1
|
Mercer M, Jang S, Ni C, Buszczak M. The Dynamic Regulation of mRNA Translation and Ribosome Biogenesis During Germ Cell Development and Reproductive Aging. Front Cell Dev Biol 2021; 9:710186. [PMID: 34805139 PMCID: PMC8595405 DOI: 10.3389/fcell.2021.710186] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 10/07/2021] [Indexed: 01/21/2023] Open
Abstract
The regulation of mRNA translation, both globally and at the level of individual transcripts, plays a central role in the development and function of germ cells across species. Genetic studies using flies, worms, zebrafish and mice have highlighted the importance of specific RNA binding proteins in driving various aspects of germ cell formation and function. Many of these mRNA binding proteins, including Pumilio, Nanos, Vasa and Dazl have been conserved through evolution, specifically mark germ cells, and carry out similar functions across species. These proteins typically influence mRNA translation by binding to specific elements within the 3′ untranslated region (UTR) of target messages. Emerging evidence indicates that the global regulation of mRNA translation also plays an important role in germ cell development. For example, ribosome biogenesis is often regulated in a stage specific manner during gametogenesis. Moreover, oocytes need to produce and store a sufficient number of ribosomes to support the development of the early embryo until the initiation of zygotic transcription. Accumulating evidence indicates that disruption of mRNA translation regulatory mechanisms likely contributes to infertility and reproductive aging in humans. These findings highlight the importance of gaining further insights into the mechanisms that control mRNA translation within germ cells. Future work in this area will likely have important impacts beyond germ cell biology.
Collapse
Affiliation(s)
- Marianne Mercer
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Seoyeon Jang
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Chunyang Ni
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Michael Buszczak
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
2
|
Kenny A, Morgan MB, Mohr S, Macdonald PM. Knock down analysis reveals critical phases for specific oskar noncoding RNA functions during Drosophila oogenesis. G3-GENES GENOMES GENETICS 2021; 11:6377782. [PMID: 34586387 PMCID: PMC8849117 DOI: 10.1093/g3journal/jkab340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/17/2021] [Indexed: 12/02/2022]
Abstract
The oskar transcript, acting as a noncoding RNA, contributes to a diverse set of pathways in the Drosophila ovary, including karyosome formation, positioning of the microtubule organizing center (MTOC), integrity of certain ribonucleoprotein particles, control of nurse cell divisions, restriction of several proteins to the germline, and progression through oogenesis. How oskar mRNA acts to perform these functions remains unclear. Here, we use a knock down approach to identify the critical phases when oskar is required for three of these functions. The existing transgenic shRNA for removal of oskar mRNA in the germline targets a sequence overlapping a regulatory site bound by Bruno1 protein to confer translational repression, and was ineffective during oogenesis. Novel transgenic shRNAs targeting other sites were effective at strongly reducing oskar mRNA levels and reproducing phenotypes associated with the absence of the mRNA. Using GAL4 drivers active at different developmental stages of oogenesis, we found that early loss of oskar mRNA reproduced defects in karyosome formation and positioning of the MTOC, but not arrest of oogenesis. Loss of oskar mRNA at later stages was required to prevent progression through oogenesis. The noncoding function of oskar mRNA is thus required for more than a single event.
Collapse
Affiliation(s)
- Andrew Kenny
- Department of Molecular Biosciences The University of Texas at Austin Austin, TX 78712 United States of America
| | - Miles B Morgan
- Department of Molecular Biosciences The University of Texas at Austin Austin, TX 78712 United States of America
| | - Sabine Mohr
- Department of Molecular Biosciences The University of Texas at Austin Austin, TX 78712 United States of America
| | - Paul M Macdonald
- Department of Molecular Biosciences The University of Texas at Austin Austin, TX 78712 United States of America
| |
Collapse
|
3
|
Dold A, Han H, Liu N, Hildebrandt A, Brüggemann M, Rücklé C, Hänel H, Busch A, Beli P, Zarnack K, König J, Roignant JY, Lasko P. Makorin 1 controls embryonic patterning by alleviating Bruno1-mediated repression of oskar translation. PLoS Genet 2020; 16:e1008581. [PMID: 31978041 PMCID: PMC7001992 DOI: 10.1371/journal.pgen.1008581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 02/05/2020] [Accepted: 12/20/2019] [Indexed: 11/18/2022] Open
Abstract
Makorins are evolutionary conserved proteins that contain C3H-type zinc finger modules and a RING E3 ubiquitin ligase domain. In Drosophila, maternal Makorin 1 (Mkrn1) has been linked to embryonic patterning but the mechanism remained unsolved. Here, we show that Mkrn1 is essential for axis specification and pole plasm assembly by translational activation of oskar (osk). We demonstrate that Mkrn1 interacts with poly(A) binding protein (pAbp) and binds specifically to osk 3’ UTR in a region adjacent to A-rich sequences. Using Drosophila S2R+ cultured cells we show that this binding site overlaps with a Bruno1 (Bru1) responsive element (BREs) that regulates osk translation. We observe increased association of the translational repressor Bru1 with osk mRNA upon depletion of Mkrn1, indicating that both proteins compete for osk binding. Consistently, reducing Bru1 dosage partially rescues viability and Osk protein level in ovaries from Mkrn1 females. We conclude that Mkrn1 controls embryonic patterning and germ cell formation by specifically activating osk translation, most likely by competing with Bru1 to bind to osk 3’ UTR. To ensure accurate development of the Drosophila embryo, proteins and mRNAs are positioned at specific sites within the embryo. Many of these factors are produced and localized during the development of the egg in the mother. One protein essential for this process that has been heavily studied is Oskar (Osk), which is positioned at the posterior pole. During the localization of osk mRNA, its translation is repressed by the RNA-binding protein Bruno1 (Bru1), ensuring that Osk protein is not present outside of the posterior where it is harmful. At the posterior pole, osk mRNA is activated through mechanisms that are not yet understood. In this work, we show that the conserved protein Makorin 1 (Mkrn1) is a novel factor involved in the translational activation of osk. Mkrn1 binds specifically to osk mRNA, overlapping with a binding site of Bru1, thus alleviating the association of Bru1 with osk. Moreover, Mkrn1 is stabilized by poly(A) binding protein (pAbp), a translational activator that binds osk mRNA in close proximity to one Mkrn1 binding site. Our work thus helps to answer a long-standing question in the field, providing insight about the function of Mkrn1 and more generally into embryonic patterning in animals.
Collapse
Affiliation(s)
- Annabelle Dold
- RNA Epigenetics, Institute of Molecular Biology, Mainz, Germany
| | - Hong Han
- Department of Biology, McGill University, Montréal, Québec, Canada
| | - Niankun Liu
- Department of Biology, McGill University, Montréal, Québec, Canada
| | - Andrea Hildebrandt
- Chromatin Biology and Proteomics, Institute of Molecular Biology, Mainz, Germany.,Genomic Views of Splicing Regulation, Institute of Molecular Biology, Mainz, Germany
| | - Mirko Brüggemann
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Cornelia Rücklé
- Genomic Views of Splicing Regulation, Institute of Molecular Biology, Mainz, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Heike Hänel
- Genomic Views of Splicing Regulation, Institute of Molecular Biology, Mainz, Germany
| | - Anke Busch
- Bioinformatics Core Facility, Institute of Molecular Biology, Mainz, Germany
| | - Petra Beli
- Chromatin Biology and Proteomics, Institute of Molecular Biology, Mainz, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Julian König
- Genomic Views of Splicing Regulation, Institute of Molecular Biology, Mainz, Germany
| | - Jean-Yves Roignant
- RNA Epigenetics, Institute of Molecular Biology, Mainz, Germany.,Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Paul Lasko
- Department of Biology, McGill University, Montréal, Québec, Canada.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
4
|
Perkins LA, Holderbaum L, Tao R, Hu Y, Sopko R, McCall K, Yang-Zhou D, Flockhart I, Binari R, Shim HS, Miller A, Housden A, Foos M, Randkelv S, Kelley C, Namgyal P, Villalta C, Liu LP, Jiang X, Huan-Huan Q, Wang X, Fujiyama A, Toyoda A, Ayers K, Blum A, Czech B, Neumuller R, Yan D, Cavallaro A, Hibbard K, Hall D, Cooley L, Hannon GJ, Lehmann R, Parks A, Mohr SE, Ueda R, Kondo S, Ni JQ, Perrimon N. The Transgenic RNAi Project at Harvard Medical School: Resources and Validation. Genetics 2015; 201:843-52. [PMID: 26320097 PMCID: PMC4649654 DOI: 10.1534/genetics.115.180208] [Citation(s) in RCA: 383] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/24/2015] [Indexed: 01/30/2023] Open
Abstract
To facilitate large-scale functional studies in Drosophila, the Drosophila Transgenic RNAi Project (TRiP) at Harvard Medical School (HMS) was established along with several goals: developing efficient vectors for RNAi that work in all tissues, generating a genome-scale collection of RNAi stocks with input from the community, distributing the lines as they are generated through existing stock centers, validating as many lines as possible using RT-qPCR and phenotypic analyses, and developing tools and web resources for identifying RNAi lines and retrieving existing information on their quality. With these goals in mind, here we describe in detail the various tools we developed and the status of the collection, which is currently composed of 11,491 lines and covering 71% of Drosophila genes. Data on the characterization of the lines either by RT-qPCR or phenotype is available on a dedicated website, the RNAi Stock Validation and Phenotypes Project (RSVP, http://www.flyrnai.org/RSVP.html), and stocks are available from three stock centers, the Bloomington Drosophila Stock Center (United States), National Institute of Genetics (Japan), and TsingHua Fly Center (China).
Collapse
Affiliation(s)
- Lizabeth A Perkins
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Laura Holderbaum
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Rong Tao
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Yanhui Hu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Richelle Sopko
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Kim McCall
- Boston University, Boston, Massachusetts 02215
| | - Donghui Yang-Zhou
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Ian Flockhart
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Richard Binari
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115 Howard Hughes Medical Institute, Boston, Massachusetts 02115
| | - Hye-Seok Shim
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Audrey Miller
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Amy Housden
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Marianna Foos
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Sakara Randkelv
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Colleen Kelley
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Pema Namgyal
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Christians Villalta
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115 Howard Hughes Medical Institute, Boston, Massachusetts 02115
| | - Lu-Ping Liu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115 TsingHua Fly Center, Beijing, 100084, China
| | - Xia Jiang
- TsingHua Fly Center, Beijing, 100084, China
| | | | - Xia Wang
- TsingHua Fly Center, Beijing, 100084, China
| | - Asao Fujiyama
- Comparative Genomics Laboratory, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Kathleen Ayers
- Department of Genetics, Yale University, New Haven, Connecticut 06510
| | - Allison Blum
- Howard Hughes Medical Institute, Boston, Massachusetts 02115 Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, New York 10016
| | - Benjamin Czech
- CRUK Cambridge Institute, University of Cambridge, Cambridge, CB2 1TN, United Kingdom
| | - Ralph Neumuller
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Dong Yan
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Amanda Cavallaro
- Howard Hughes Medical Institute, Boston, Massachusetts 02115 Janelia Farm Research Institute ,Asburn, Virginia, 20147
| | - Karen Hibbard
- Howard Hughes Medical Institute, Boston, Massachusetts 02115 Janelia Farm Research Institute ,Asburn, Virginia, 20147
| | - Don Hall
- Howard Hughes Medical Institute, Boston, Massachusetts 02115 Janelia Farm Research Institute ,Asburn, Virginia, 20147
| | - Lynn Cooley
- Department of Genetics, Yale University, New Haven, Connecticut 06510
| | - Gregory J Hannon
- CRUK Cambridge Institute, University of Cambridge, Cambridge, CB2 1TN, United Kingdom
| | - Ruth Lehmann
- Howard Hughes Medical Institute, Boston, Massachusetts 02115 Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, New York 10016
| | - Annette Parks
- Bloomington Drosophila Stock Center Bloomington, Indiana, 47405
| | - Stephanie E Mohr
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Ryu Ueda
- Comparative Genomics Laboratory, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Shu Kondo
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115 Invertebrate Genetics Laboratory, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Jian-Quan Ni
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115 TsingHua Fly Center, Beijing, 100084, China
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115 Howard Hughes Medical Institute, Boston, Massachusetts 02115
| |
Collapse
|