1
|
Qu P, Wang J, Wen W, Gao F, Liu J, Xia X, Peng H, Zhang L. Construction of Consensus Genetic Map With Applications in Gene Mapping of Wheat ( Triticum aestivum L.) Using 90K SNP Array. FRONTIERS IN PLANT SCIENCE 2021; 12:727077. [PMID: 34512703 PMCID: PMC8424075 DOI: 10.3389/fpls.2021.727077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/28/2021] [Indexed: 06/02/2023]
Abstract
Wheat is one of the most important cereal crops worldwide. A consensus map combines genetic information from multiple populations, providing an effective alternative to improve the genome coverage and marker density. In this study, we constructed a consensus map from three populations of recombinant inbred lines (RILs) of wheat using a 90K single nucleotide polymorphism (SNP) array. Phenotypic data on plant height (PH), spike length (SL), and thousand-kernel weight (TKW) was collected in six, four, and four environments in the three populations, and then used for quantitative trait locus (QTL) mapping. The mapping results obtained using the constructed consensus map were compared with previous results obtained using individual maps and previous studies on other populations. A simulation experiment was also conducted to assess the performance of QTL mapping with the consensus map. The constructed consensus map from the three populations spanned 4558.55 cM in length, with 25,667 SNPs, having high collinearity with physical map and individual maps. Based on the consensus map, 21, 27, and 19 stable QTLs were identified for PH, SL, and TKW, much more than those detected with individual maps. Four PH QTLs and six SL QTLs were likely to be novel. A putative gene called TraesCS4D02G076400 encoding gibberellin-regulated protein was identified to be the candidate gene for one major PH QTL located on 4DS, which may enrich genetic resources in wheat semi-dwarfing breeding. The simulation results indicated that the length of the confidence interval and standard errors of the QTLs detected using the consensus map were much smaller than those detected using individual maps. The consensus map constructed in this study provides the underlying genetic information for systematic mapping, comparison, and clustering of QTL, and gene discovery in wheat genetic study. The QTLs detected in this study had stable effects across environments and can be used to improve the wide adaptation of wheat cultivars through marker-assisted breeding.
Collapse
Affiliation(s)
- Pingping Qu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jiankang Wang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weie Wen
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Fengmei Gao
- Crop Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Jindong Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianchun Xia
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huiru Peng
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Luyan Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Quezada M, Amadeu RR, Vignale B, Cabrera D, Pritsch C, Garcia AAF. Construction of a High-Density Genetic Map of Acca sellowiana (Berg.) Burret, an Outcrossing Species, Based on Two Connected Mapping Populations. FRONTIERS IN PLANT SCIENCE 2021; 12:626811. [PMID: 33708232 PMCID: PMC7940835 DOI: 10.3389/fpls.2021.626811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Acca sellowiana, known as feijoa or pineapple guava, is a diploid, (2n = 2x = 22) outcrossing fruit tree species native to Uruguay and Brazil. The species stands out for its highly aromatic fruits, with nutraceutical and therapeutic value. Despite its promising agronomical value, genetic studies on this species are limited. Linkage genetic maps are valuable tools for genetic and genomic studies, and constitute essential tools in breeding programs to support the development of molecular breeding strategies. A high-density composite genetic linkage map of A. sellowiana was constructed using two genetically connected populations: H5 (TCO × BR, N = 160) and H6 (TCO × DP, N = 184). Genotyping by sequencing (GBS) approach was successfully applied for developing single nucleotide polymorphism (SNP) markers. A total of 4,921 SNP markers were identified using the reference genome of the closely related species Eucalyptus grandis, whereas other 4,656 SNPs were discovered using a de novo pipeline. The individual H5 and H6 maps comprised 1,236 and 1,302 markers distributed over the expected 11 linkage groups, respectively. These two maps spanned a map length of 1,593 and 1,572 cM, with an average inter-marker distance of 1.29 and 1.21 cM, respectively. A large proportion of markers were common to both maps and showed a high degree of collinearity. The composite map consisted of 1,897 SNPs markers with a total map length of 1,314 cM and an average inter-marker distance of 0.69. A novel approach for the construction of composite maps where the meiosis information of individuals of two connected populations is captured in a single estimator is described. A high-density, accurate composite map based on a consensus ordering of markers provides a valuable contribution for future genetic research and breeding efforts in A. sellowiana. A novel mapping approach based on an estimation of multipopulation recombination fraction described here may be applied in the construction of dense composite genetic maps for any other outcrossing diploid species.
Collapse
Affiliation(s)
- Marianella Quezada
- Laboratorio de Biotecnología, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Rodrigo Rampazo Amadeu
- Laboratório de Genética Estatística, Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, Brazil
| | - Beatriz Vignale
- Mejoramiento Genético, Departamento de Producción Vegetal, Estación Experimental de la Facultad de Agronomía, Universidad de la República, Salto, Uruguay
| | - Danilo Cabrera
- Programa de Investigación en Producción Fruticola, Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental “Wilson Ferreira Aldunate”, Canelones, Uruguay
| | - Clara Pritsch
- Laboratorio de Biotecnología, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Antonio Augusto Franco Garcia
- Laboratório de Genética Estatística, Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, Brazil
| |
Collapse
|
3
|
Aslam ML, Carraro R, Sonesson AK, Meuwissen T, Tsigenopoulos CS, Rigos G, Bargelloni L, Tzokas K. Genetic Variation, GWAS and Accuracy of Prediction for Host Resistance to Sparicotyle chrysophrii in Farmed Gilthead Sea Bream ( Sparus aurata). Front Genet 2021; 11:594770. [PMID: 33424925 PMCID: PMC7793675 DOI: 10.3389/fgene.2020.594770] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/27/2020] [Indexed: 11/26/2022] Open
Abstract
Gilthead sea bream (Sparus aurata) belongs to a group of teleost which has high importance in Mediterranean aquaculture industry. However, industrial production is increasingly compromised by an elevated outbreak of diseases in sea cages, especially a disease caused by monogeneans parasite Sparicotyle chrysophrii. This parasite mainly colonizes gill tissues of host and causes considerable economical losses with mortality and reduction in growth. The aim of current study was to explore the genetics of host resistance against S. chrysophrii and investigate the potential for genomic selection to possibly accelerate genetic progress. To achieve the desired goals, a test population derived from the breeding nucleus of Andromeda Group was produced. This experimental population was established by crossing of parents mated in partial factorial crosses of ∼8 × 8 using 58 sires and 62 dams. The progeny obtained from this mating design was challenged with S. chrysophrii using a controllable cohabitation infection model. At the end of the challenge, fish were recorded for parasite count, and all the recorded fish were tissue sampled for genotyping by sequencing using 2b-RAD methodology. The initial (before challenge test) and the final body weight (after challenge test) of the fish were also recorded. The results obtained through the analysis of phenotypic records (n = 615) and the genotypic data (n = 841, 724 offspring and 117 parents) revealed that the resistance against this parasite is lowly heritable (h2 = 0.147 with pedigree and 0.137 with genomic information). We observed moderately favorable genetic correlation (Rg = −0.549 to −0.807) between production traits (i.e., body weight and specific growth rate) and parasite count, which signals a possibility of indirect selection. A locus at linkage group 17 was identified that surpassed chromosome-wide Bonferroni threshold which explained 22.68% of the total genetic variance, and might be playing role in producing genetic variation. The accuracy of prediction was improved by 8% with genomic information compared to pedigree.
Collapse
Affiliation(s)
| | | | | | | | | | - George Rigos
- Hellenic Centre for Marine Research, Heraklion, Greece
| | | | | |
Collapse
|
4
|
Bienias A, Góralska M, Masojć P, Milczarski P, Myśków B. The GAMYB gene in rye: sequence, polymorphisms, map location, allele-specific markers, and relationship with α-amylase activity. BMC Genomics 2020; 21:578. [PMID: 32831010 PMCID: PMC7444254 DOI: 10.1186/s12864-020-06991-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 08/13/2020] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Transcription factor (TF) GAMYB, belonging to MYB family (named after the gene of the avian myeloblastosis virus) is a master gibberellin (GA)-induced regulatory protein that is crucial for development and germination of cereal grain and involved in anther formation. It activates many genes including high-molecular-weight glutenin and α-amylase gene families. This study presents the first attempt to characterize the rye gene encoding GAMYB in relation to its sequence, polymorphisms, and phenotypic effects. RESULTS ScGAMYB was mapped on rye chromosome 3R using high-density Diversity Arrays Technology (DArT)/DArTseq-based maps developed in three mapping populations. The ScGAMYB sequences were identified in RNA-seq libraries of four rye inbred lines. The transcriptome used for the search contained almost 151,000 transcripts with a median contig length of 500 nt. The average amount of total base raw data was approximately 9 GB. Comparative analysis of the ScGAMYB sequence revealed its high level of homology to wheat and barley orthologues. Single nucleotide polymorphisms (SNPs) detected among rye inbred lines allowed the development of allele specific-PCR (AS-PCR) markers for ScGAMYB that might be used to detect this gene in wide genetic stocks of rye and triticale. Segregation of the ScGAMYB alleles showed significant relationship with α-amylase activity (AMY). CONCLUSIONS The research showed the strong similarity of rye GAMYB sequence to its orthologues in other Graminae and confirmed the position in the genome consistent with the collinearity rule of cereal genomes. Concurrently, the ScGAMYB coding sequence (cds) showed stronger variability (24 SNPs) compared to the analogous region of wheat (5 SNPs) and barley (7 SNPs). The moderate regulatory effect of ScGAMYB on AMY was confirmed, therefore, ScGAMYB was identified as a candidate gene for partial control of α-amylase production in rye grain. The predicted structural protein change in the aa region 362-372, caused by a single SNP (C/G) at the 1100 position in ScGAMYB cds and single aa sequence change (S/C) at the 367 position, is the likely cause of the differences in the effectiveness of ScGAMYB regulatory function associated with AMY. The development of sequence-based, allele-specific (AS) PCR markers could be useful in research and application.
Collapse
Affiliation(s)
- Anna Bienias
- Department of Plant Genetics, Breeding and Biotechnology, West Pomeranian University of Technology in Szczecin, Szczecin; ul, Słowackiego 17, 71-434 Szczecin, Poland
| | - Magdalena Góralska
- Department of Plant Genetics, Breeding and Biotechnology, West Pomeranian University of Technology in Szczecin, Szczecin; ul, Słowackiego 17, 71-434 Szczecin, Poland
| | - Piotr Masojć
- Department of Plant Genetics, Breeding and Biotechnology, West Pomeranian University of Technology in Szczecin, Szczecin; ul, Słowackiego 17, 71-434 Szczecin, Poland
| | - Paweł Milczarski
- Department of Plant Genetics, Breeding and Biotechnology, West Pomeranian University of Technology in Szczecin, Szczecin; ul, Słowackiego 17, 71-434 Szczecin, Poland
| | - Beata Myśków
- Department of Plant Genetics, Breeding and Biotechnology, West Pomeranian University of Technology in Szczecin, Szczecin; ul, Słowackiego 17, 71-434 Szczecin, Poland
| |
Collapse
|
5
|
Qu P, Shi J, Chen T, Chen K, Shen C, Wang J, Zhao X, Ye G, Xu J, Zhang L. Construction and integration of genetic linkage maps from three multi-parent advanced generation inter-cross populations in rice. RICE (NEW YORK, N.Y.) 2020; 13:13. [PMID: 32060661 PMCID: PMC7021868 DOI: 10.1186/s12284-020-0373-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 02/04/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND The construction of genetic maps based on molecular markers is a crucial step in rice genetic and genomic studies. Pure lines derived from multiple parents provide more abundant genetic variation than those from bi-parent populations. Two four-parent pure-line populations (4PL1 and 4PL2) and one eight-parent pure-line population (8PL) were developed from eight homozygous indica varieties of rice by the International Rice Research Institute (IRRI). To the best of our knowledge, there have been no reports on linkage map construction and their integration in multi-parent populations of rice. RESULTS We constructed linkage maps for the three multi-parent populations and conducted quantitative trait locus (QTL) mapping for heading date (HD) and plant height (PH) based on the three maps by inclusive composite interval mapping (ICIM). An integrated map was built from the three individual maps and used for QTL projection and meta-analysis. QTL mapping of the three populations was also conducted based on the integrated map, and the mapping results were compared with those from meta-analysis. The three linkage maps developed for 8PL, 4PL1 and 4PL2 had 5905, 4354 and 5464 bins and were 1290.16, 1720.01 and 1560.30 cM in length, respectively. The integrated map was 3022.08 cM in length and contained 10,033 bins. Based on the three linkage maps, 3, 7 and 9 QTLs were detected for HD while 6, 9 and 10 QTLs were detected for PH in 8PL, 4PL1 and 4PL2, respectively. In contrast, 19 and 25 QTLs were identified for HD and PH by meta-analysis using the integrated map, respectively. Based on the integrated map, 5, 9, and 10 QTLs were detected for HD while 3, 10, and 12 QTLs were detected for PH in 8PL, 4PL1 and 4PL2, respectively. Eleven of these 49 QTLs coincided with those from the meta-analysis. CONCLUSIONS In this study, we reported the first rice linkage map constructed from one eight-parent recombinant inbred line (RIL) population and the first integrated map from three multi-parent populations, which provide essential information for QTL linkage mapping, meta-analysis, and map-based cloning in rice genetics and breeding.
Collapse
Affiliation(s)
| | | | - Tianxiao Chen
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, 518210, China
| | - Kai Chen
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, 518210, China
| | - Congcong Shen
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, 518210, China
| | - Jiankang Wang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiangqian Zhao
- Institute of Crop Science and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, China
| | - Guoyou Ye
- Genetics and Biotechnology Division, International Rice Research Institute, Baños, Laguna, Philippines
| | - Jianlong Xu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Luyan Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
6
|
Tan YD, Zhang XHF, Mo Q. New statistical methods for estimation of recombination fractions in F 2 population. BMC Bioinformatics 2017; 18:404. [PMID: 28984187 PMCID: PMC5629630 DOI: 10.1186/s12859-017-1804-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background Dominant markers in an F2 population or a hybrid population have much less linkage information in repulsion phase than in coupling phase. Linkage analysis produces two separate complementary marker linkage maps that have little use in disease association analysis and breeding. There is a need to develop efficient statistical methods and computational algorithms to construct or merge a complete linkage dominant marker maps. The key for doing so is to efficiently estimate recombination fractions between dominant markers in repulsion phases. Result We proposed an expectation least square (ELS) algorithm and binomial analysis of three-point gametes (BAT) for estimating gamete frequencies from F2 dominant and codominant marker data, respectively. The results obtained from simulated and real genotype datasets showed that the ELS algorithm was able to accurately estimate frequencies of gametes and outperformed the EM algorithm in estimating recombination fractions between dominant loci and recovering true linkage maps of 6 dominant loci in coupling and unknown linkage phases. Our BAT method also had smaller variances in estimation of two-point recombination fractions than the EM algorithm. Conclusion ELS is a powerful method for accurate estimation of gamete frequencies in dominant three-locus system in an F2 population and BAT is a computationally efficient and fast method for estimating frequencies of three-point codominant gametes. Electronic supplementary material The online version of this article (10.1186/s12859-017-1804-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuan-De Tan
- Dan L. Ducan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Xiang H F Zhang
- Dan L. Ducan Cancer Center, Baylor College of Medicine, Houston, TX, USA. .,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA. .,McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Qianxing Mo
- Dan L. Ducan Cancer Center, Baylor College of Medicine, Houston, TX, USA. .,Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
7
|
|
8
|
Building Ultra-High-Density Linkage Maps Based on Efficient Filtering of Trustable Markers. Genetics 2017; 206:1285-1295. [PMID: 28512186 DOI: 10.1534/genetics.116.197491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 05/09/2017] [Indexed: 12/18/2022] Open
Abstract
The study is focused on addressing the problem of building genetic maps in the presence of ∼103-104 of markers per chromosome. We consider a spectrum of situations with intrachromosomal heterogeneity of recombination rate, different level of genotyping errors, and missing data. In the ideal scenario of the absence of errors and missing data, the majority of markers should appear as groups of cosegregating markers ("twins") representing no challenge for map construction. The central aspect of the proposed approach is to take into account the structure of the marker space, where each twin group (TG) and singleton markers are represented as points of this space. The confounding effect of genotyping errors and missing data leads to reduction of TG size, but upon a low level of these effects surviving TGs can still be used as a source of reliable skeletal markers. Increase in the level of confounding effects results in a considerable decrease in the number or even disappearance of usable TGs and, correspondingly, of skeletal markers. Here, we show that the paucity of informative markers can be compensated by detecting kernels of markers in the marker space using a clustering procedure, and demonstrate the utility of this approach for high-density genetic map construction on simulated and experimentally obtained genotyping datasets.
Collapse
|
9
|
Wang H, van Eeuwijk FA, Jansen J. The potential of probabilistic graphical models in linkage map construction. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:433-444. [PMID: 27921120 PMCID: PMC5263214 DOI: 10.1007/s00122-016-2824-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/03/2016] [Indexed: 06/06/2023]
Abstract
Probabilistic graphical models show great potential for robust and reliable construction of linkage maps. We show how to use probabilistic graphical models to construct high-quality linkage maps in the face of data perturbations caused by genotyping errors and reciprocal translocations. It has been shown that linkage map construction can be hampered by the presence of genotyping errors and chromosomal rearrangements such as inversions and translocations. Here, we report a novel method for linkage map construction using probabilistic graphical models. The method is proven, both theoretically and practically, to be effective in filtering out markers that contain genotyping errors. In particular, it carries out marker filtering and ordering simultaneously, and is therefore superior to the standard post hoc filtering using nearest-neighbour stress. Furthermore, we demonstrate empirically that the proposed method offers a promising solution to linkage map construction in the case of a reciprocal translocation.
Collapse
Affiliation(s)
- Huange Wang
- Biometris, Wageningen University and Research Centre, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.
| | - Fred A van Eeuwijk
- Biometris, Wageningen University and Research Centre, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Johannes Jansen
- Biometris, Wageningen University and Research Centre, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
10
|
Wen W, He Z, Gao F, Liu J, Jin H, Zhai S, Qu Y, Xia X. A High-Density Consensus Map of Common Wheat Integrating Four Mapping Populations Scanned by the 90K SNP Array. FRONTIERS IN PLANT SCIENCE 2017; 8:1389. [PMID: 28848588 PMCID: PMC5552701 DOI: 10.3389/fpls.2017.01389] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/25/2017] [Indexed: 05/04/2023]
Abstract
A high-density consensus map is a powerful tool for gene mapping, cloning and molecular marker-assisted selection in wheat breeding. The objective of this study was to construct a high-density, single nucleotide polymorphism (SNP)-based consensus map of common wheat (Triticum aestivum L.) by integrating genetic maps from four recombinant inbred line populations. The populations were each genotyped using the wheat 90K Infinium iSelect SNP assay. A total of 29,692 SNP markers were mapped on 21 linkage groups corresponding to 21 hexaploid wheat chromosomes, covering 2,906.86 cM, with an overall marker density of 10.21 markers/cM. Compared with the previous maps based on the wheat 90K SNP chip detected 22,736 (76.6%) of the SNPs with consistent chromosomal locations, whereas 1,974 (6.7%) showed different chromosomal locations, and 4,982 (16.8%) were newly mapped. Alignment of the present consensus map and the wheat expressed sequence tags (ESTs) Chromosome Bin Map enabled assignment of 1,221 SNP markers to specific chromosome bins and 819 ESTs were integrated into the consensus map. The marker orders of the consensus map were validated based on physical positions on the wheat genome with Spearman rank correlation coefficients ranging from 0.69 (4D) to 0.97 (1A, 4B, 5B, and 6A), and were also confirmed by comparison with genetic position on the previously 40K SNP consensus map with Spearman rank correlation coefficients ranging from 0.84 (6D) to 0.99 (6A). Chromosomal rearrangements reported previously were confirmed in the present consensus map and new putative rearrangements were identified. In addition, an integrated consensus map was developed through the combination of five published maps with ours, containing 52,607 molecular markers. The consensus map described here provided a high-density SNP marker map and a reliable order of SNPs, representing a step forward in mapping and validation of chromosomal locations of SNPs on the wheat 90K array. Moreover, it can be used as a reference for quantitative trait loci (QTL) mapping to facilitate exploitation of genes and QTL in wheat breeding.
Collapse
Affiliation(s)
- Weie Wen
- College of Agronomy, Xinjiang Agricultural UniversityUrumqi, China
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhonghu He
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
- International Maize and Wheat Improvement Center (CIMMYT)Beijing, China
| | - Fengmei Gao
- Crop Breeding Institute, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Jindong Liu
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Hui Jin
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Shengnan Zhai
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yanying Qu
- College of Agronomy, Xinjiang Agricultural UniversityUrumqi, China
- *Correspondence: Yanying Qu, Xianchun Xia,
| | - Xianchun Xia
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
- *Correspondence: Yanying Qu, Xianchun Xia,
| |
Collapse
|
11
|
Milczarski P, Hanek M, Tyrka M, Stojałowski S. The application of GBS markers for extending the dense genetic map of rye (Secale cereale L.) and the localization of the Rfc1 gene restoring male fertility in plants with the C source of sterility-inducing cytoplasm. J Appl Genet 2016; 57:439-451. [PMID: 27085345 PMCID: PMC5061839 DOI: 10.1007/s13353-016-0347-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/22/2016] [Accepted: 03/27/2016] [Indexed: 11/28/2022]
Abstract
Genotyping by sequencing (GBS) is an efficient method of genotyping in numerous plant species. One of the crucial steps toward the application of GBS markers in crop improvement is anchoring them on particular chromosomes. In rye (Secale cereale L.), chromosomal localization of GBS markers has not yet been reported. In this paper, the application of GBS markers generated by the DArTseq platform for extending the high-density map of rye is presented. Additionally, their application is used for the localization of the Rfc1 gene that restores male fertility in plants with the C source of sterility-inducing cytoplasm. The total number of markers anchored on the current version of the map is 19,081, of which 18,132 were obtained from the DArTseq platform. Numerous markers co-segregated within the studied mapping population, so, finally, only 3397 unique positions were located on the map of all seven rye chromosomes. The total length of the map is 1593 cM and the average distance between markers is 0.47 cM. In spite of the resolution of the map being not very high, it should be a useful tool for further studies of the Secale cereale genome because of the presence on this map of numerous GBS markers anchored for the first time on rye chromosomes. The Rfc1 gene was located on high-density maps of the long arm of the 4R chromosome obtained for two mapping populations. Genetic maps were composed of DArT, DArTseq, and PCR-based markers. Consistent mapping results were obtained and DArTs tightly linked to the Rfc1 gene were successfully applied for the development of six new PCR-based markers useful in marker-assisted selection.
Collapse
Affiliation(s)
- Paweł Milczarski
- Department of Plant Genetics, Breeding and Biotechnology, West Pomeranian University of Technology in Szczecin, Słowackiego 17, 71-434, Szczecin, Poland
| | - Monika Hanek
- Department of Plant Genetics, Breeding and Biotechnology, West Pomeranian University of Technology in Szczecin, Słowackiego 17, 71-434, Szczecin, Poland
| | - Mirosław Tyrka
- Department of Biochemistry and Biotechnology, Rzeszów University of Technology, Powstańców Warszawy 6, 35-959, Rzeszów, Poland
| | - Stefan Stojałowski
- Department of Plant Genetics, Breeding and Biotechnology, West Pomeranian University of Technology in Szczecin, Słowackiego 17, 71-434, Szczecin, Poland.
| |
Collapse
|
12
|
Di Pierro EA, Gianfranceschi L, Di Guardo M, Koehorst-van Putten HJJ, Kruisselbrink JW, Longhi S, Troggio M, Bianco L, Muranty H, Pagliarani G, Tartarini S, Letschka T, Lozano Luis L, Garkava-Gustavsson L, Micheletti D, Bink MCAM, Voorrips RE, Aziz E, Velasco R, Laurens F, van de Weg WE. A high-density, multi-parental SNP genetic map on apple validates a new mapping approach for outcrossing species. HORTICULTURE RESEARCH 2016; 3:16057. [PMID: 27917289 PMCID: PMC5120355 DOI: 10.1038/hortres.2016.57] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 10/25/2016] [Accepted: 10/25/2016] [Indexed: 05/18/2023]
Abstract
Quantitative trait loci (QTL) mapping approaches rely on the correct ordering of molecular markers along the chromosomes, which can be obtained from genetic linkage maps or a reference genome sequence. For apple (Malus domestica Borkh), the genome sequence v1 and v2 could not meet this need; therefore, a novel approach was devised to develop a dense genetic linkage map, providing the most reliable marker-loci order for the highest possible number of markers. The approach was based on four strategies: (i) the use of multiple full-sib families, (ii) the reduction of missing information through the use of HaploBlocks and alternative calling procedures for single-nucleotide polymorphism (SNP) markers, (iii) the construction of a single backcross-type data set including all families, and (iv) a two-step map generation procedure based on the sequential inclusion of markers. The map comprises 15 417 SNP markers, clustered in 3 K HaploBlock markers spanning 1 267 cM, with an average distance between adjacent markers of 0.37 cM and a maximum distance of 3.29 cM. Moreover, chromosome 5 was oriented according to its homoeologous chromosome 10. This map was useful to improve the apple genome sequence, design the Axiom Apple 480 K SNP array and perform multifamily-based QTL studies. Its collinearity with the genome sequences v1 and v3 are reported. To our knowledge, this is the shortest published SNP map in apple, while including the largest number of markers, families and individuals. This result validates our methodology, proving its value for the construction of integrated linkage maps for any outbreeding species.
Collapse
Affiliation(s)
| | | | - Mario Di Guardo
- Plant Breeding, Wageningen University and Research, Wageningen 6700AJ, The Netherlands
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige 38010, Italy
| | | | | | - Sara Longhi
- Plant Breeding, Wageningen University and Research, Wageningen 6700AJ, The Netherlands
| | - Michela Troggio
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige 38010, Italy
| | - Luca Bianco
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige 38010, Italy
| | - Hélène Muranty
- IRHS, INRA, AGROCAMPUS-Ouest, Université d’Angers, SFR 4207 QUASAV, Beaucouzé 49071, France
| | - Giulia Pagliarani
- Department of Agricultural Sciences, University of Bologna, Bologna 40127, Italy
| | - Stefano Tartarini
- Department of Agricultural Sciences, University of Bologna, Bologna 40127, Italy
| | - Thomas Letschka
- Department of Molecular Biology, Laimburg Research Centre for Agriculture and Forestry, Ora 39040, Italy
| | - Lidia Lozano Luis
- Department of Molecular Biology, Laimburg Research Centre for Agriculture and Forestry, Ora 39040, Italy
| | | | - Diego Micheletti
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige 38010, Italy
| | - Marco CAM Bink
- Biometris, Wageningen University and Research, Wageningen 6700AA, The Netherlands
| | - Roeland E Voorrips
- Plant Breeding, Wageningen University and Research, Wageningen 6700AJ, The Netherlands
| | - Ebrahimi Aziz
- Plant Breeding, Wageningen University and Research, Wageningen 6700AJ, The Netherlands
| | - Riccardo Velasco
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige 38010, Italy
| | - François Laurens
- IRHS, INRA, AGROCAMPUS-Ouest, Université d’Angers, SFR 4207 QUASAV, Beaucouzé 49071, France
| | - W Eric van de Weg
- Plant Breeding, Wageningen University and Research, Wageningen 6700AJ, The Netherlands
- ()
| |
Collapse
|
13
|
Bartholomé J, Mandrou E, Mabiala A, Jenkins J, Nabihoudine I, Klopp C, Schmutz J, Plomion C, Gion JM. High-resolution genetic maps of Eucalyptus improve Eucalyptus grandis genome assembly. THE NEW PHYTOLOGIST 2015; 206:1283-96. [PMID: 25385325 DOI: 10.1111/nph.13150] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/29/2014] [Indexed: 05/21/2023]
Abstract
Genetic maps are key tools in genetic research as they constitute the framework for many applications, such as quantitative trait locus analysis, and support the assembly of genome sequences. The resequencing of the two parents of a cross between Eucalyptus urophylla and Eucalyptus grandis was used to design a single nucleotide polymorphism (SNP) array of 6000 markers evenly distributed along the E. grandis genome. The genotyping of 1025 offspring enabled the construction of two high-resolution genetic maps containing 1832 and 1773 markers with an average marker interval of 0.45 and 0.5 cM for E. grandis and E. urophylla, respectively. The comparison between genetic maps and the reference genome highlighted 85% of collinear regions. A total of 43 noncollinear regions and 13 nonsynthetic regions were detected and corrected in the new genome assembly. This improved version contains 4943 scaffolds totalling 691.3 Mb of which 88.6% were captured by the 11 chromosomes. The mapping data were also used to investigate the effect of population size and number of markers on linkage mapping accuracy. This study provides the most reliable linkage maps for Eucalyptus and version 2.0 of the E. grandis genome.
Collapse
Affiliation(s)
- Jérôme Bartholomé
- CIRAD, UMR AGAP, F-33612, Cestas, France
- INRA, UMR1202 BIOGECO, F-33610, Cestas, France
- BIOGECO, UMR 1202, Univ. Bordeaux, F-33600, Pessac, France
| | - Eric Mandrou
- INRA, UMR1202 BIOGECO, F-33610, Cestas, France
- BIOGECO, UMR 1202, Univ. Bordeaux, F-33600, Pessac, France
- Plate-forme Bio-informatique Genotoul, INRA, Biométrie et Intelligence Artificielle, BP 52627, 31326, Castanet-Tolosan Cedex, France
| | | | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35801, USA
| | - Ibouniyamine Nabihoudine
- Plate-forme Bio-informatique Genotoul, INRA, Biométrie et Intelligence Artificielle, BP 52627, 31326, Castanet-Tolosan Cedex, France
| | - Christophe Klopp
- Plate-forme Bio-informatique Genotoul, INRA, Biométrie et Intelligence Artificielle, BP 52627, 31326, Castanet-Tolosan Cedex, France
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35801, USA
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Christophe Plomion
- INRA, UMR1202 BIOGECO, F-33610, Cestas, France
- BIOGECO, UMR 1202, Univ. Bordeaux, F-33600, Pessac, France
| | - Jean-Marc Gion
- CIRAD, UMR AGAP, F-33612, Cestas, France
- INRA, UMR1202 BIOGECO, F-33610, Cestas, France
- BIOGECO, UMR 1202, Univ. Bordeaux, F-33600, Pessac, France
| |
Collapse
|
14
|
Fast and accurate construction of ultra-dense consensus genetic maps using evolution strategy optimization. PLoS One 2015; 10:e0122485. [PMID: 25867943 PMCID: PMC4395089 DOI: 10.1371/journal.pone.0122485] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/22/2015] [Indexed: 11/19/2022] Open
Abstract
Our aim was to develop a fast and accurate algorithm for constructing consensus genetic maps for chip-based SNP genotyping data with a high proportion of shared markers between mapping populations. Chip-based genotyping of SNP markers allows producing high-density genetic maps with a relatively standardized set of marker loci for different mapping populations. The availability of a standard high-throughput mapping platform simplifies consensus analysis by ignoring unique markers at the stage of consensus mapping thereby reducing mathematical complicity of the problem and in turn analyzing bigger size mapping data using global optimization criteria instead of local ones. Our three-phase analytical scheme includes automatic selection of ~100-300 of the most informative (resolvable by recombination) markers per linkage group, building a stable skeletal marker order for each data set and its verification using jackknife re-sampling, and consensus mapping analysis based on global optimization criterion. A novel Evolution Strategy optimization algorithm with a global optimization criterion presented in this paper is able to generate high quality, ultra-dense consensus maps, with many thousands of markers per genome. This algorithm utilizes "potentially good orders" in the initial solution and in the new mutation procedures that generate trial solutions, enabling to obtain a consensus order in reasonable time. The developed algorithm, tested on a wide range of simulated data and real world data (Arabidopsis), outperformed two tested state-of-the-art algorithms by mapping accuracy and computation time.
Collapse
|
15
|
Tang H, Zhang X, Miao C, Zhang J, Ming R, Schnable JC, Schnable PS, Lyons E, Lu J. ALLMAPS: robust scaffold ordering based on multiple maps. Genome Biol 2015; 16:3. [PMID: 25583564 PMCID: PMC4305236 DOI: 10.1186/s13059-014-0573-1] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 12/15/2014] [Indexed: 11/29/2022] Open
Abstract
The ordering and orientation of genomic scaffolds to reconstruct chromosomes is an essential step during de novo genome assembly. Because this process utilizes various mapping techniques that each provides an independent line of evidence, a combination of multiple maps can improve the accuracy of the resulting chromosomal assemblies. We present ALLMAPS, a method capable of computing a scaffold ordering that maximizes colinearity across a collection of maps. ALLMAPS is robust against common mapping errors, and generates sequences that are maximally concordant with the input maps. ALLMAPS is a useful tool in building high-quality genome assemblies. ALLMAPS is available at: https://github.com/tanghaibao/jcvi/wiki/ALLMAPS.
Collapse
Affiliation(s)
- Haibao Tang
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China. .,School of Plant Sciences, iPlant Collaborative, University of Arizona, Tucson, AZ, 85721, USA. .,Data2Bio LLC, 2079 Roy J. Carver Co-Lab, Ames, Iowa, 50011, USA.
| | - Xingtan Zhang
- J. Craig Venter Institute, 9704 Medical Center Dr, Rockville, MD, 20850, USA.
| | - Chenyong Miao
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China.
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China.
| | - Ray Ming
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China.
| | - James C Schnable
- Data2Bio LLC, 2079 Roy J. Carver Co-Lab, Ames, Iowa, 50011, USA. .,Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68588, USA.
| | - Patrick S Schnable
- Data2Bio LLC, 2079 Roy J. Carver Co-Lab, Ames, Iowa, 50011, USA. .,Department of Agronomy, Iowa State University, Ames, IA, 50011, USA.
| | - Eric Lyons
- School of Plant Sciences, iPlant Collaborative, University of Arizona, Tucson, AZ, 85721, USA.
| | - Jianguo Lu
- Heilongjiang River Fisheries Research Institute, Harbin, 150070, China.
| |
Collapse
|
16
|
Li Y, Liu S, Qin Z, Waldbieser G, Wang R, Sun L, Bao L, Danzmann RG, Dunham R, Liu Z. Construction of a high-density, high-resolution genetic map and its integration with BAC-based physical map in channel catfish. DNA Res 2014; 22:39-52. [PMID: 25428894 PMCID: PMC4379976 DOI: 10.1093/dnares/dsu038] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Construction of genetic linkage map is essential for genetic and genomic studies. Recent advances in sequencing and genotyping technologies made it possible to generate high-density and high-resolution genetic linkage maps, especially for the organisms lacking extensive genomic resources. In the present work, we constructed a high-density and high-resolution genetic map for channel catfish with three large resource families genotyped using the catfish 250K single-nucleotide polymorphism (SNP) array. A total of 54,342 SNPs were placed on the linkage map, which to our knowledge had the highest marker density among aquaculture species. The estimated genetic size was 3,505.4 cM with a resolution of 0.22 cM for sex-averaged genetic map. The sex-specific linkage maps spanned a total of 4,495.1 cM in females and 2,593.7 cM in males, presenting a ratio of 1.7 : 1 between female and male in recombination fraction. After integration with the previously established physical map, over 87% of physical map contigs were anchored to the linkage groups that covered a physical length of 867 Mb, accounting for ∼90% of the catfish genome. The integrated map provides a valuable tool for validating and improving the catfish whole-genome assembly and facilitates fine-scale QTL mapping and positional cloning of genes responsible for economically important traits.
Collapse
Affiliation(s)
- Yun Li
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Zhenkui Qin
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Geoff Waldbieser
- USDA-ARS Warmwater Aquaculture Research Unit, Stoneville, MS 38776, USA
| | - Ruijia Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Luyang Sun
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Lisui Bao
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Roy G Danzmann
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
17
|
Maccaferri M, Cane' MA, Sanguineti MC, Salvi S, Colalongo MC, Massi A, Clarke F, Knox R, Pozniak CJ, Clarke JM, Fahima T, Dubcovsky J, Xu S, Ammar K, Karsai I, Vida G, Tuberosa R. A consensus framework map of durum wheat (Triticum durum Desf.) suitable for linkage disequilibrium analysis and genome-wide association mapping. BMC Genomics 2014; 15:873. [PMID: 25293821 PMCID: PMC4287192 DOI: 10.1186/1471-2164-15-873] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 09/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Durum wheat (Triticum durum Desf.) is a tetraploid cereal grown in the medium to low-precipitation areas of the Mediterranean Basin, North America and South-West Asia. Genomics applications in durum wheat have the potential to boost exploitation of genetic resources and to advance understanding of the genetics of important complex traits (e.g. resilience to environmental and biotic stresses). A dense and accurate consensus map specific for T. durum will greatly facilitate genetic mapping, functional genomics and marker-assisted improvement. RESULTS High quality genotypic data from six core recombinant inbred line populations were used to obtain a consensus framework map of 598 simple sequence repeats (SSR) and Diversity Array Technology® (DArT) anchor markers (common across populations). Interpolation of unique markers from 14 maps allowed us to position a total of 2,575 markers in a consensus map of 2,463 cM. The T. durum A and B genomes were covered in their near totality based on the reference SSR hexaploid wheat map. The consensus locus order compared to those of the single component maps showed good correspondence, (average Spearman's rank correlation rho ρ value of 0.96). Differences in marker order and local recombination rate were observed between the durum and hexaploid wheat consensus maps. The consensus map was used to carry out a whole-genome search for genetic differentiation signatures and association to heading date in a panel of 183 accessions adapted to the Mediterranean areas. Linkage disequilibrium was found to decay below the r2 threshold=0.3 within 2.20 cM, on average. Strong molecular differentiations among sub-populations were mapped to 87 chromosome regions. A genome-wide association scan for heading date from 27 field trials in the Mediterranean Basin and in Mexico yielded 50 chromosome regions with evidences of association in multiple environments. CONCLUSIONS The consensus map presented here was used as a reference for genetic diversity and mapping analyses in T. durum, providing nearly complete genome coverage and even marker density. Markers previously mapped in hexaploid wheat constitute a strong link between the two species. The consensus map provides the basis for high-density single nucleotide polymorphic (SNP) marker implementation in durum wheat.
Collapse
Affiliation(s)
- Marco Maccaferri
- Department of Agricultural Sciences (DipSA), Viale Fanin 44, University of Bologna, 40127 Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yu LX, Barbier H, Rouse MN, Singh S, Singh RP, Bhavani S, Huerta-Espino J, Sorrells ME. A consensus map for Ug99 stem rust resistance loci in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1561-81. [PMID: 24903979 PMCID: PMC4072096 DOI: 10.1007/s00122-014-2326-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 05/05/2014] [Indexed: 05/07/2023]
Abstract
This consensus map of stem rust genes, QTLs, and molecular markers will facilitate the identification of new resistance genes and provide a resource of in formation for development of new markers for breeding wheat varieties resistant to Ug99. The global effort to identify new sources of resistance to wheat stem rust, caused by Puccinia graminis f. sp. tritici race group Ug99 has resulted in numerous studies reporting both qualitative genes and quantitative trait loci. The purpose of our study was to assemble all available information on loci associated with stem rust resistance from 21 recent studies on Triticum aestivum L. (bread wheat) and Triticum turgidum subsp. durum desf. (durum wheat). The software LPmerge was used to construct a stem rust resistance loci consensus wheat map with 1,433 markers incorporating Single Nucleotide Polymorphism, Diversity Arrays Technology, Genotyping-by-Sequencing as well as Simple Sequence Repeat marker information. Most of the markers associated with stem rust resistance have been identified in more than one population. Several loci identified in these populations map to the same regions with known Sr genes including Sr2, SrND643, Sr25 and Sr57 (Lr34/Yr18/Pm38), while other significant markers were located in chromosome regions where no Sr genes have been previously reported. This consensus map provides a comprehensive source of information on 141 stem rust resistance loci conferring resistance to stem rust Ug99 as well as linked markers for use in marker-assisted selection.
Collapse
Affiliation(s)
- Long-Xi Yu
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853 USA
- Present Address: United States Department of Agriculture, Agricultural Research Service, Vegetable and Forage Crops Research Unit, 24106 N. Bunn Road, Prosser, WA 99350–9687 USA
| | - Hugues Barbier
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853 USA
| | - Matthew N. Rouse
- United States Department of Agriculture, Agricultural Research Service, Cereal Disease Laboratory and Department of Plant Pathology, University of Minnesota, St. Paul, Minneapolis, MN 55108 USA
| | - Sukhwinder Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Texcoco, Mexico
| | - Ravi P. Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Texcoco, Mexico
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Texcoco, Mexico
| | - Julio Huerta-Espino
- Campo Experimental Valle de México INIFAP, Apdo. Postal 10, 56230 Chapingo, Edo de México Mexico
| | - Mark E. Sorrells
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
19
|
Endelman JB, Plomion C. LPmerge: an R package for merging genetic maps by linear programming. Bioinformatics 2014; 30:1623-4. [DOI: 10.1093/bioinformatics/btu091] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
20
|
Breen J, Wicker T, Shatalina M, Frenkel Z, Bertin I, Philippe R, Spielmeyer W, Šimková H, Šafář J, Cattonaro F, Scalabrin S, Magni F, Vautrin S, Bergès H, Paux E, Fahima T, Doležel J, Korol A, Feuillet C, Keller B. A physical map of the short arm of wheat chromosome 1A. PLoS One 2013; 8:e80272. [PMID: 24278269 PMCID: PMC3836966 DOI: 10.1371/journal.pone.0080272] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 10/11/2013] [Indexed: 12/31/2022] Open
Abstract
Bread wheat (Triticum aestivum) has a large and highly repetitive genome which poses major technical challenges for its study. To aid map-based cloning and future genome sequencing projects, we constructed a BAC-based physical map of the short arm of wheat chromosome 1A (1AS). From the assembly of 25,918 high information content (HICF) fingerprints from a 1AS-specific BAC library, 715 physical contigs were produced that cover almost 99% of the estimated size of the chromosome arm. The 3,414 BAC clones constituting the minimum tiling path were end-sequenced. Using a gene microarray containing ∼40 K NCBI UniGene EST clusters, PCR marker screening and BAC end sequences, we arranged 160 physical contigs (97 Mb or 35.3% of the chromosome arm) in a virtual order based on synteny with Brachypodium, rice and sorghum. BAC end sequences and information from microarray hybridisation was used to anchor 3.8 Mbp of Illumina sequences from flow-sorted chromosome 1AS to BAC contigs. Comparison of genetic and synteny-based physical maps indicated that ∼50% of all genetic recombination is confined to 14% of the physical length of the chromosome arm in the distal region. The 1AS physical map provides a framework for future genetic mapping projects as well as the basis for complete sequencing of chromosome arm 1AS.
Collapse
Affiliation(s)
- James Breen
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | - Thomas Wicker
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | | | - Zeev Frenkel
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Isabelle Bertin
- INRA UMR 1095, Genetique Diversite et Ecophysiologie des Cereales, Clermont-Ferrand, France
| | - Romain Philippe
- INRA UMR 1095, Genetique Diversite et Ecophysiologie des Cereales, Clermont-Ferrand, France
| | | | - Hana Šimková
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Jan Šafář
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | | | | | | | | | | | | | - Etienne Paux
- INRA UMR 1095, Genetique Diversite et Ecophysiologie des Cereales, Clermont-Ferrand, France
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Jaroslav Doležel
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Abraham Korol
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Catherine Feuillet
- INRA UMR 1095, Genetique Diversite et Ecophysiologie des Cereales, Clermont-Ferrand, France
| | - Beat Keller
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
21
|
Jairin J, Kobayashi T, Yamagata Y, Sanada-Morimura S, Mori K, Tashiro K, Kuhara S, Kuwazaki S, Urio M, Suetsugu Y, Yamamoto K, Matsumura M, Yasui H. A simple sequence repeat- and single-nucleotide polymorphism-based genetic linkage map of the brown planthopper, Nilaparvata lugens. DNA Res 2012. [PMID: 23204257 PMCID: PMC3576655 DOI: 10.1093/dnares/dss030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we developed the first genetic linkage map for the major rice insect pest, the brown planthopper (BPH, Nilaparvata lugens). The linkage map was constructed by integrating linkage data from two backcross populations derived from three inbred BPH strains. The consensus map consists of 474 simple sequence repeats, 43 single-nucleotide polymorphisms, and 1 sequence-tagged site, for a total of 518 markers at 472 unique positions in 17 linkage groups. The linkage groups cover 1093.9 cM, with an average distance of 2.3 cM between loci. The average number of marker loci per linkage group was 27.8. The sex-linkage group was identified by exploiting X-linked and Y-specific markers. Our linkage map and the newly developed markers used to create it constitute an essential resource and a useful framework for future genetic analyses in BPH.
Collapse
Affiliation(s)
- Jirapong Jairin
- Ubon Ratchathani Rice Research Center, PO Box 65, Muang, Ubon Ratchathani 34000, Thailand
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|