1
|
Kunimoto H, Miura A, Maeda A, Tsuchida N, Uchiyama Y, Kunishita Y, Nakajima Y, Takase-Minegishi K, Yoshimi R, Miyazaki T, Hagihara M, Yamazaki E, Kirino Y, Matsumoto N, Nakajima H. Clinical and genetic features of Japanese cases of MDS associated with VEXAS syndrome. Int J Hematol 2023; 118:494-502. [PMID: 37062784 DOI: 10.1007/s12185-023-03598-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023]
Abstract
VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome is a new disease entity with autoinflammatory disorders (AID) driven by somatic variants in UBA1 that frequently co-exists with myelodysplastic syndromes (MDS). Clinicopathological and molecular features of Japanese cases with VEXAS-associated MDS remain elusive. We previously reported high prevalence of UBA1 variants in Japanese patients with relapsing polychondritis, in which 5 cases co-occurred with MDS. Here, we report clinicopathological and variant profiles of these 5 cases and 2 additional cases of MDS associated with VEXAS syndrome. Clinical characteristics of these cases included high prevalence of macrocytic anemia with marked cytoplasmic vacuoles in myeloid/erythroid precursors and low bone marrow (BM) blast percentages. All cases were classified as low or very low risk by the revised international prognostic scoring system (IPSS-R). Notably, 4 out of 7 cases showed significant improvement of anemia by treatment with prednisolone (PSL) or cyclosporin A (CsA), suggesting that an underlying inflammatory milieu induced by VEXAS syndrome may aggravate macrocytic anemia in VEXAS-associated MDS. Targeted deep sequencing of blood samples suggested that MDS associated with VEXAS syndrome tends to involve a smaller number of genes and lower risk genetic lesions than classical MDS.
Collapse
Affiliation(s)
- Hiroyoshi Kunimoto
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Ayaka Miura
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Ayaka Maeda
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Naomi Tsuchida
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Yosuke Kunishita
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Yuki Nakajima
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Kaoru Takase-Minegishi
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Ryusuke Yoshimi
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Takuya Miyazaki
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Maki Hagihara
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Etsuko Yamazaki
- Clinical Laboratory Department, Yokohama City University Hospital, Yokohama, Japan
| | - Yohei Kirino
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hideaki Nakajima
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
2
|
Peng X, Zhu X, Di T, Tang F, Guo X, Liu Y, Bai J, Li Y, Li L, Zhang L. The yin-yang of immunity: Immune dysregulation in myelodysplastic syndrome with different risk stratification. Front Immunol 2022; 13:994053. [PMID: 36211357 PMCID: PMC9537682 DOI: 10.3389/fimmu.2022.994053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a heterogeneous group of myeloid clonal diseases with diverse clinical courses, and immune dysregulation plays an important role in the pathogenesis of MDS. However, immune dysregulation is complex and heterogeneous in the development of MDS. Lower-risk MDS (LR-MDS) is mainly characterized by immune hyperfunction and increased apoptosis, and the immunosuppressive therapy shows a good response. Instead, higher-risk MDS (HR-MDS) is characterized by immune suppression and immune escape, and the immune activation therapy may improve the survival of HR-MDS. Furthermore, the immune dysregulation of some MDS changes dynamically which is characterized by the coexistence and mutual transformation of immune hyperfunction and immune suppression. Taken together, the authors think that the immune dysregulation in MDS with different risk stratification can be summarized by an advanced philosophical thought “Yin-Yang theory” in ancient China, meaning that the opposing forces may actually be interdependent and interconvertible. Clarifying the mechanism of immune dysregulation in MDS with different risk stratification can provide the new basis for diagnosis and clinical treatment. This review focuses on the manifestations and roles of immune dysregulation in the different risk MDS, and summarizes the latest progress of immunotherapy in MDS.
Collapse
Affiliation(s)
- Xiaohuan Peng
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xiaofeng Zhu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Tianning Di
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Futian Tang
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xiaojia Guo
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Yang Liu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jun Bai
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Yanhong Li
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Lijuan Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- *Correspondence: Lijuan Li, ; Liansheng Zhang,
| | - Liansheng Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- *Correspondence: Lijuan Li, ; Liansheng Zhang,
| |
Collapse
|
3
|
Gao R, Zhang Y, Zeng C, Li Y. The role of NFAT in the pathogenesis and targeted therapy of hematological malignancies. Eur J Pharmacol 2022; 921:174889. [DOI: 10.1016/j.ejphar.2022.174889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 01/04/2023]
|
4
|
Comont T, Treiner E, Vergez F. From Immune Dysregulations to Therapeutic Perspectives in Myelodysplastic Syndromes: A Review. Diagnostics (Basel) 2021; 11:diagnostics11111982. [PMID: 34829329 PMCID: PMC8620222 DOI: 10.3390/diagnostics11111982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
The pathophysiology of myelodysplastic syndromes (MDSs) is complex and often includes immune dysregulation of both the innate and adaptive immune systems. Whereas clonal selection mainly involves smoldering inflammation, a cellular immunity dysfunction leads to increased apoptosis and blast proliferation. Addressing immune dysregulations in MDS is a recent concept that has allowed the identification of new therapeutic targets. Several approaches targeting the different actors of the immune system have therefore been developed. However, the results are very heterogeneous, indicating the need to improve our understanding of the disease and interactions between chronic inflammation, adaptive dysfunction, and somatic mutations. This review highlights current knowledge of the role of immune dysregulation in MDS pathophysiology and the field of new drugs.
Collapse
Affiliation(s)
- Thibault Comont
- Department of Internal Medicine, IUCT-Oncopole, Toulouse University Hospital (CHU-Toulouse), 31300 Toulouse, France
- Cancer Research Center of Toulouse, Unité Mixte de Recherche (UMR) 1037 INSERM, ERL5294 Centre National de La Recherche Scientifique, 31100 Toulouse, France;
- School of Medicine, Université Toulouse III—Paul Sabatier, 31062 Toulouse, France;
- Correspondence: ; Tel.: +33-531-15-62-66; Fax: +33-531-15-62-58
| | - Emmanuel Treiner
- School of Medicine, Université Toulouse III—Paul Sabatier, 31062 Toulouse, France;
- Laboratory of Immunology, Toulouse University Hospital (CHU-Toulouse), 31300 Toulouse, France
- Infinity, Inserm UMR1291, 31000 Toulouse, France
| | - François Vergez
- Cancer Research Center of Toulouse, Unité Mixte de Recherche (UMR) 1037 INSERM, ERL5294 Centre National de La Recherche Scientifique, 31100 Toulouse, France;
- School of Medicine, Université Toulouse III—Paul Sabatier, 31062 Toulouse, France;
- Laboratory of Hematology, IUCT-Oncopole, Toulouse University Hospital (CHU-Toulouse), 31300 Toulouse, France
| |
Collapse
|
5
|
Retuning the immune system in myelodysplastic syndromes: from immunomodulatory approaches to vaccination strategies and non myeloablative hemopoietic cell transplant. Crit Rev Oncol Hematol 2019; 133:112-119. [DOI: 10.1016/j.critrevonc.2018.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/09/2018] [Accepted: 11/05/2018] [Indexed: 12/24/2022] Open
|
6
|
Stahl M, DeVeaux M, de Witte T, Neukirchen J, Sekeres MA, Brunner AM, Roboz GJ, Steensma DP, Bhatt VR, Platzbecker U, Cluzeau T, Prata PH, Itzykson R, Fenaux P, Fathi AT, Smith A, Germing U, Ritchie EK, Verma V, Nazha A, Maciejewski JP, Podoltsev NA, Prebet T, Santini V, Gore SD, Komrokji RS, Zeidan AM. The use of immunosuppressive therapy in MDS: clinical outcomes and their predictors in a large international patient cohort. Blood Adv 2018; 2:1765-1772. [PMID: 30037803 PMCID: PMC6058241 DOI: 10.1182/bloodadvances.2018019414] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 06/02/2018] [Indexed: 11/20/2022] Open
Abstract
Most studies of immunosuppressive therapy (IST) in myelodysplastic syndromes (MDS) are limited by small numbers and their single-center nature, and report conflicting data regarding predictors for response to IST. We examined outcomes associated with IST and predictors of benefit in a large international cohort of patients with MDS. Data were collected from 15 centers in the United States and Europe. Responses, including red blood cell (RBC) transfusion independence (TI), were assessed based on the 2006 MDS International Working Group criteria, and overall survival (OS) was estimated by Kaplan-Meier methods. Logistic regression models estimated odds for response and TI, and Cox Proportional Hazard models estimated hazards ratios for OS. We identified 207 patients with MDS receiving IST, excluding steroid monotherapy. The most common IST regimen was anti-thymocyte globulin (ATG) plus prednisone (43%). Overall response rate (ORR) was 48.8%, including 11.2% (95% confidence interval [CI], 6.5%-18.4%) who achieved a complete remission and 30% (95% CI, 22.3%-39.5%) who achieved RBC TI. Median OS was 47.4 months (95% CI, 37-72.3 months) and was longer for patients who achieved a response or TI. Achievement of RBC TI was associated with a hypocellular bone marrow (cellularity < 20%); horse ATG plus cyclosporine was more effective than rabbit ATG or ATG without cyclosporine. Age, transfusion dependence, presence of paroxysmal nocturnal hemoglobinuria or large granular lymphocyte clones, and HLA DR15 positivity did not predict response to IST. IST leads to objective responses in nearly half the selected patients with the highest rate of RBC TI achieved in patients with hypocellular bone marrows.
Collapse
Affiliation(s)
- Maximilian Stahl
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Michelle DeVeaux
- Department of Biostatistics, Yale School of Public Health, New Haven, CT
| | - Theo de Witte
- Department of Tumorimmunology, Radboudumc, Nijmegen, The Netherlands
| | - Judith Neukirchen
- Department of Hematology, Oncology and Clinical Immunology, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | | | - Andrew M Brunner
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Gail J Roboz
- Weill Cornell Medicine and The New York Presbyterian Hospital, New York, NY
| | | | | | - Uwe Platzbecker
- Universitätsklinikum "Carl Gustav Carus" der Technischen Universität Dresden, Dresden, Germany
- German Cancer Consortium and National Center for Tumor Diseases Dresden, Dresden, Germany
| | | | - Pedro H Prata
- Saint-Louis Hospital, University Paris 7, Paris, France
| | | | - Pierre Fenaux
- Saint-Louis Hospital, University Paris 7, Paris, France
| | - Amir T Fathi
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Alexandra Smith
- Epidemiology & Cancer Statistics Group, Department of Health Sciences, University of York, York, United Kingdom
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Ellen K Ritchie
- Weill Cornell Medicine and The New York Presbyterian Hospital, New York, NY
| | - Vivek Verma
- University of Nebraska Medical Center, Omaha, NE
| | - Aziz Nazha
- Leukemia Program, Cleveland Clinic, Cleveland, OH
| | | | - Nikolai A Podoltsev
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Thomas Prebet
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Valeria Santini
- Division of Hematology, University of Florence, Azienda Ospedaliero Universitaria Carreggi, Florence, Italy; and
| | - Steven D Gore
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Rami S Komrokji
- Department of Malignant Hematology, Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
7
|
Wang C, Yang Y, Gao S, Chen J, Yu J, Zhang H, Li M, Zhan X, Li W. Immune dysregulation in myelodysplastic syndrome: Clinical features, pathogenesis and therapeutic strategies. Crit Rev Oncol Hematol 2018; 122:123-132. [DOI: 10.1016/j.critrevonc.2017.12.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/26/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022] Open
|
8
|
Almeida A, Fenaux P, List AF, Raza A, Platzbecker U, Santini V. Recent advances in the treatment of lower-risk non-del(5q) myelodysplastic syndromes (MDS). Leuk Res 2017; 52:50-57. [DOI: 10.1016/j.leukres.2016.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/27/2016] [Accepted: 11/11/2016] [Indexed: 12/12/2022]
|
9
|
Abstract
After being a neglected and poorly-understood disorder for many years, there has been a recent explosion of data regarding the complex pathogenesis of myelodysplastic syndromes (MDS). On the therapeutic front, the approval of azacitidine, decitabine, and lenalidomide in the last decade was a major breakthrough. Nonetheless, the responses to these agents are limited and most patients progress within 2 years. Allogeneic stem cell transplantation remains the only potentially curative therapy, but it is associated with significant toxicity and limited efficacy. Lack or loss of response after standard therapies is associated with dismal outcomes. Many unanswered questions remain regarding the optimal use of current therapies including patient selection, response prediction, therapy sequencing and combinations, and management of resistance. It is hoped that the improved understanding of the underpinnings of the complex mechanisms of pathogenesis will be translated into novel therapeutic approaches and better prognostic/predictive tools that would facilitate accurate risk-adaptive therapy.
Collapse
|
10
|
Parikh AR, Olnes MJ, Barrett AJ. Immunomodulatory treatment of myelodysplastic syndromes: antithymocyte globulin, cyclosporine, and alemtuzumab. Semin Hematol 2013; 49:304-11. [PMID: 23079060 DOI: 10.1053/j.seminhematol.2012.07.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
It is now well accepted that a subgroup of patients with myelodysplastic syndromes (MDS) can recover from pancytopenia following immunosuppressive treatment (IST). For many years immunosuppression with antilymphocyte antibodies has been a standard treatment approach for patients with severe aplastic anemia (SAA). The initial concept of using immunosuppression to treat pancytopenic patients with MDS was based on the premise that MDS might share with SAA an autoimmune basis for the bone marrow failure common to both conditions. The idea was supported by reports of favorable outcomes in occasional cases of MDS treated with antithymocyte globulin (ATG). Today, various forms of IST have been successfully used to restore hematopoiesis in MDS in many centers worldwide. In this review we outline the rationale for use of IST in MDS, and describe studies which help to define the patients with MDS likely to respond to IST. We summarize 18 published clinical trials using IST for MDS and discuss how these studies have helped to define the MDS subgroups likely to respond to treatment, the nature and durability of the response, the impact of IST on long-term outcome, and the best treatment approach.
Collapse
Affiliation(s)
- Ankur R Parikh
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| | | | | |
Collapse
|
11
|
Long-term follow-up of clonal evolutions in 802 aplastic anemia patients: a single-center experience. Ann Hematol 2011; 90:529-37. [DOI: 10.1007/s00277-010-1140-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2009] [Accepted: 12/14/2010] [Indexed: 10/18/2022]
|
12
|
Santini V, Alessandrino PE, Angelucci E, Barosi G, Billio A, Di Maio M, Finelli C, Locatelli F, Marchetti M, Morra E, Musto P, Visani G, Tura S. Clinical management of myelodysplastic syndromes: update of SIE, SIES, GITMO practice guidelines. Leuk Res 2010; 34:1576-88. [PMID: 20149927 DOI: 10.1016/j.leukres.2010.01.018] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 01/11/2010] [Accepted: 01/17/2010] [Indexed: 12/13/2022]
Affiliation(s)
- V Santini
- Functional Unit of Haematology, AOU Careggi, University of Florence, Firenze, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ishikawa T, Tohyama K, Nakao S, Yoshida Y, Teramura M, Motoji T, Takatoku M, Kurokawa M, Mitani K, Uchiyama T, Omine M. A prospective study of cyclosporine A treatment of patients with low-risk myelodysplastic syndrome: presence of CD55(-)CD59(-) blood cells predicts platelet response. Int J Hematol 2007; 86:150-7. [PMID: 17875530 DOI: 10.1532/ijh97.07052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although immunosuppressive therapy using antithymocyte globulin or cyclosporine A (CSA) is effective in selected patients with low-risk myelodysplastic syndrome, the response rates reported so far are inconsistent, and the indication of immunosuppressive therapy for myelodysplastic syndrome has not been clearly defined. We treated 20 myelodysplastic syndrome patients (17 refractory anemia cases [RA], 2 RA with excess blasts, and one RA with ringed sideroblasts) with 4 mg/kg per day of CSA for 24 weeks. Among the 19 patients evaluated, 10 showed hematologic improvement; 8 patients showed an erythroid response, 6 showed a platelet response, and one showed a neutrophil response. Most patients with hematologic improvement continued CSA thereafter, and the progressive response was observed until the latest follow-up (median, 30 months). Most toxicities associated with CSA usage were manageable, and no patient had developed acute leukemia up to this point. Short duration of illness, refractory anemia with minimal dysplasia determined by bone marrow morphology, and the presence of paroxysmal nocturnal hemoglobinuria-type cells were significantly associated with the platelet response. A minority of RA patients who did not possess such predictive variables achieved an isolated erythroid response. In conclusion, CSA may be a therapeutic option for patients with RA who do not have adverse prognostic factors.
Collapse
Affiliation(s)
- Takayuki Ishikawa
- Department of Hematology and Oncology, Graduate School ofMedicine, Kyoto University, 54 Shogoin-Kawaracho, Sakyo-ku, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Myelodysplastic syndromes (MDS) are clonal disorders of hematopoietic stem cell. Patients have a deteriorating course with about 30% evolving into acute leukemias usually of the myeloid phenotype. Evolution into acute lymphoblastic leukemia is a rare and intriguing phenomenon seen in far less than 1% of adult cases, and extremely rare in pediatric population. We report a case of childhood MDS-refractory anemia transforming into acute lymphoblastic leukemia after an interval of 21 months since presentation and being on cyclosporine therapy for 9.5 months. The case raises further questions about the biology of MDS and the potential role of cyclosporine in leukemic transformation.
Collapse
|