expected follicle deviation in wave 2 (largest follicle closest to 8.5 mm), and treatment (hour 0) was given on Day 13.4 ± 0.2 (Day 0 = ovulation) when the dominant follicles of waves 1 and 2 were 14.1 ± 0.3 mm and 10.7 ± 0.1 mm, respectively. Subordinate follicles of wave 2 that had regressed to a 3-mm category (3.0-3.9 mm) or 4-mm category by hour 0 decreased in diameter for at least 48 h before hour 0, whereas follicles that were in the 5-mm or 6-mm categories at hour 0 did not change significantly in diameter during the previous 48 h. About 55% of the follicles that had regressed to the 3-mm and 4-mm categories at hour 0% and 78% of the follicles in the 5-mm and 6-mm categories increased in diameter after gonadotropin treatment, whereas follicles in the control group continued to decrease (regress) in diameter. The follicles for each of the 4 diameter categories were greater (P < 0.05) in diameter 9 h after treatment in the treated group than in the control group. The dominant follicle of wave 1 and the largest subordinate follicle of wave 2 in the treated group also increased in diameter so that diameter was greater (P < 0.05) than in the controls at hour 9. The results demonstrated that subordinate follicles of wave 2 that had decreased in diameter (regressed) for at least 48 h retained the capability to recover as indicated by a diameter increase when exposed to a gonadotropin product.
Collapse
Affiliation(s)
- O J Ginther
- Eutheria Foundation, Cross Plains, WI 53528, USA; Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 1656 Linden Dr, Madison, WI 53706, USA.
| | - M A R Siddiqui
- Eutheria Foundation, Cross Plains, WI 53528, USA; Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 1656 Linden Dr, Madison, WI 53706, USA
| | - J M Baldrighi
- Eutheria Foundation, Cross Plains, WI 53528, USA; Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 1656 Linden Dr, Madison, WI 53706, USA
| | - M M Hoffman
- Eutheria Foundation, Cross Plains, WI 53528, USA; Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 1656 Linden Dr, Madison, WI 53706, USA
| |
Collapse
|
44
|
Ginther OJ, Siddiqui MAR, Baldrighi JM, Wolf CA. Systemic effect of follicle-stimulating hormone and intraovarian effect of the corpus luteum on complete regression vs recovery of regressing wave-2 follicles in heifers. Domest Anim Endocrinol 2016; 55:51-9. [PMID: 26773368 DOI: 10.1016/j.domaniend.2015.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/26/2015] [Accepted: 11/08/2015] [Indexed: 10/22/2022]
Abstract
Each subordinate of the second follicular wave (wave 2) was monitored, and the outcome was classified as fully regressed (decreased in diameter to 2 mm) or recovered (decreased initially and then increased to become a growing follicle of the subsequent wave 1). The changing diameter of each follicle after emergence at 2 mm and plasma concentration of follicle-stimulating hormone were determined every 12 h from the day of ovulation (Day 0) to 4 d after the subsequent ovulation in heifers with 2 follicular waves per interovulatory interval (n = 10). The number and percentage of wave-2 subordinates that initially regressed and then recovered (7.2 ± 1.0 follicles; 33.2 ± 5.1%) were less (P < 0.0008) than the number and percentage that completely regressed (15.0 ± 1.7; 66.8 ± 5.1%). Follicles that later recovered initially reached maximal diameter on a later day (P < 0.0001) after emergence at 2 mm (4.3 ± 0.2 d) and at a larger (P < 0.0001) diameter (5.8 ± 0.2 mm) than follicles that completely regressed (3.2 ± 0.1 d; 4.7 ± 0.1 mm). The follicle-stimulating hormone surge that stimulated wave 2 began earlier and was more sustained in a subgroup with a high percentage of recovered follicles (61%) than in a subgroup with a low percentage (24%). Recovery began on Day -1.0 ± 0.1 when the follicles had regressed to 3.7 ± 0.1 mm. Diameter of subordinate follicles on Day -6 or before the expected days of luteolysis was greater (P < 0.05) when in the corpus luteum (CL) ovary than when in the non-CL ovary. During expected luteolysis, more follicles (P < 0.008) per ovary continued to regress when ipsilateral to the CL (9.2 ± 1.1 follicles) than when contralateral (5.8 ± 1.1), and more follicles (P < 0.02) recovered from regression when contralateral to the CL (5.0 ± 0.8) than when ipsilateral (2.2 ± 0.6). The hypothesis that the CL has a local effect on the development, regression, and recovery of the subordinate follicles of wave 2 was supported.
Collapse
Affiliation(s)
- O J Ginther
- Eutheria Foundation, Cross Plains, WI, 53528, USA; Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 1656 Linden Dr, Madison, WI, 53706, USA.
| | - M A R Siddiqui
- Eutheria Foundation, Cross Plains, WI, 53528, USA; Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 1656 Linden Dr, Madison, WI, 53706, USA
| | - J M Baldrighi
- Eutheria Foundation, Cross Plains, WI, 53528, USA; Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 1656 Linden Dr, Madison, WI, 53706, USA
| | - C A Wolf
- Eutheria Foundation, Cross Plains, WI, 53528, USA; Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 1656 Linden Dr, Madison, WI, 53706, USA
| |
Collapse
|
45
|
Transcriptome Analysis of Bovine Ovarian Follicles at Predeviation and Onset of Deviation Stages of a Follicular Wave. Int J Genomics 2016; 2016:3472748. [PMID: 27088081 PMCID: PMC4819119 DOI: 10.1155/2016/3472748] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/28/2016] [Accepted: 02/29/2016] [Indexed: 01/03/2023] Open
Abstract
For two libraries (PDF1 and ODF1) using Illumina sequencing 44,082,301 and 43,708,132 clean reads were obtained, respectively. After being mapped to the bovine RefSeq database, 15,533 genes were identified to be expressed in both types of follicles (cut-off RPKM > 0.5), of which 719 were highly expressed in bovine follicles (cut-off RPKM > 100). Furthermore, 83 genes were identified as being differentially expressed in ODF1 versus PDF1, where 42 genes were upregulated and 41 genes were downregulated. KEGG pathway analysis revealed two upregulated genes in ODF1 versus PDF1, CYP11A1, and CYP19A1, which are important genes in the steroid hormone biosynthesis pathway. This study represents the first investigation of transcriptome of bovine follicles at predeviation and onset of deviation stages and provides a foundation for future investigation of the regulatory mechanisms involved in follicular development in cattle.
Collapse
|
46
|
Donadeu FX, Sontakke SD, Ioannidis J. MicroRNA indicators of follicular steroidogenesis. Reprod Fertil Dev 2016; 29:RD15282. [PMID: 26863388 DOI: 10.1071/rd15282] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/18/2015] [Indexed: 02/28/2024] Open
Abstract
MicroRNAs (miRNAs) can provide useful biomarkers of tissue function. The aim of the present study was to determine, in bovine follicles (n = 66; diameter 4-22 mm), the relationship among several indices of steroidogenesis and levels of 15 miRNAs previously identified to be associated with follicle development. Oestradiol levels, the oestradiol : progesterone (E : P) ratio and cytochrome P450 family 19 subfamily A member 1 (CYP19A1) expression were strongly correlated with each other (ρ > 0.8) and with LH/choriogonadotropin receptor (LHCGR) expression (ρ ≥ 0.6; P < 0.01). Levels of nine different miRNAs in the follicular wall were correlated (P < 0.01) with oestradiol, the E : P ratio and CYP19A1, with miR-873 showing the strongest correlation in each case (ρ > 0.7). Analyses of follicular fluid miRNAs identified miR-202 as correlated with oestradiol, the E : P ratio and CYP19A1 (ρ > 0.5; P < 0.01). When considering all follicle end-points together, we found that using a cut-off value of E : P = 1 overestimated the number of oestrogen-inactive follicles, whereas using CYP19A1 as a classifier provided a clearer separation of follicle samples based on oestrogen activity, in agreement with the E : P ratio, LHCGR expression and levels of miR-873 and miR-202. In conclusion, we identified miR-873 and miR-202 as miRNAs whose levels in follicular tissues can be used as indicators of steroidogenic capacity in bovine. We showed that these or other gene expression parameters, in addition or alternatively to the E : P ratio, should be used to accurately classify follicles based on steroidogenic capacity.
Collapse
|
47
|
Bashir ST, Ishak GM, Gastal MO, Roser JF, Gastal EL. Changes in intrafollicular concentrations of free IGF-1, activin A, inhibin A, VEGF, estradiol, and prolactin before ovulation in mares. Theriogenology 2016; 85:1491-8. [PMID: 26895618 DOI: 10.1016/j.theriogenology.2016.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 01/11/2016] [Accepted: 01/11/2016] [Indexed: 01/12/2023]
Abstract
Changes in intrafollicular growth factors and hormones were evaluated in vivo in postdeviation and impending ovulation follicles. Mares (n = 30) were randomly assigned to five experimental groups based on target diameters of 25, 30, 35, 40 mm, and impending signs of ovulation. Furthermore, data belonging to two or more proximal diameter groups that were not different were combined and regrouped for each factor separately. Follicular fluid-free insulin-like growth factor 1 was highest (P < 0.003) in 35-mm follicles, followed by the 40-mm and impending ovulation follicle group, and the 25- to 30-mm follicle group. However, concentrations of insulin-like growth factor binding protein 2 in follicular fluid did not differ (P > 0.05) among groups. Additionally, follicular fluid activin A tended (P < 0.06) to be higher in impending ovulation follicles when compared with the 25- to 40-mm follicle group. Concentrations of intrafollicular estradiol were higher (P < 0.0001) in 40-mm and impending ovulation follicles than in the other follicle groups. Follicular fluid concentrations of inhibin A and vascular endothelial growth factor were lower (P < 0.05) in the 40-mm and the impending ovulation follicle group when compared with the 25- to 35-mm follicle group. Systemic and intrafollicular prolactin levels were lower (P < 0.05) in the impending ovulation group when compared with the 25- to 40-mm follicle group. Prolactin concentrations were higher (P < 0.05) in the follicular fluid than in the plasma. The novel findings of this study, a decrease in intrafollicular-free insulin-like growth factor 1, inhibin A, vascular endothelial growth factor, and prolactin during the final stages of follicular growth, document for the first time the occurrence of dynamic changes among intrafollicular factors and hormones during the stages of follicle dominance and as ovulation approaches.
Collapse
Affiliation(s)
- S T Bashir
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois, USA
| | - G M Ishak
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois, USA
| | - M O Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois, USA
| | - J F Roser
- Department of Animal Science, University of California, Davis, California, USA
| | - E L Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois, USA.
| |
Collapse
|
48
|
Amundson OL, Fountain TH, Larimore EL, Richardson BN, McNeel AK, Wright EC, Keisler DH, Cushman RA, Perry GA, Freetly HC. Postweaning nutritional programming of ovarian development in beef heifers1,2. J Anim Sci 2015; 93:5232-9. [DOI: 10.2527/jas.2015-9067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
49
|
Ortega HH, Veiga-Lopez A, Sreedharan S, del Luján Velázquez MM, Salvetti NR, Padmanabhan V. Developmental Programming: Does Prenatal Steroid Excess Disrupt the Ovarian VEGF System in Sheep? Biol Reprod 2015; 93:58. [PMID: 26178718 DOI: 10.1095/biolreprod.115.131607] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/10/2015] [Indexed: 01/10/2023] Open
Abstract
Prenatal testosterone (T), but not dihydrotestosterone (DHT), excess disrupts ovarian cyclicity and increases follicular recruitment and persistence. We hypothesized that the disruption in the vascular endothelial growth factor (VEGF) system contributes to the enhancement of follicular recruitment and persistence in prenatal T-treated sheep. The impact of T/DHT treatments from Days 30 to 90 of gestation on VEGFA, VEGFB, and their receptor (VEGFR-1 [FLT1], VEGFR-2 [KDR], and VEGFR-3 [FLT4]) protein expression was examined by immunohistochemistry on Fetal Days 90 and 140, 22 wk, 10 mo (postpubertal), and 21 mo (adult) of age. Arterial morphometry was performed in Fetal Day 140 and postpubertal ovaries. VEGFA and VEGFB expression were found in granulosa cells at all stages of follicular development with increased expression in antral follicles. VEGFA was present in theca interna, while VEGFB was present in theca interna/externa and stromal cells. All three receptors were expressed in the granulosa, theca, and stromal cells during all stages of follicular development. VEGFR-3 increased with follicular differentiation with the highest level seen in the granulosa cells of antral follicles. None of the members of the VEGF family or their receptor expression were altered by age or prenatal T/DHT treatments. At Fetal Day 140, area, wall thickness, and wall area of arteries from the ovarian hilum were larger in prenatal T- and DHT-treated females, suggestive of early androgenic programming of arterial differentiation. This may facilitate increased delivery of endocrine factors and thus indirectly contribute to the development of the multifollicular phenotype.
Collapse
Affiliation(s)
- Hugo Héctor Ortega
- Department of Morphological Sciences, Faculty of Veterinary Sciences, National University of Litoral, Esperanza, Santa Fe, Argentina Argentine National Research Council (CONICET), Esperanza, Santa Fe, Argentina
| | - Almudena Veiga-Lopez
- Department of Pediatrics and the Reproductive Sciences Program, University of Michigan, Ann Arbor, Michigan
| | - Shilpa Sreedharan
- Department of Pediatrics and the Reproductive Sciences Program, University of Michigan, Ann Arbor, Michigan
| | - Melisa María del Luján Velázquez
- Department of Morphological Sciences, Faculty of Veterinary Sciences, National University of Litoral, Esperanza, Santa Fe, Argentina Argentine National Research Council (CONICET), Esperanza, Santa Fe, Argentina
| | - Natalia Raquel Salvetti
- Department of Morphological Sciences, Faculty of Veterinary Sciences, National University of Litoral, Esperanza, Santa Fe, Argentina Argentine National Research Council (CONICET), Esperanza, Santa Fe, Argentina
| | - Vasantha Padmanabhan
- Department of Pediatrics and the Reproductive Sciences Program, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
50
|
Scarlet D, Walter I, Hlavaty J, Aurich C. Expression and immunolocalisation of follicle-stimulating hormone receptors in gonads of newborn and adult female horses. Reprod Fertil Dev 2015; 28:RD14392. [PMID: 25693905 DOI: 10.1071/rd14392] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/15/2015] [Indexed: 12/15/2022] Open
Abstract
In mares, FSH and its receptor (FSHR) are essential for ovarian function. The objective of the present study was to analyse FSHR gene expression at the mRNA and protein levels in ovarian tissue from newborn and adult horses. Expression of mRNA was analysed by reverse transcription polymerase chain reaction, whereas FSHR protein was visualised by immunohistochemistry (IHC), immunofluorescence labelling (IF) and western blot. FSHR mRNA was detected in ovarian follicles and luteal tissue from adult mares, as well as in the ovaries of neonates. Follicular growth up to 4mm in diameter was already present in neonates. Using IHC and IF, FSHR protein was detected in granulosa cells, cumulus cells and inconsistently in oocytes, independent of the animal's age or the stage of folliculogenesis. A lower FSHR expression was observed in theca cells in comparison to granulosa cells. FSHR was abundant in the ovarian stroma cells of neonates but not of adults. Luteal cells stained positive for FSHR independent of the stage of corpus luteum development. The presence of FSHR protein in various cell populations of the ovary was confirmed by western blot. In conclusion, FSHR is present in horse ovaries consistently from birth onwards and expression remains constant during the oestrous cycle.
Collapse
|