1
|
Swanepoel CM, Mueller JL. Out with the old, in with the new: Meiotic driving of sex chromosome evolution. Semin Cell Dev Biol 2024; 163:14-21. [PMID: 38664120 PMCID: PMC11351068 DOI: 10.1016/j.semcdb.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024]
Abstract
Chromosomal regions with meiotic drivers exhibit biased transmission (> 50 %) over their competing homologous chromosomal region. These regions often have two prominent genetic features: suppressed meiotic crossing over and rapidly evolving multicopy gene families. Heteromorphic sex chromosomes (e.g., XY) often share these two genetic features with chromosomal regions exhibiting meiotic drive. Here, we discuss parallels between meiotic drive and sex chromosome evolution, how the divergence of heteromorphic sex chromosomes can be influenced by meiotic drive, experimental approaches to study meiotic drive on sex chromosomes, and meiotic drive in traditional and non-traditional model organisms with high-quality genome assemblies. The newly available diversity of high-quality sex chromosome sequences allows us to revisit conventional models of sex chromosome evolution through the lens of meiotic drive.
Collapse
Affiliation(s)
- Callie M Swanepoel
- Department of Human Genetics, University of Michigan Medical School, 1241 E. Catherine St, Ann Arbor, MI, USA
| | - Jacob L Mueller
- Department of Human Genetics, University of Michigan Medical School, 1241 E. Catherine St, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Castellanos MDP, Wickramasinghe CD, Betrán E. The roles of gene duplications in the dynamics of evolutionary conflicts. Proc Biol Sci 2024; 291:20240555. [PMID: 38865605 DOI: 10.1098/rspb.2024.0555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/02/2024] [Indexed: 06/14/2024] Open
Abstract
Evolutionary conflicts occur when there is antagonistic selection between different individuals of the same or different species, life stages or between levels of biological organization. Remarkably, conflicts can occur within species or within genomes. In the dynamics of evolutionary conflicts, gene duplications can play a major role because they can bring very specific changes to the genome: changes in protein dose, the generation of novel paralogues with different functions or expression patterns or the evolution of small antisense RNAs. As we describe here, by having those effects, gene duplication might spark evolutionary conflict or fuel arms race dynamics that takes place during conflicts. Interestingly, gene duplication can also contribute to the resolution of a within-locus evolutionary conflict by partitioning the functions of the gene that is under an evolutionary trade-off. In this review, we focus on intraspecific conflicts, including sexual conflict and illustrate the various roles of gene duplications with a compilation of examples. These examples reveal the level of complexity and the differences in the patterns of gene duplications within genomes under different conflicts. These examples also reveal the gene ontologies involved in conflict and the genomic location of the elements of the conflict. The examples provide a blueprint for the direct study of these conflicts or the exploration of the presence of similar conflicts in other lineages.
Collapse
Affiliation(s)
| | | | - Esther Betrán
- Department of Biology, University of Texas at Arlington , Arlington, TX 76019, USA
| |
Collapse
|
3
|
Bastide H, Ogereau D, Montchamp-Moreau C, Gérard PR. The fate of a suppressed X-linked meiotic driver: experimental evolution in Drosophila simulans. Chromosome Res 2022; 30:141-150. [PMID: 35635636 DOI: 10.1007/s10577-022-09698-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022]
Abstract
Sex-ratio (SR) meiotic drivers are X-linked selfish genetic elements that promote their own transmission by preventing the production of Y-bearing sperm, which usually lowers male fertility. The spread of SR drivers in populations is expected to trigger the evolution of unlinked drive suppressors, a theoretically predicted co-evolution that has been observed in nature. Once completely suppressed, the drivers are expected either to decline if they still affect the fitness of their carriers, or to evolve randomly and possibly get fixed if the suppressors eliminate their deleterious effects. To explore this issue, we used the Paris sex-ratio system of Drosophila simulans in which drive results from the joint effect of two elements on the X chromosome: a segmental duplication and a deficient allele of the HP1D2 gene. We set up six experimental populations starting with 2/3 of X chromosomes carrying both elements (XSR) in a fully suppressing background. We let them evolve independently during almost a hundred generations under strong sexual competition, a condition known to cause the rapid disappearance of unsuppressed Paris XSR in previous experimental populations. In our study, the fate of XSR chromosomes varied among populations, from extinction to their maintenance at a frequency close to the starting one. While the reasons for these variable outcomes are still to be explored, our results show that complete suppression can prevent the demise of an otherwise deleterious XSR chromosome, turning a genetic conflict into cooperation between unlinked loci. Observations in natural populations suggest a contrasting fate of the two elements: disappearance of the duplication and maintenance of deficient HP1D2 alleles.
Collapse
Affiliation(s)
- Héloïse Bastide
- UMR Evolution, Génomes, Comportement et Ecologie, CNRS, IRD, Université Paris-Saclay, 91272, Gif-sur-Yvette, France.
| | - David Ogereau
- UMR Evolution, Génomes, Comportement et Ecologie, CNRS, IRD, Université Paris-Saclay, 91272, Gif-sur-Yvette, France
| | - Catherine Montchamp-Moreau
- UMR Evolution, Génomes, Comportement et Ecologie, CNRS, IRD, Université Paris-Saclay, 91272, Gif-sur-Yvette, France
| | - Pierre R Gérard
- UMR Génétique Quantitative et Evolution, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 91272, Gif-sur-Yvette, France.
| |
Collapse
|
4
|
Keais GL, Lu S, Perlman SJ. Autosomal suppression and fitness costs of an old driving X chromosome in Drosophila testacea. J Evol Biol 2020; 33:619-628. [PMID: 31990433 DOI: 10.1111/jeb.13596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/18/2019] [Accepted: 01/07/2020] [Indexed: 12/19/2022]
Abstract
Driving X chromosomes (XD s) bias their own transmission through males by killing Y-bearing gametes. These chromosomes can in theory spread rapidly in populations and cause extinction, but many are found as balanced polymorphisms or as "cryptic" XD s shut down by drive suppressors. The relative likelihood of these outcomes and the evolutionary pathways through which they come about are not well understood. An XD was recently discovered in the mycophagous fly, Drosophila testacea, presenting the opportunity to compare this XD with the well-studied XD of its sister species, Drosophila neotestacea. Comparing features of independently evolved XD s in young sister species is a promising avenue towards understanding how XD s and their counteracting forces change over time. In contrast to the XD of D. neotestacea, we find that the XD of D. testacea is old, with its origin predating the radiation of three species: D. testacea, D. neotestacea and their shared sister species, Drosophila orientacea. Motivated by the suggestion that older XD s should be more deleterious to carriers, we assessed the effect of the XD on both male and female fertility. Unlike what is known from D. neotestacea, we found a strong fitness cost in females homozygous for the XD in D. testacea: a large proportion of homozygous females failed to produce offspring after being housed with males for several days. Our male fertility experiments show that although XD male fertility is lower under sperm-depleting conditions, XD males have comparable fertility to males carrying a standard X chromosome under a free-mating regime, which may better approximate conditions in wild populations of D. testacea. Lastly, we demonstrate the presence of autosomal suppression of X chromosome drive. Our results provide support for a model of XD evolution where the dynamics of young XD s are governed by fitness consequences in males, whereas in older XD systems, both suppression and fitness consequences in females likely supersede male fitness costs.
Collapse
Affiliation(s)
- Graeme L Keais
- Department of Biology, University of Victoria, Victoria, BC, Canada.,Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Sijia Lu
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Steve J Perlman
- Department of Biology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
5
|
Courret C, Chang CH, Wei KHC, Montchamp-Moreau C, Larracuente AM. Meiotic drive mechanisms: lessons from Drosophila. Proc Biol Sci 2019; 286:20191430. [PMID: 31640520 DOI: 10.1098/rspb.2019.1430] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Meiotic drivers are selfish genetic elements that bias their transmission into gametes, often to the detriment of the rest of the genome. The resulting intragenomic conflicts triggered by meiotic drive create evolutionary arms races and shape genome evolution. The phenomenon of meiotic drive is widespread across taxa but is particularly prominent in the Drosophila genus. Recent studies in Drosophila have provided insights into the genetic origins of drivers and their molecular mechanisms. Here, we review the current literature on mechanisms of drive with an emphasis on sperm killers in Drosophila species. In these systems, meiotic drivers often evolve from gene duplications and targets are generally linked to heterochromatin. While dense in repetitive elements and difficult to study using traditional genetic and genomic approaches, recent work in Drosophila has made progress on the heterochromatic compartment of the genome. Although we still understand little about precise drive mechanisms, studies of male drive systems are converging on common themes such as heterochromatin regulation, small RNA pathways, and nuclear transport pathways. Meiotic drive systems are therefore promising models for discovering fundamental features of gametogenesis.
Collapse
Affiliation(s)
- Cécile Courret
- Evolution Génome Comportement et Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette 91190, France
| | - Ching-Ho Chang
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Kevin H-C Wei
- Department of Integrative Biology, University of California, Berkley, CA, USA
| | - Catherine Montchamp-Moreau
- Evolution Génome Comportement et Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette 91190, France
| | | |
Collapse
|
6
|
Pieper KE, Unckless RL, Dyer KA. A fast-evolving X-linked duplicate of importin-α2 is overexpressed in sex-ratio drive in Drosophila neotestacea. Mol Ecol 2018; 27:5165-5179. [PMID: 30411843 DOI: 10.1111/mec.14928] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/21/2018] [Accepted: 10/25/2018] [Indexed: 01/31/2023]
Abstract
Selfish genetic elements that manipulate gametogenesis to achieve a transmission advantage are known as meiotic drivers. Sex-ratio X chromosomes (SR) are meiotic drivers that prevent the maturation of Y-bearing sperm in male carriers to result in the production of mainly female progeny. The spread of an SR chromosome can affect host genetic diversity and genome evolution, and can even cause host extinction if it reaches sufficiently high prevalence. Meiotic drivers have evolved independently many times, though only in a few cases is the underlying genetic mechanism known. In this study we use a combination of transcriptomics and population genetics to identify widespread expression differences between the standard (ST) and sex-ratio (SR) X chromosomes of the fly Drosophila neotestacea. We found the X chromosome is enriched for differentially expressed transcripts and that many of these X-linked differentially expressed transcripts had elevated Ka /Ks values between ST and SR, indicative of potential functional differences. We identified a set of candidate transcripts, including a testis-specific, X-linked duplicate of the nuclear transport gene importin-α2 that is overexpressed in SR. We find suggestions of positive selection in the lineage leading to the duplicate and that its molecular evolutionary patterns are consistent with relaxed purifying selection in ST. As these patterns are consistent with involvement in the mechanism of drive in this species, this duplicate is a strong candidate worthy of further functional investigation. Nuclear transport may be a common target for genetic conflict, as the mechanism of the autosomal Segregation Distorter drive system in D. melanogaster involves the same pathway.
Collapse
Affiliation(s)
| | - Robert L Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Kelly A Dyer
- Department of Genetics, University of Georgia, Athens, Georgia
| |
Collapse
|
7
|
X-chromosome meiotic drive in Drosophila simulans: a QTL approach reveals the complex polygenic determinism of Paris drive suppression. Heredity (Edinb) 2018; 122:906-915. [PMID: 30518968 DOI: 10.1038/s41437-018-0163-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/14/2018] [Accepted: 10/24/2018] [Indexed: 11/08/2022] Open
Abstract
Meiotic drivers are selfish genetic elements that promote their own transmission into the gametes, which results in intragenomic conflicts. In the Paris sex-ratio system of Drosophila simulans, drivers located on the X chromosome prevent the segregation of the heterochromatic Y chromosome during meiosis II, and hence the production of Y-bearing sperm. The resulting sex-ratio bias strongly impacts population dynamics and evolution. Natural selection, which tends to restore an equal sex ratio, favors the emergence of resistant Y chromosomes and autosomal suppressors. This is the case in the Paris sex-ratio system where the drivers became cryptic in most of the natural populations of D. simulans. Here, we used a quantitative trait locus (QTL) mapping approach based on the analysis of 152 highly recombinant inbred lines (RILs) to investigate the genetic determinism of autosomal suppression. The RILs were derived from an advanced intercross between two parental lines, one showing complete autosomal suppression while the other one was sensitive to drive. The confrontation of RIL autosomes with a reference XSR chromosome allowed us to identify two QTLs on chromosome 2 and three on chromosome 3, with strong epistatic interactions. Our findings highlight the multiplicity of actors involved in this intragenomic battle over the sex ratio.
Collapse
|
8
|
Paczolt KA, Reinhardt JA, Wilkinson GS. Contrasting patterns of X-chromosome divergence underlie multiple sex-ratio polymorphisms in stalk-eyed flies. J Evol Biol 2017; 30:1772-1784. [PMID: 28688201 DOI: 10.1111/jeb.13140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/27/2017] [Accepted: 07/04/2017] [Indexed: 11/28/2022]
Abstract
Sex-linked segregation distorters cause offspring sex ratios to differ from equality. Theory predicts that such selfish alleles may either go to fixation and cause extinction, reach a stable polymorphism or initiate an evolutionary arms race with genetic modifiers. The extent to which a sex ratio distorter follows any of these trajectories in nature is poorly known. Here, we used X-linked sequence and simple tandem repeat data for three sympatric species of stalk-eyed flies (Teleopsis whitei and two cryptic species of T. dalmanni) to infer the evolution of distorting X chromosomes. By screening large numbers of field and recently laboratory-bred flies, we found no evidence of males with strongly female-biased sex ratio phenotypes (SR) in one species but high frequencies of SR males in the other two species. In the two species with SR males, we find contrasting patterns of X-chromosome evolution. T. dalmanni-1 shows chromosome-wide differences between sex-ratio (XSR ) and standard (XST ) X chromosomes consistent with a relatively old sex-ratio haplotype based on evidence including genetic divergence, an inversion polymorphism and reduced recombination among XSR chromosomes relative to XST chromosomes. In contrast, we found no evidence of genetic divergence on the X between males with female-biased and nonbiased sex ratios in T. whitei. Taken with previous studies that found evidence of genetic suppression of sex ratio distortion in this clade, our results illustrate that sex ratio modification in these flies is undergoing recurrent evolution with diverse genomic consequences.
Collapse
Affiliation(s)
- K A Paczolt
- Department of Biology, University of Maryland College Park, College Park, MD, USA
| | - J A Reinhardt
- Department of Biology, SUNY Geneseo, Geneseo, NY, USA
| | - G S Wilkinson
- Department of Biology, University of Maryland College Park, College Park, MD, USA
| |
Collapse
|
9
|
Rapid evolution of a Y-chromosome heterochromatin protein underlies sex chromosome meiotic drive. Proc Natl Acad Sci U S A 2016; 113:4110-5. [PMID: 26979956 DOI: 10.1073/pnas.1519332113] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sex chromosome meiotic drive, the non-Mendelian transmission of sex chromosomes, is the expression of an intragenomic conflict that can have extreme evolutionary consequences. However, the molecular bases of such conflicts remain poorly understood. Here, we show that a young and rapidly evolving X-linked heterochromatin protein 1 (HP1) gene, HP1D2, plays a key role in the classical Paris sex-ratio (SR) meiotic drive occurring in Drosophila simulans Driver HP1D2 alleles prevent the segregation of the Y chromatids during meiosis II, causing female-biased sex ratio in progeny. HP1D2 accumulates on the heterochromatic Y chromosome in male germ cells, strongly suggesting that it controls the segregation of sister chromatids through heterochromatin modification. We show that Paris SR drive is a consequence of dysfunctional HP1D2 alleles that fail to prepare the Y chromosome for meiosis, thus providing evidence that the rapid evolution of genes controlling the heterochromatin structure can be a significant source of intragenomic conflicts.
Collapse
|
10
|
Abstract
Sex chromosome drivers are selfish elements that subvert Mendel's first law of segregation and therefore are overrepresented among the products of meiosis. The sex-biased progeny produced then fuels an extended genetic conflict between the driver and the rest of the genome. Many examples of sex chromosome drive are known, but the occurrence of this phenomenon is probably largely underestimated because of the difficulty to detect it. Remarkably, nearly all sex chromosome drivers are found in two clades, Rodentia and Diptera. Although very little is known about the molecular and cellular mechanisms of drive, epigenetic processes such as chromatin regulation could be involved in many instances. Yet, its evolutionary consequences are far-reaching, from the evolution of mating systems and sex determination to the emergence of new species.
Collapse
Affiliation(s)
- Quentin Helleu
- Laboratoire Évolution Génomes et Spéciation, CNRS UPR9034, Gif-sur-Yvette, France and Université Paris-Sud, Orsay, France
| | - Pierre R Gérard
- Laboratoire Évolution Génomes et Spéciation, CNRS UPR9034, Gif-sur-Yvette, France and Université Paris-Sud, Orsay, France
| | - Catherine Montchamp-Moreau
- Laboratoire Évolution Génomes et Spéciation, CNRS UPR9034, Gif-sur-Yvette, France and Université Paris-Sud, Orsay, France
| |
Collapse
|
11
|
Reinhardt JA, Brand CL, Paczolt KA, Johns PM, Baker RH, Wilkinson GS. Meiotic drive impacts expression and evolution of x-linked genes in stalk-eyed flies. PLoS Genet 2014; 10:e1004362. [PMID: 24832132 PMCID: PMC4022487 DOI: 10.1371/journal.pgen.1004362] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 03/25/2014] [Indexed: 12/22/2022] Open
Abstract
Although sex chromosome meiotic drive has been observed in a variety of species for over 50 years, the genes causing drive are only known in a few cases, and none of these cases cause distorted sex-ratios in nature. In stalk-eyed flies (Teleopsis dalmanni), driving X chromosomes are commonly found at frequencies approaching 30% in the wild, but the genetic basis of drive has remained elusive due to reduced recombination between driving and non-driving X chromosomes. Here, we used RNAseq to identify transcripts that are differentially expressed between males carrying either a driving X (XSR) or a standard X chromosome (XST), and found hundreds of these, the majority of which are X-linked. Drive-associated transcripts show increased levels of sequence divergence (dN/dS) compared to a control set, and are predominantly expressed either in testes or in the gonads of both sexes. Finally, we confirmed that XSR and XST are highly divergent by estimating sequence differentiation between the RNAseq pools. We found that X-linked transcripts were often strongly differentiated (whereas most autosomal transcripts were not), supporting the presence of a relatively large region of recombination suppression on XSR presumably caused by one or more inversions. We have identified a group of genes that are good candidates for further study into the causes and consequences of sex-chromosome drive, and demonstrated that meiotic drive has had a profound effect on sequence evolution and gene expression of X-linked genes in this species. Sex chromosome meiotic drive causes changes in the sex-ratios of natural populations, and may even lead to extinction if the driving element reaches high frequency. However, very little is known about the genes that cause sex-ratio drive, and no causal gene has been identified in a species that consistently exhibits distorted sex ratios in natural populations. Several species of stalk-eyed flies in southeast Asia – genus Teleopsis – express X chromosome drive, but the genes underlying drive have been difficult to locate due to reduced recombination between drive and standard X chromosomes presumably caused by the presence of a large inversion. Here, we use high throughput RNA sequencing to identify over 500 transcripts that are differentially expressed in the testes due to the effects of a driving X chromosome (XSR) in T. dalmanni. Most of these are X-linked, evolve more rapidly than control genes, and exhibit elevated expression in the gonads. Finally, XSR has become genetically differentiated from standard X chromosomes – using the RNA sequence data, we found nearly 1000 sites in X-linked transcripts and only a handful in autosomal transcripts where there was a fixed nucleotide difference. We conclude that XSR has led to widespread sequence and expression divergence on the X chromosome in T. dalmanni.
Collapse
Affiliation(s)
- Josephine A. Reinhardt
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| | - Cara L. Brand
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Kimberly A. Paczolt
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| | - Philip M. Johns
- Bard College, Annadale-on-Hudson, New York, United States of America
| | - Richard H. Baker
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, United States of America
| | - Gerald S. Wilkinson
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
12
|
Bastide H, Gérard PR, Ogereau D, Cazemajor M, Montchamp-Moreau C. Local dynamics of a fast-evolving sex-ratio system in Drosophila simulans. Mol Ecol 2013; 22:5352-67. [PMID: 24118375 DOI: 10.1111/mec.12492] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/29/2013] [Accepted: 08/01/2013] [Indexed: 11/29/2022]
Abstract
By distorting Mendelian transmission to their own advantage, X-linked meiotic drive elements can rapidly spread in natural populations, generating a sex-ratio bias. One expected consequence is the triggering of a co-evolutionary arms race between the sex chromosome that carries the distorter and suppressors counteracting its effect. Such an arms race has been theoretically and experimentally established and can have many evolutionary consequences. However, its dynamics in contemporary populations is still poorly documented. Here, we investigate the fate of the young X-linked Paris driver in Drosophila simulans from sub-Saharan Africa to the Middle East. We provide the first example of the early dynamics of distorters and suppressors: we find consistent evidence that the driving chromosomes have been rising in the Middle East during the last decade. In addition, identical haplotypes are at high frequencies around the two co-evolving drive loci in remote populations, implying that the driving X chromosomes share a recent common ancestor and suggesting that East Africa could be the cradle of the Paris driver. The segmental duplication associated with drive presents an unusual structure in West Africa, which could reflect a secondary state of the driver. Together with our previous demonstration of driver decline in the Indian Ocean where suppression is complete, these data provide a unique picture of the complex dynamics of a co-evolutionary arms race currently taking place in natural populations of D. simulans.
Collapse
Affiliation(s)
- Héloïse Bastide
- Laboratoire Evolution Génomes Spéciation, CNRS, 91198, Gif-sur-Yvette Cedex, France; Université Paris-Sud, 91405, Orsay Cedex, France
| | | | | | | | | |
Collapse
|
13
|
Dyer KA, Bray MJ, Lopez SJ. Genomic conflict drives patterns of X-linked population structure in Drosophila neotestacea. Mol Ecol 2012; 22:157-69. [PMID: 23121224 DOI: 10.1111/mec.12097] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 09/11/2012] [Accepted: 09/17/2012] [Indexed: 12/12/2022]
Abstract
Intragenomic conflict has the potential to cause widespread changes in patterns of genetic diversity and genome evolution. In this study, we investigate the consequences of sex-ratio (SR) drive on the population genetic patterns of the X-chromosome in Drosophila neotestacea. An SR X-chromosome prevents the maturation of Y-bearing sperm during male spermatogenesis and thus is transmitted to ~100% of the offspring, nearly all of which are daughters. Selection on the rest of the genome to suppress SR can be strong, and the resulting conflict over the offspring sex ratio can result in the accumulation of multiple loci on the X-chromosome that are necessary for the expression of drive. We surveyed variation at 12 random X-linked microsatellites across 16 populations of D. neotestacea that range in SR frequency from 0% to 30%. First, every locus was differentiated between SR and wild-type chromosomes, and this drives genetic structure at the X-chromosome. Once the association with SR is accounted for, the patterns of differentiation among populations are similar to the autosomes. Second, within wild-type chromosomes, the relative heterozygosity is reduced in populations with an increased prevalence of drive, and the heterozygosity of SR chromosomes is higher than expected based on its prevalence. The combination of the relatively high prevalence of SR drive and the structuring of polymorphism between the SR and wild-type chromosomes suggests that genetic conflict because of SR drive has had significant consequences on the patterns of X-linked polymorphism and thus also probably affects the tempo of X-chromosome evolution in D. neotestacea.
Collapse
Affiliation(s)
- Kelly A Dyer
- Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| | | | | |
Collapse
|
14
|
Ladevèze V, Chaminade N, Lemeunier F, Periquet G, Aulard S. General survey of hAT transposon superfamily with highlight on hobo element in Drosophila. Genetica 2012; 140:375-92. [DOI: 10.1007/s10709-012-9687-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/10/2012] [Indexed: 11/30/2022]
|