1
|
Zaghet N, Madsen K, Rossi F, Perez DF, Amendola PG, Demharter S, Pfisterer U, Khodosevich K, Pasini D, Salcini AE. Coordinated maintenance of H3K36/K27 methylation by histone demethylases preserves germ cell identity and immortality. Cell Rep 2021; 37:110050. [PMID: 34818537 PMCID: PMC8640224 DOI: 10.1016/j.celrep.2021.110050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/18/2021] [Accepted: 11/02/2021] [Indexed: 12/01/2022] Open
Abstract
Germ cells have evolved unique mechanisms to ensure the transmission of genetically and nongenetically encoded information, whose alteration compromises germ cell immortality. Chromatin factors play fundamental roles in these mechanisms. H3K36 and H3K27 methyltransferases shape and propagate a pattern of histone methylation essential for C. elegans germ cell maintenance, but the role of respective histone demethylases remains unexplored. Here, we show that jmjd-5 regulates H3K36me2 and H3K27me3 levels, preserves germline immortality, and protects germ cell identity by controlling gene expression. The transcriptional and biological effects of jmjd-5 loss can be hindered by the removal of H3K27demethylases, indicating that H3K36/K27 demethylases act in a transcriptional framework and promote the balance between H3K36 and H3K27 methylation required for germ cell immortality. Furthermore, we find that in wild-type, but not in jmjd-5 mutants, alterations of H3K36 methylation and transcription occur at high temperature, suggesting a role for jmjd-5 in adaptation to environmental changes. jmjd-5 is required for germ cell immortality at high temperature jmjd-5 sustains the expression of germline genes and represses somatic fate Mutations in jmjd-5 result in a global increase of H3K36me2 and H3K27me3 Ablation of H3K27 demethylases counteracts the effects of jmjd-5 mutations
Collapse
Affiliation(s)
- Nico Zaghet
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes vej 5, Copenhagen DK-2200, Denmark
| | - Katrine Madsen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes vej 5, Copenhagen DK-2200, Denmark
| | - Federico Rossi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Daniel Fernandez Perez
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Pier Giorgio Amendola
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes vej 5, Copenhagen DK-2200, Denmark
| | - Samuel Demharter
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes vej 5, Copenhagen DK-2200, Denmark
| | - Ulrich Pfisterer
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes vej 5, Copenhagen DK-2200, Denmark
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes vej 5, Copenhagen DK-2200, Denmark
| | - Diego Pasini
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy; Department of Health Sciences, University of Milan, Via A. di Rudini 8, 20142 Milan, Italy
| | - Anna Elisabetta Salcini
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes vej 5, Copenhagen DK-2200, Denmark.
| |
Collapse
|
2
|
Özdemir I, Steiner FA. Transmission of chromatin states across generations in C. elegans. Semin Cell Dev Biol 2021; 127:133-141. [PMID: 34823984 DOI: 10.1016/j.semcdb.2021.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/18/2022]
Abstract
Epigenetic inheritance refers to the transmission of phenotypes across generations without affecting the genomic DNA sequence. Even though it has been documented in many species in fungi, animals and plants, the mechanisms underlying epigenetic inheritance are not fully uncovered. Epialleles, the heritable units of epigenetic information, can take the form of several biomolecules, including histones and their post-translational modifications (PTMs). Here, we review the recent advances in the understanding of the transmission of histone variants and histone PTM patterns across generations in C. elegans. We provide a general overview of the intergenerational and transgenerational inheritance of histone PTMs and their modifiers and discuss the interplay among different histone PTMs. We also evaluate soma-germ line communication and its impact on the inheritance of epigenetic traits.
Collapse
Affiliation(s)
- Isa Özdemir
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Florian A Steiner
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
3
|
Vorster PJ, Goetsch P, Wijeratne TU, Guiley KZ, Andrejka L, Tripathi S, Larson BJ, Rubin SM, Strome S, Lipsick JS. A long lost key opens an ancient lock: Drosophila Myb causes a synthetic multivulval phenotype in nematodes. Biol Open 2020; 9:bio051508. [PMID: 32295830 PMCID: PMC7225089 DOI: 10.1242/bio.051508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/05/2020] [Indexed: 01/14/2023] Open
Abstract
The five-protein MuvB core complex is highly conserved in animals. This nuclear complex interacts with RB-family tumor suppressor proteins and E2F-DP transcription factors to form DREAM complexes that repress genes that regulate cell cycle progression and cell fate. The MuvB core complex also interacts with Myb family oncoproteins to form the Myb-MuvB complexes that activate many of the same genes. We show that animal-type Myb genes are present in Bilateria, Cnidaria and Placozoa, the latter including the simplest known animal species. However, bilaterian nematode worms lost their animal-type Myb genes hundreds of millions of years ago. Nevertheless, amino acids in the LIN9 and LIN52 proteins that directly interact with the MuvB-binding domains of human B-Myb and Drosophila Myb are conserved in Caenorhabditiselegans Here, we show that, despite greater than 500 million years since their last common ancestor, the Drosophila melanogaster Myb protein can bind to the nematode LIN9-LIN52 proteins in vitro and can cause a synthetic multivulval (synMuv) phenotype in vivo This phenotype is similar to that caused by loss-of-function mutations in C. elegans synMuvB-class genes including those that encode homologs of the MuvB core, RB, E2F and DP. Furthermore, amino acid substitutions in the MuvB-binding domain of Drosophila Myb that disrupt its functions in vitro and in vivo also disrupt these activities in C. elegans We speculate that nematodes and other animals may contain another protein that can bind to LIN9 and LIN52 in order to activate transcription of genes repressed by DREAM complexes.
Collapse
Affiliation(s)
- Paul J Vorster
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| | - Paul Goetsch
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Tilini U Wijeratne
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Keelan Z Guiley
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Laura Andrejka
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| | - Sarvind Tripathi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Braden J Larson
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Susan Strome
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Joseph S Lipsick
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| |
Collapse
|
4
|
Lee CYS, Lu T, Seydoux G. Nanos promotes epigenetic reprograming of the germline by down-regulation of the THAP transcription factor LIN-15B. eLife 2017; 6:30201. [PMID: 29111977 PMCID: PMC5734877 DOI: 10.7554/elife.30201] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/06/2017] [Indexed: 12/15/2022] Open
Abstract
Nanos RNA-binding proteins are required for germline development in metazoans, but the underlying mechanisms remain poorly understood. We have profiled the transcriptome of primordial germ cells (PGCs) lacking the nanos homologs nos-1 and nos-2 in C. elegans. nos-1nos-2 PGCs fail to silence hundreds of transcripts normally expressed in oocytes. We find that this misregulation is due to both delayed turnover of maternal transcripts and inappropriate transcriptional activation. The latter appears to be an indirect consequence of delayed turnover of the maternally-inherited transcription factor LIN-15B, a synMuvB class transcription factor known to antagonize PRC2 activity. PRC2 is required for chromatin reprogramming in the germline, and the transcriptome of PGCs lacking PRC2 resembles that of nos-1nos-2 PGCs. Loss of maternal LIN-15B restores fertility to nos-1nos-2 mutants. These findings suggest that Nanos promotes germ cell fate by downregulating maternal RNAs and proteins that would otherwise interfere with PRC2-dependent reprogramming of PGC chromatin.
Collapse
Affiliation(s)
- Chih-Yung Sean Lee
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Tu Lu
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Geraldine Seydoux
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
5
|
Cheng MH, Andrejka L, Vorster PJ, Hinman A, Lipsick JS. The Drosophila LIN54 homolog Mip120 controls two aspects of oogenesis. Biol Open 2017; 6:967-978. [PMID: 28522430 PMCID: PMC5550918 DOI: 10.1242/bio.025825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The conserved multi-protein MuvB core associates with the Myb oncoproteins and with the RB-E2F-DP tumor suppressor proteins in complexes that regulate cell proliferation, differentiation, and apoptosis. Drosophila Mip120, a homolog of LIN54, is a sequence-specific DNA-binding protein within the MuvB core. A mutant of Drosophilamip120 was previously shown to cause female and male sterility. We now show that Mip120 regulates two different aspects of oogenesis. First, in the absence of the Mip120 protein, egg chambers arrest during the transition from stage 7 to 8 with a failure of the normal program of chromosomal dynamics in the ovarian nurse cells. Specifically, the decondensation, disassembly and dispersion of the endoreplicated polytene chromosomes fail to occur without Mip120. The conserved carboxy-terminal DNA-binding and protein-protein interaction domains of Mip120 are necessary but not sufficient for this process. Second, we show that a lack of Mip120 causes a dramatic increase in the expression of benign gonial cell neoplasm (bgcn), a gene that is normally expressed in only a small number of cells within the ovary including the germline stem cells. Summary:Drosophila Mip120/LIN54, regulates ovarian nurse cell chromosome disassembly and germline-specific gene expression. These functions of Mip120 require its less conserved N-terminus in addition to its CXC DNA-binding and HCH protein-interaction domains.
Collapse
Affiliation(s)
- Mei-Hsin Cheng
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| | - Laura Andrejka
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| | - Paul J Vorster
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| | - Albert Hinman
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| | - Joseph S Lipsick
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| |
Collapse
|
6
|
Abstract
The E2F family of transcription factors is a key determinant of cell proliferation in response to extra- and intra-cellular signals. Within this family, E2F4 is a transcriptional repressor whose activity is critical to engage and maintain cell cycle arrest in G0/G1 in conjunction with members of the retinoblastoma (RB) family. However, recent observations challenge this paradigm and indicate that E2F4 has a multitude of functions in cells besides this cell cycle regulatory role, including in embryonic and adult stem cells, during regenerative processes, and in cancer. Some of these new functions are independent of the RB family and involve direct activation of target genes. Here we review the canonical functions of E2F4 and discuss recent evidence expanding the role of this transcription factor, with a focus on cell fate decisions in tissue homeostasis and regeneration.
Collapse
Affiliation(s)
- Jenny Hsu
- a Departments of Pediatrics and Genetics , Stanford University , Stanford , CA , USA
| | - Julien Sage
- a Departments of Pediatrics and Genetics , Stanford University , Stanford , CA , USA
| |
Collapse
|
7
|
Jiang J, Lau AC, Csankovszki G. Pluripotent cells will not dosage compensate. WORM 2014; 3:e29051. [PMID: 25254152 DOI: 10.4161/worm.29051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/17/2014] [Accepted: 04/28/2014] [Indexed: 11/19/2022]
Abstract
Dosage compensation is the mechanism that balances gene expression levels between males and females as well as between the X chromosome and autosomes. In mammals, loss of pluripotency and differentiation are closely linked with the onset of dosage compensation. Pluripotency factors negatively regulate Xist (the non-coding RNA that triggers X chromosome inactivation) and positively regulate Tsix, a repressor of Xist, to inhibit dosage compensation. In addition, X chromosome dose also regulates exit from the pluripotent state. A double dose of X chromosomes in undifferentiated female cells inhibits the MAPK and Gsk3 signaling pathways and activates the Akt pathway, thereby blocking differentiation. Here we review our recent report, which showed that the onset of dosage compensation is also linked to the loss of pluripotency in C. elegans. We discuss these findings in light of what is known about pluripotency and differentiation in this organism.
Collapse
Affiliation(s)
- Jianhao Jiang
- Department of Molecular, Cellular and Developmental Biology; University of Michigan; Ann Arbor, MI USA
| | - Alyssa C Lau
- Department of Molecular, Cellular and Developmental Biology; University of Michigan; Ann Arbor, MI USA
| | - Györgyi Csankovszki
- Department of Molecular, Cellular and Developmental Biology; University of Michigan; Ann Arbor, MI USA
| |
Collapse
|