1
|
Chen Y, Gao Y, Huang X, Li S, Zhan A. Local environment-driven adaptive evolution in a marine invasive ascidian ( Molgula manhattensis). Ecol Evol 2021; 11:4252-4266. [PMID: 33976808 PMCID: PMC8093682 DOI: 10.1002/ece3.7322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/04/2022] Open
Abstract
Elucidating molecular mechanisms of environment-driven adaptive evolution in marine invaders is crucial for understanding invasion success and further predicting their future invasions. Although increasing evidence suggests that adaptive evolution could contribute to organisms' adaptation to varied environments, there remain knowledge gaps regarding how environments influence genomic variation in invaded habitats and genetic bases underlying local adaptation for most marine invaders. Here, we performed restriction-site-associated DNA sequencing (RADseq) to assess population genetic diversity and further investigate genomic signatures of local adaptation in the marine invasive ascidian, Molgula manhattensis. We revealed that most invasive populations exhibited significant genetic differentiation, low recent gene flow, and no signal of significant population bottleneck. Based on three genome scan approaches, we identified 109 candidate loci potentially under environmental selection. Redundancy analysis and variance partitioning analysis suggest that local environmental factors, particularly the salinity-related variables, represent crucial evolutionary forces in driving adaptive divergence. Using the newly developed transcriptome as a reference, 14 functional genes were finally obtained with potential roles in salinity adaptation, including SLC5A1 and SLC9C1 genes from the solute carrier gene (SLC) superfamily. Our findings confirm that differed local environments could rapidly drive adaptive divergence among invasive populations and leave detectable genomic signatures in marine invaders.
Collapse
Affiliation(s)
- Yiyong Chen
- Research Center for Eco‐Environmental SciencesChinese Academy of SciencesHaidian DistrictBeijingChina
- University of Chinese Academy of SciencesChinese Academy of SciencesShijingshan DistrictBeijingChina
| | - Yangchun Gao
- Research Center for Eco‐Environmental SciencesChinese Academy of SciencesHaidian DistrictBeijingChina
- University of Chinese Academy of SciencesChinese Academy of SciencesShijingshan DistrictBeijingChina
- Guangdong Key Laboratory of Animal Conservation and Resource UtilizationInstitute of ZoologyGuangdong Academy of SciencesHaizhu DistrictGuangzhouChina
| | - Xuena Huang
- Research Center for Eco‐Environmental SciencesChinese Academy of SciencesHaidian DistrictBeijingChina
| | - Shiguo Li
- Research Center for Eco‐Environmental SciencesChinese Academy of SciencesHaidian DistrictBeijingChina
- University of Chinese Academy of SciencesChinese Academy of SciencesShijingshan DistrictBeijingChina
| | - Aibin Zhan
- Research Center for Eco‐Environmental SciencesChinese Academy of SciencesHaidian DistrictBeijingChina
- University of Chinese Academy of SciencesChinese Academy of SciencesShijingshan DistrictBeijingChina
| |
Collapse
|
2
|
Genome-wide association study in hexaploid wheat identifies novel genomic regions associated with resistance to root lesion nematode (Pratylenchus thornei). Sci Rep 2021; 11:3572. [PMID: 33574377 PMCID: PMC7878755 DOI: 10.1038/s41598-021-80996-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/30/2020] [Indexed: 01/30/2023] Open
Abstract
Root lesion nematode (RLN; Pratylenchus thornei) causes extensive yield losses in wheat worldwide and thus pose serious threat to global food security. Reliance on fumigants (such as methyl bromide) and nematicides for crop protection has been discouraged due to environmental concerns. Hence, alternative environment friendly control measures like finding and deployment of resistance genes against Pratylenchus thornei are of significant importance. In the present study, genome-wide association study (GWAS) was performed using single-locus and multi-locus methods. In total, 143 wheat genotypes collected from pan-Indian wheat cultivation states were used for nematode screening. Genotypic data consisted of > 7K SNPs with known genetic positions on the high-density consensus map was used for association analysis. Principal component analysis indicated the existence of sub-populations with no major structuring of populations due to the origin. Altogether, 25 significant marker trait associations were detected with - log10 (p value) > 4.0. Three large linkage disequilibrium blocks and the corresponding haplotypes were found to be associated with significant SNPs. In total, 37 candidate genes with nine genes having a putative role in disease resistance (F-box-like domain superfamily, Leucine-rich repeat, cysteine-containing subtype, Cytochrome P450 superfamily, Zinc finger C2H2-type, RING/FYVE/PHD-type, etc.) were identified. Genomic selection was conducted to investigate how well one could predict the phenotype of the nematode count without performing the screening experiments. Prediction value of r = 0.40 to 0.44 was observed when 56 to 70% of the population was used as a training set. This is the first report where GWAS has been conducted to find resistance against root lesion nematode (P. thornei) in Indian wheat germplasm.
Collapse
|
3
|
Barria A, López ME, Yoshida G, Carvalheiro R, Lhorente JP, Yáñez JM. Population Genomic Structure and Genome-Wide Linkage Disequilibrium in Farmed Atlantic Salmon ( Salmo salar L.) Using Dense SNP Genotypes. Front Genet 2018; 9:649. [PMID: 30619473 PMCID: PMC6302115 DOI: 10.3389/fgene.2018.00649] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/30/2018] [Indexed: 01/15/2023] Open
Abstract
Chilean Farmed Atlantic salmon (Salmo salar) populations were established with individuals of both European and North American origins. These populations are expected to be highly genetically differentiated due to evolutionary history and poor gene flow between ancestral populations from different continents. The extent and decay of linkage disequilibrium (LD) among single nucleotide polymorphism (SNP) impacts the implementation of genome-wide association studies and genomic selection and provides relevant information about demographic processes of fish populations. We assessed the population structure and characterized the extent and decay of LD in three Chilean commercial populations of Atlantic salmon with North American (NAM), Scottish (SCO), and Norwegian (NOR) origin. A total of 123 animals were genotyped using a 159 K SNP Axiom® myDesignTM Genotyping Array. A total of 32 K SNP markers, representing the common SNPs along the three populations after quality control were used. The principal component analysis explained 78.9% of the genetic diversity between populations, clearly discriminating between populations of North American and European origin, and also between European populations. NAM had the lowest effective population size, followed by SCO and NOR. Large differences in the LD decay were observed between populations of North American and European origin. An r 2 threshold of 0.2 was estimated for marker pairs separated by 7,800, 64, and 50 kb in the NAM, SCO, and NOR populations, respectively. In this study we show that this SNP panel can be used to detect association between markers and traits of interests and also to capture high-resolution information for genome-enabled predictions. Also, we suggest the feasibility to achieve similar prediction accuracies using a smaller SNP data set for the NAM population, compared with samples with European origin which would need a higher density SNP array.
Collapse
Affiliation(s)
- Agustin Barria
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Chile
| | - Maria E. López
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Chile
| | - Grazyella Yoshida
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, Brazil
| | - Roberto Carvalheiro
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, Brazil
| | | | - José M. Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Chile
- Benchmark Genetic S.A., Puerto Montt, Chile
- Nucleo Milenio INVASAL, Concepción, Chile
| |
Collapse
|
4
|
Brennan RS, Healy TM, Bryant HJ, La MV, Schulte PM, Whitehead A. Integrative Population and Physiological Genomics Reveals Mechanisms of Adaptation in Killifish. Mol Biol Evol 2018; 35:2639-2653. [PMID: 30102365 PMCID: PMC11325861 DOI: 10.1093/molbev/msy154] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adaptive divergence between marine and freshwater (FW) environments is important in generating phyletic diversity within fishes, but the genetic basis of this process remains poorly understood. Genome selection scans can identify adaptive loci, but incomplete knowledge of genotype-phenotype connections makes interpreting their significance difficult. In contrast, association mapping (genome-wide association mapping [GWAS], random forest [RF] analyses) links genotype to phenotype, but offer limited insight into the evolutionary forces shaping variation. Here, we combined GWAS, RF, and selection scans to identify loci important in adaptation to FW environments. We utilized FW-native and brackish water (BW)-native populations of Atlantic killifish (Fundulus heteroclitus) as well as a naturally admixed population between the two. We measured morphology and multiple physiological traits that differ between populations and may contribute to osmotic adaptation (salinity tolerance, hypoxia tolerance, metabolic rate, body shape) and used a reduced representation approach for genome-wide genotyping. Our results show patterns of population divergence in physiological capabilities that are consistent with local adaptation. Population genomic scans between BW-native and FW-native populations identified genomic regions evolving by natural selection, whereas association mapping revealed loci that contribute to variation for each trait. There was substantial overlap in the genomic regions putatively under selection and loci associated with phenotypic traits, particularly for salinity tolerance, suggesting that these regions and genes are important for adaptive divergence between BW and FW environments. Together, these data provide insight into the mechanisms that enable diversification of fishes across osmotic boundaries.
Collapse
Affiliation(s)
- Reid S Brennan
- Department of Environmental Toxicology, University of California-Davis, Davis, CA
- Department of Biology, University of Vermont, Burlington, VT
| | - Timothy M Healy
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, CA
| | - Heather J Bryant
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada
| | - Man Van La
- Department of Environmental Toxicology, University of California-Davis, Davis, CA
| | - Patricia M Schulte
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada
| | - Andrew Whitehead
- Department of Environmental Toxicology, University of California-Davis, Davis, CA
| |
Collapse
|
5
|
Toro MA, Saura M, Fernandez J, Villanueva B. Accuracy of genomic within-family selection in aquaculture breeding programmes. J Anim Breed Genet 2017; 134:256-263. [PMID: 28508478 DOI: 10.1111/jbg.12272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/07/2017] [Indexed: 01/27/2023]
Abstract
In aquaculture breeding programmes, selection within families cannot be applied for traits that cannot be recorded on the candidates (e.g., disease resistance or fillet quality). However, this problem can be overcome if genomic evaluation is used. Within-family genomic evaluation has been proposed for these programmes as large family sizes are available and substantial levels of linkage disequilibrium (LD) within families can be attained with a limited number of markers even in populations in global linkage equilibrium. Here, we compare by computer simulation: (i) within-family and population-wide LD; and (ii) the accuracy of within-family genomic selection when genomic evaluations are carried out either at the population level or within families. The population simulated was composed by a varying number of families of full-sibs (half for training and half for testing). The results indicate that, to practice within-family selection, performing the genomic evaluation separately for each family using only molecular information from the family could be recommended for populations either in linkage equilibrium or with a low level of disequilibrium.
Collapse
Affiliation(s)
- M A Toro
- Departamento de Producción Agraria, Universidad Politécnica de Madrid, Madrid, Spain
| | - M Saura
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
| | - J Fernandez
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
| | - B Villanueva
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
| |
Collapse
|
6
|
Miller JM, Poissant J, Malenfant RM, Hogg JT, Coltman DW. Temporal dynamics of linkage disequilibrium in two populations of bighorn sheep. Ecol Evol 2015; 5:3401-12. [PMID: 26380673 PMCID: PMC4569035 DOI: 10.1002/ece3.1612] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Linkage disequilibrium (LD) is the nonrandom association of alleles at two markers. Patterns of LD have biological implications as well as practical ones when designing association studies or conservation programs aimed at identifying the genetic basis of fitness differences within and among populations. However, the temporal dynamics of LD in wild populations has received little empirical attention. In this study, we examined the overall extent of LD, the effect of sample size on the accuracy and precision of LD estimates, and the temporal dynamics of LD in two populations of bighorn sheep (Ovis canadensis) with different demographic histories. Using over 200 microsatellite loci, we assessed two metrics of multi-allelic LD, D', and χ ('2). We found that both populations exhibited high levels of LD, although the extent was much shorter in a native population than one that was founded via translocation, experienced a prolonged bottleneck post founding, followed by recent admixture. In addition, we observed significant variation in LD in relation to the sample size used, with small sample sizes leading to depressed estimates of the extent of LD but inflated estimates of background levels of LD. In contrast, there was not much variation in LD among yearly cross-sections within either population once sample size was accounted for. Lack of pronounced interannual variability suggests that researchers may not have to worry about interannual variation when estimating LD in a population and can instead focus on obtaining the largest sample size possible.
Collapse
Affiliation(s)
- Joshua M Miller
- Department of Biological Sciences, University of Alberta Edmonton, Alberta, Canada
| | - Jocelyn Poissant
- Centre for Ecology and Conservation, University of Exeter Penryn Campus, UK
| | - René M Malenfant
- Department of Biological Sciences, University of Alberta Edmonton, Alberta, Canada
| | - John T Hogg
- Montana Conservation Science Institute 5200 Upper Miller Creek Road, Missoula, Montana, USA
| | - David W Coltman
- Department of Biological Sciences, University of Alberta Edmonton, Alberta, Canada
| |
Collapse
|