1
|
Wybenga-Groot LE, Tench AJ, Simpson CD, Germain JS, Raught B, Moran MF, McGlade CJ. SLAP2 Adaptor Binding Disrupts c-CBL Autoinhibition to Activate Ubiquitin Ligase Function. J Mol Biol 2021; 433:166880. [PMID: 33617900 DOI: 10.1016/j.jmb.2021.166880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/05/2021] [Accepted: 02/12/2021] [Indexed: 10/22/2022]
Abstract
CBL is a RING type E3 ubiquitin ligase that functions as a negative regulator of tyrosine kinase signaling and loss of CBL E3 function is implicated in several forms of leukemia. The Src-like adaptor proteins (SLAP/SLAP2) bind to CBL and are required for CBL-dependent downregulation of antigen receptor, cytokine receptor, and receptor tyrosine kinase signaling. Despite the established role of SLAP/SLAP2 in regulating CBL activity, the nature of the interaction and the mechanisms involved are not known. To understand the molecular basis of the interaction between SLAP/SLAP2 and CBL, we solved the crystal structure of CBL tyrosine kinase binding domain (TKBD) in complex with SLAP2. The carboxy-terminal region of SLAP2 adopts an α-helical structure which binds in a cleft between the 4H, EF-hand, and SH2 domains of the TKBD. This SLAP2 binding site is remote from the canonical TKBD phospho-tyrosine peptide binding site but overlaps with a region important for stabilizing CBL in its autoinhibited conformation. In addition, binding of SLAP2 to CBL in vitro activates the ubiquitin ligase function of autoinhibited CBL. Disruption of the CBL/SLAP2 interface through mutagenesis demonstrated a role for this protein-protein interaction in regulation of CBL E3 ligase activity in cells. Our results reveal that SLAP2 binding to a regulatory cleft of the TKBD provides an alternative mechanism for activation of CBL ubiquitin ligase function.
Collapse
Affiliation(s)
- Leanne E Wybenga-Groot
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Program in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; SPARC BioCentre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada.
| | - Andrea J Tench
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Program in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON M5G 2M9, Canada
| | - Craig D Simpson
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Program in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Jonathan St Germain
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Brian Raught
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON M5G 2M9, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Michael F Moran
- Program in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; SPARC BioCentre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Molecular Genetics, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - C Jane McGlade
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Program in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON M5G 2M9, Canada.
| |
Collapse
|
2
|
Kuwatsuka Y, Minami M, Minami Y, Sugimoto K, Hayakawa F, Miyata Y, Abe A, Goff DJ, Kiyoi H, Naoe T. The mTOR inhibitor, everolimus (RAD001), overcomes resistance to imatinib in quiescent Ph-positive acute lymphoblastic leukemia cells. Blood Cancer J 2011; 1:e17. [PMID: 22829152 PMCID: PMC3255258 DOI: 10.1038/bcj.2011.16] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 03/27/2011] [Accepted: 04/04/2011] [Indexed: 02/02/2023] Open
Abstract
In Ph-positive (Ph+) leukemia, the quiescent cell state is one of the reasons for resistance to the BCR-ABL-kinase inhibitor, imatinib. In order to examine the mechanisms of resistance due to quiescence and the effect of the mammalian target of rapamycin inhibitor, everolimus, for such a resistant population, we used Ph+ acute lymphoblastic leukemia patient cells serially xenotransplanted into NOD/SCID/IL2rγnull (NOG) mice. Spleen cells from leukemic mice showed a higher percentage of slow-cycling G0 cells in the CD34+CD38− population compared with the CD34+CD38+ and CD34− populations. After ex vivo imatinib treatment, more residual cells were observed in the CD34+CD38− population than in the other populations. Although slow-cycling G0 cells were insensitive to imatinib in spite of BCR-ABL and CrkL dephosphorylation, combination treatment with everolimus induced substantial cell death, including that of the CD34+CD38− population, with p70-S6 K dephosphorylation and decrease of MCL-1 expression. The leukemic non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mouse system with the in vivo combination treatment with imatinib and everolimus showed a decrease of tumor burden including CD34+ cells. These results imply that treatment with everolimus can overcome resistance to imatinib in Ph+ leukemia due to quiescence.
Collapse
|
3
|
Katsumi A, Kiyoi H, Abe A, Tanizaki R, Iwasaki T, Kobayashi M, Matsushita T, Kaibuchi K, Senga T, Kojima T, Kohno T, Hamaguchi M, Naoe T. FLT3/ ITD regulates leukaemia cell adhesion through α4β1 integrin and Pyk2 signalling. Eur J Haematol 2011; 86:191-8. [PMID: 21114537 DOI: 10.1111/j.1600-0609.2010.01556.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Internal tandem duplication of FMS-like receptor tyrosine kinase 3 (FLT3/ITD) within its juxtamembrane domain is a frequent mutation in adult acute myeloid leukaemia (AML). This mutation causes constitutive activation of FLT3 and is associated with poor prognosis. The high relapse rate of FLT3/ITD-positive AML might be partly because of insufficient eradication of slow-cycling leukaemic stem cells in the bone marrow microenvironment. β1 integrin mediates haematopoietic stem and progenitor cell homing along with their retention in the bone marrow and also inhibits haematopoietic proliferation and differentiation. Here, we demonstrate that inhibition of FLT3/ITD kinase activity by a FLT3 selective inhibitor named FI-700 decreases affinity of α4β1 integrin to soluble VCAM-1. α4β1 integrin deactivation by FI-700 is independent of Rap1, which is the critical regulator of integrin inside-out signalling. In addition, selective inhibition of FLT3/ITD induces Pyk2 dephosphorylation together with the inhibition of phosphatidylinositol-3-kinase (PI3K)/Akt pathway. Both wild-type and ITD-FLT3 proteins co-immunoprecipitated with β1 integrin and Pyk2 indicating the signal crosstalk between FLT3, β1 integrin and Pyk2. These results collectively indicated that the inhibition of FLT3 kinase might contribute not only to the induction of apoptosis, but also to the leukaemia cell detachment from the bone marrow microenvironment in the treatment of AML.
Collapse
Affiliation(s)
- Akira Katsumi
- Division of Transfusion Medicine and Cell Therapy, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka-cho, Obu 474-8511, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Suzuki M, Abe A, Imagama S, Nomura Y, Tanizaki R, Minami Y, Hayakawa F, Ito Y, Katsumi A, Yamamoto K, Emi N, Kiyoi H, Naoe T. BCR-ABL-independent and RAS / MAPK pathway-dependent form of imatinib resistance in Ph-positive acute lymphoblastic leukemia cell line with activation of EphB4. Eur J Haematol 2009; 84:229-38. [PMID: 20002159 DOI: 10.1111/j.1600-0609.2009.01387.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE We investigated the mechanism responsible for imatinib (IM) resistance in Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph(+) ALL) cell lines. METHODS We established cell lines from a patient with Ph(+) ALL at the time of first diagnosis and relapsed phase and designated as NPhA1 and NPhA2, respectively. We also derived IM-resistant cells, NPhA2/STIR, from NPhA2 under gradually increasing IM concentrations. RESULTS NPhA1 was sensitive to IM (IC(50) 0.05 microm) and NPhA2 showed mild IM resistance (IC(50) 0.3 microm). NPhA2/STIR could be maintained in the presence of 10 microm IM. Phosphorylation of MEK and ERK was slightly elevated in NPhA2 and significantly elevated in NPhA2/STIR compared to NPhA1 cells. After treatment with IM, phosphorylation of MEK and ERK was not suppressed but rather increased in NPhA2 and NPhA2/STIR. Active RAS was also increased markedly in NPhA2/STIR after IM treatment. The expression of BCL-2 was increased in NPhA2 compared to NPhA1, but no further increase in NPhA2/STIR. Proliferation of NPhA2/STIR was significantly inhibited by a combination of MEK inhibitor and IM. Analysis of tyrosine phosphorylation status with a protein tyrosine kinase array showed increased phosphorylation of EphB4 in NPhA2/STIR after IM treatment. Although transcription of EphB4 was suppressed in NPhA1 and NPhA2 after IM treatment, it was not suppressed and its ligand, ephrinB2, was increased in NPhA2/STIR. Suppression of EphB4 transcripts by introducing short hairpin RNA into NPhA2/STIR partially restored their sensitivity to IM. CONCLUSIONS These results suggest a new mechanism of IM resistance mediated by the activation of RAS/MAPK pathway and EphB4.
Collapse
Affiliation(s)
- Momoko Suzuki
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Imagama S, Abe A, Suzuki M, Hayakawa F, Katsumi A, Emi N, Kiyoi H, Naoe T. LRP16 is fused to RUNX1 in monocytic leukemia cell line with t(11;21)(q13;q22). Eur J Haematol 2007; 79:25-31. [PMID: 17532767 DOI: 10.1111/j.1600-0609.2007.00858.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The RUNX1 (also known as AML1) gene is observed frequently as the target of chromosomal rearrangements in human acute leukemia. We describe here a previously unreported rearrangement, t(11;21)(q13;q22), that disrupts the RUNX1 gene in a patient with acute leukemia and the molecular analysis of the fusion gene. METHODS We have established a monocytic leukemia cell line, ELAM-1, from a patient with acute leukemia evolving from myelodysplastic syndrome (MDS). Translocation (11;21) (q13;q22) was observed in both patient leukemia cells and ELAM-1. RESULTS The split signal of RUNX1 was detected by fluorescence in situ hybridization and indicated the involvement of RUNX1 in ELAM-1. Using 3'- Rapid amplification of cDNA ends and reverse transcription-Polymerase chain reaction analysis, we detected both RUNX1 (exon 5)-LRP16 and RUNX1 (exon 6)-LRP16 transcripts, suggesting that the RUNX1 breakpoint lies in intron 6 and that alternative fusion splice variants are generated. Reciprocal LRP16-RUNX1 fusion was also detected. CONCLUSIONS We identified a novel RUNX1 fusion partner, LRP16 on 11q13 involving t(11;21)(q13;q22). Although it was reported that overexpression of LRP16 promotes human breast cancer cell proliferation, the function of LRP16 in leukemia remains to be studied. This fusion gene and cell line may provide a new research tool to investigate the mechanism of leukemogenesis generated by the RUNX1 fusion gene.
Collapse
MESH Headings
- Base Sequence
- Carboxylic Ester Hydrolases
- Cell Line, Tumor
- Chromosomes, Human, Pair 11
- Chromosomes, Human, Pair 21
- Core Binding Factor Alpha 2 Subunit/genetics
- DNA Primers
- Female
- Humans
- Karyotyping
- Leukemia, Monocytic, Acute/genetics
- Leukemia, Monocytic, Acute/pathology
- Middle Aged
- Neoplasm Proteins/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Translocation, Genetic
Collapse
Affiliation(s)
- Shizuka Imagama
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|