1
|
Harris M, Kim BY, Garud N. Enrichment of hard sweeps on the X chromosome compared to autosomes in six Drosophila species. Genetics 2024; 226:iyae019. [PMID: 38366786 PMCID: PMC10990427 DOI: 10.1093/genetics/iyae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/18/2024] Open
Abstract
The X chromosome, being hemizygous in males, is exposed one-third of the time increasing the visibility of new mutations to natural selection, potentially leading to different evolutionary dynamics than autosomes. Recently, we found an enrichment of hard selective sweeps over soft selective sweeps on the X chromosome relative to the autosomes in a North American population of Drosophila melanogaster. To understand whether this enrichment is a universal feature of evolution on the X chromosome, we analyze diversity patterns across 6 commonly studied Drosophila species. We find an increased proportion of regions with steep reductions in diversity and elevated homozygosity on the X chromosome compared to autosomes. To assess if these signatures are consistent with positive selection, we simulate a wide variety of evolutionary scenarios spanning variations in demography, mutation rate, recombination rate, background selection, hard sweeps, and soft sweeps and find that the diversity patterns observed on the X are most consistent with hard sweeps. Our findings highlight the importance of sex chromosomes in driving evolutionary processes and suggest that hard sweeps have played a significant role in shaping diversity patterns on the X chromosome across multiple Drosophila species.
Collapse
Affiliation(s)
- Mariana Harris
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Bernard Y Kim
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Nandita Garud
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Harris M, Kim B, Garud N. Enrichment of hard sweeps on the X chromosome compared to autosomes in six Drosophila species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.21.545888. [PMID: 38106201 PMCID: PMC10723260 DOI: 10.1101/2023.06.21.545888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The X chromosome, being hemizygous in males, is exposed one third of the time increasing the visibility of new mutations to natural selection, potentially leading to different evolutionary dynamics than autosomes. Recently, we found an enrichment of hard selective sweeps over soft selective sweeps on the X chromosome relative to the autosomes in a North American population of Drosophila melanogaster. To understand whether this enrichment is a universal feature of evolution on the X chromosome, we analyze diversity patterns across six commonly studied Drosophila species. We find an increased proportion of regions with steep reductions in diversity and elevated homozygosity on the X chromosome compared to autosomes. To assess if these signatures are consistent with positive selection, we simulate a wide variety of evolutionary scenarios spanning variations in demography, mutation rate, recombination rate, background selection, hard sweeps, and soft sweeps, and find that the diversity patterns observed on the X are most consistent with hard sweeps. Our findings highlight the importance of sex chromosomes in driving evolutionary processes and suggest that hard sweeps have played a significant role in shaping diversity patterns on the X chromosome across multiple Drosophila species.
Collapse
Affiliation(s)
- Mariana Harris
- Department of Computational Medicine, University of California Los Angeles, Los Angeles California, United States of America
| | - Bernard Kim
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Nandita Garud
- Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles California, United States of America
- Department of Human Genetics, University of California, Los Angeles, California, United States of America
| |
Collapse
|
3
|
Alexander A, Robbins MB, Holmes J, Moyle RG, Peterson AT. Limited movement of an avian hybrid zone in relation to regional variation in magnitude of climate change. Mol Ecol 2022; 31:6634-6648. [PMID: 36210655 PMCID: PMC9729445 DOI: 10.1111/mec.16727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 01/13/2023]
Abstract
Studies of natural hybrid zones can provide documentation of range shifts in response to climate change and identify loci important to reproductive isolation. Using a temporal (36-38 years) comparison of the black-capped (Poecile atricapillus) and Carolina (P. carolinensis) chickadee hybrid zone, we investigated movement of the western portion of the zone (western Missouri) and assessed whether loci and pathways underpinning reproductive isolation were similar to those in the eastern portion of the hybrid zone. Using 92 birds sampled along the hybrid zone transect in 2016 and 68 birds sampled between 1978 and 1980, we generated 11,669 SNPs via ddRADseq. These SNPs were used to assess movement of the hybrid zone through time and to evaluate variation in introgression among loci. We demonstrate that the interface has moved ~5 km to the northwest over the last 36-38 years, that is, at only one-fifth the rate at which the eastern portion (e.g., Pennsylvania, Ohio) of the hybrid zone has moved. Temperature trends over the last 38 years reveal that eastern areas have warmed 50% more than western areas in terms of annual mean temperature, possibly providing an explanation for the slower movement of the hybrid zone in Missouri. Our results suggest hybrid zone movement in broadly distributed species, such as chickadees, will vary between areas in response to local differences in the impacts of climate change.
Collapse
Affiliation(s)
- Alana Alexander
- Biodiversity InstituteUniversity of KansasLawrenceKansasUSA
- Department of AnatomyUniversity of OtagoDunedinNew Zealand
| | | | - Jesse Holmes
- Biodiversity InstituteUniversity of KansasLawrenceKansasUSA
- Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansasUSA
| | - Robert G. Moyle
- Biodiversity InstituteUniversity of KansasLawrenceKansasUSA
- Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansasUSA
| | - A. Townsend Peterson
- Biodiversity InstituteUniversity of KansasLawrenceKansasUSA
- Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansasUSA
| |
Collapse
|
4
|
Swaegers J, Sánchez-Guillén RA, Chauhan P, Wellenreuther M, Hansson B. Restricted X chromosome introgression and support for Haldane's rule in hybridizing damselflies. Proc Biol Sci 2022; 289:20220968. [PMID: 35855603 PMCID: PMC9297008 DOI: 10.1098/rspb.2022.0968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Contemporary hybrid zones act as natural laboratories for the investigation of species boundaries and may shed light on the little understood roles of sex chromosomes in species divergence. Sex chromosomes are considered to function as a hotspot of genetic divergence between species; indicated by less genomic introgression compared to autosomes during hybridization. Moreover, they are thought to contribute to Haldane's rule, which states that hybrids of the heterogametic sex are more likely to be inviable or sterile. To test these hypotheses, we used contemporary hybrid zones of Ischnura elegans, a damselfly species that has been expanding its range into the northern and western regions of Spain, leading to chronic hybridization with its sister species Ischnura graellsii. We analysed genome-wide SNPs in the Spanish I. elegans and I. graellsii hybrid zone and found (i) that the X chromosome shows less genomic introgression compared to autosomes, and (ii) that males are underrepresented among admixed individuals, as predicted by Haldane's rule. This is the first study in Odonata that suggests a role of the X chromosome in reproductive isolation. Moreover, our data add to the few studies on species with X0 sex determination system and contradict the hypothesis that the absence of a Y chromosome causes exceptions to Haldane's rule.
Collapse
Affiliation(s)
- Janne Swaegers
- Department of Biology, Lund University, Ecology Building, Lund 22362, Sweden,Evolutionary Stress Ecology and Ecotoxicology, KU Leuven, Leuven, Belgium
| | | | - Pallavi Chauhan
- Department of Biology, Lund University, Ecology Building, Lund 22362, Sweden
| | - Maren Wellenreuther
- The New Zealand Institute for Plant and Food Research Ltd, Nelson, New Zealand,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Bengt Hansson
- Department of Biology, Lund University, Ecology Building, Lund 22362, Sweden
| |
Collapse
|
5
|
Kataoka K, Togawa Y, Sanno R, Asahi T, Yura K. Dissecting cricket genomes for the advancement of entomology and entomophagy. Biophys Rev 2022; 14:75-97. [PMID: 35340598 PMCID: PMC8921346 DOI: 10.1007/s12551-021-00924-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
Significant advances in biophysical methods such as next-generation sequencing technologies have now opened the way to conduct evolutionary and applied research based on the genomic information of greatly diverse insects. Crickets belonging to Orthoptera (Insecta: Polyneoptera), one of the most flourishing groups of insects, have contributed to the development of multiple scientific fields including developmental biology and neuroscience and have been attractive targets in evolutionary ecology for their diverse ecological niches. In addition, crickets have recently gained recognition as food and feed. However, the genomic information underlying their biological basis and application research toward breeding is currently underrepresented. In this review, we summarize the progress of genomics of crickets. First, we outline the phylogenetic position of crickets in insects and then introduce recent studies on cricket genomics and transcriptomics in a variety of fields. Furthermore, we present findings from our analysis of polyneopteran genomes, with a particular focus on their large genome sizes, chromosome number, and repetitive sequences. Finally, how the cricket genome can be beneficial to the food industry is discussed. This review is expected to enhance greater recognition of how important the cricket genomes are to the multiple biological fields and how basic research based on cricket genome information can contribute to tackling global food security.
Collapse
Affiliation(s)
- Kosuke Kataoka
- Comprehensive Research Organization, Waseda University, Tokyo, Japan
| | - Yuki Togawa
- School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Ryuto Sanno
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Toru Asahi
- Comprehensive Research Organization, Waseda University, Tokyo, Japan
- School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo, Japan
| | - Kei Yura
- School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| |
Collapse
|
6
|
OUP accepted manuscript. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
7
|
Majtyka T, Borczyk B, Ogielska M, Stöck M. Morphometry of two cryptic tree frog species at their hybrid zone reveals neither intermediate nor transgressive morphotypes. Ecol Evol 2022; 12:e8527. [PMID: 35127036 PMCID: PMC8794711 DOI: 10.1002/ece3.8527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 11/20/2022] Open
Abstract
Under incomplete reproductive isolation, secondary contact of diverged allopatric lineages may lead to the formation of hybrid zones that allow to study recombinants over several generations as excellent systems of genomic interactions resulting from the evolutionary forces acting on certain genes and phenotypes. Hybrid phenotypes may either exhibit intermediacy or, alternatively, transgressive traits, which exceed the extremes of their parents due to epistasis and segregation of complementary alleles. While transgressive morphotypes have been examined in fish, reptiles, birds, and mammals, studies in amphibians are rare. Here, we associate microsatellite-based genotypes with morphometrics-based morphotypes of two tree frog species of the Hyla arborea group, sampled across a hybrid zone in Poland, to understand whether the genetically differentiated parental species also differ in morphology between each other and their hybrids and whether secondary contact leads to the evolution of intermediate or transgressive morphotypes. Using univariate approaches, explorative multivariate methods (principal component analyses) as well as techniques with prior grouping (discriminant function analyses), we find that morphotypes of both parental species and hybrids differ from each other. Importantly, hybrid morphotypes are neither intermediate nor transgressive but found to be more similar to H. orientalis than to H. arborea.
Collapse
Affiliation(s)
- Tomasz Majtyka
- Department of Evolutionary Biology and Conservation of VertebratesUniversity of WrocławWrocławPoland
| | - Bartosz Borczyk
- Department of Evolutionary Biology and Conservation of VertebratesUniversity of WrocławWrocławPoland
| | - Maria Ogielska
- Department of Evolutionary Biology and Conservation of VertebratesUniversity of WrocławWrocławPoland
| | - Matthias Stöck
- Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
- Amphibian Research CenterHiroshima UniversityHigashi‐HiroshimaJapan
| |
Collapse
|
8
|
Nürnberger B, Baird SJE, Čížková D, Bryjová A, Mudd AB, Blaxter ML, Szymura JM. A dense linkage map for a large repetitive genome: discovery of the sex-determining region in hybridizing fire-bellied toads (Bombina bombina and Bombina variegata). G3 (BETHESDA, MD.) 2021; 11:6353606. [PMID: 34849761 PMCID: PMC8664441 DOI: 10.1093/g3journal/jkab286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022]
Abstract
Genomic analysis of hybrid zones offers unique insights into emerging reproductive isolation and the dynamics of introgression. Because hybrid genomes consist of blocks inherited from one or the other parental taxon, linkage information is essential. In most cases, the spectrum of local ancestry tracts can be efficiently uncovered from dense linkage maps. Here, we report the development of such a map for the hybridizing toads, Bombina bombina and Bombina variegata (Anura: Bombinatoridae). Faced with the challenge of a large (7–10 Gb), repetitive genome, we set out to identify a large number of Mendelian markers in the nonrepetitive portion of the genome that report B. bombina vs B. variegata ancestry with appropriately quantified statistical support. Bait sequences for targeted enrichment were selected from a draft genome assembly, after filtering highly repetitive sequences. We developed a novel approach to infer the most likely diplotype per sample and locus from the raw read mapping data, which is robust to over-merging and obviates arbitrary filtering thresholds. Validation of the resulting map with 4755 markers underscored the large-scale synteny between Bombina and Xenopus tropicalis. By assessing the sex of late-stage F2 tadpoles from histological sections, we identified the sex-determining region in the Bombina genome to 7 cM on LG5, which is homologous to X. tropicalis chromosome 5, and inferred male heterogamety. Interestingly, chromosome 5 has been repeatedly recruited as a sex chromosome in anurans with XY sex determination.
Collapse
Affiliation(s)
- Beate Nürnberger
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, 603 65 Brno, Czech Republic
| | - Stuart J E Baird
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, 603 65 Brno, Czech Republic
| | - Dagmar Čížková
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, 603 65 Brno, Czech Republic
| | - Anna Bryjová
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, 603 65 Brno, Czech Republic
| | - Austin B Mudd
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, 94720 CA, USA
| | - Mark L Blaxter
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Jacek M Szymura
- Department of Comparative Anatomy, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
9
|
Bímová BV, Macholán M, Ďureje Ľ, Bímová KB, Martincová I, Piálek J. Sperm quality, aggressiveness and generation turnover may facilitate unidirectional Y chromosome introgression across the European house mouse hybrid zone. Heredity (Edinb) 2020; 125:200-211. [PMID: 32528080 DOI: 10.1038/s41437-020-0330-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022] Open
Abstract
The widespread and locally massive introgression of Y chromosomes of the eastern house mouse (Mus musculus musculus) into the range of the western subspecies (M. m. domesticus) in Central Europe calls for an explanation of its underlying mechanisms. Given the paternal inheritance pattern, obvious candidates for traits mediating the introgression are characters associated with sperm quantity and quality. We can also expect traits such as size, aggression or the length of generation cycles to facilitate the spread. We have created two consomic strains carrying the non-recombining region of the Y chromosome of the opposite subspecies, allowing us to study introgression in both directions, something impossible in nature due to the unidirectionality of introgression. We analyzed several traits potentially related to male fitness. Transmission of the domesticus Y onto the musculus background had negative effects on all studied traits. Likewise, domesticus males possessing the musculus Y had, on average, smaller body and testes and lower sperm count than the parental strain. However, the same consomic males tended to produce less- dissociated sperm heads, to win more dyadic encounters, and to have shorter generation cycles than pure domesticus males. These data suggest that the domesticus Y is disadvantageous on the musculus background, while introgression in the opposite direction can confer a recognizable, though not always significant, selective advantage. Our results are thus congruent with the unidirectional musculus → domesticus Y chromosome introgression in Central Europe. In addition to some previous studies, they show this to be a multifaceted phenomenon demanding a multidisciplinary approach.
Collapse
Affiliation(s)
- Barbora Vošlajerová Bímová
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech Republic.,Laboratory of Mammalian Evolutionary Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic
| | - Miloš Macholán
- Laboratory of Mammalian Evolutionary Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic. .,Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.
| | - Ľudovít Ďureje
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech Republic
| | - Kateřina Berchová Bímová
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences in Prague, Kamýcká 1176, 165 00, Prague, Czech Republic
| | - Iva Martincová
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech Republic
| | - Jaroslav Piálek
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech Republic
| |
Collapse
|
10
|
Maxwell CS, Mattox K, Turissini DA, Teixeira MM, Barker BM, Matute DR. Gene exchange between two divergent species of the fungal human pathogen, Coccidioides. Evolution 2019; 73:42-58. [PMID: 30414183 PMCID: PMC6430640 DOI: 10.1111/evo.13643] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022]
Abstract
The fungal genus Coccidioides is composed of two species, Coccidioides immitis and Coccidioides posadasii. These two species are the causal agents of coccidioidomycosis, a pulmonary disease also known as valley fever. The two species are thought to have shared genetic material due to gene exchange in spite of their long divergence. To quantify the magnitude of shared ancestry between them, we analyzed the genomes of a population sample from each species. Next, we inferred what is the expected size of shared haplotypes that might be inherited from the last common ancestor of the two species and find a cutoff to find what haplotypes have conclusively been exchanged between species. Finally, we precisely identified the breakpoints of the haplotypes that have crossed the species boundary and measure the allele frequency of each introgression in this sample. We find that introgressions are not uniformly distributed across the genome. Most, but not all, of the introgressions segregate at low frequency. Our results show that divergent species can share alleles, that species boundaries can be porous, and highlight the need for a systematic exploration of gene exchange in fungal species.
Collapse
Affiliation(s)
- Colin S Maxwell
- Biology Department, University of North Carolina, Chapel Hill, North Carolina
| | - Kathleen Mattox
- Biology Department, University of North Carolina, Chapel Hill, North Carolina
| | - David A Turissini
- Biology Department, University of North Carolina, Chapel Hill, North Carolina
| | - Marcus M Teixeira
- Núcleo de Medicina Tropical, Faculdade de Medicina, University of Brasília, Brasília, Brazil
| | - Bridget M Barker
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
11
|
Gainey DP, Kim JY, Maroja LS. Mapping reduced introgression loci to the X chromosome of the hybridizing field crickets, Gryllus firmus and G. pennsylvanicus. PLoS One 2018; 13:e0208498. [PMID: 30566487 PMCID: PMC6300192 DOI: 10.1371/journal.pone.0208498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/18/2018] [Indexed: 11/19/2022] Open
Abstract
The genomic architecture of barriers to gene exchange during the speciation process is poorly understood. The genomic islands model suggests that loci associated with barriers to gene exchange prevent introgression of nearby genomic regions via linkage disequilibrium. But few analyses of the actual genomic location of non-introgressing loci in closely related species exist. In a previous study Maroja et al. showed that in the hybridizing field crickets, Gryllus firmus and G. pennsylvanicus, 50 non-introgressing loci are localized on two autosomal regions and the X chromosome, but they were not able to map the loci along the X chromosome because they used a male informative cross. Here, we localize the introgressing and non-introgressing loci on the X chromosome, and reveal that all X-linked non-introgressing loci are restricted to a 50-cM region with 10 of these loci mapped to a single location. We discuss the implications of this finding to speciation.
Collapse
Affiliation(s)
- D. Patrick Gainey
- Department of Biology, Williams College, Williamstown, Massachusetts, United States of America
| | - Jeremiah Y. Kim
- Department of Biology, Williams College, Williamstown, Massachusetts, United States of America
| | - Luana S. Maroja
- Department of Biology, Williams College, Williamstown, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
12
|
Haddad R, Meter B, Ross JA. The Genetic Architecture of Intra-Species Hybrid Mito-Nuclear Epistasis. Front Genet 2018; 9:481. [PMID: 30505316 PMCID: PMC6250786 DOI: 10.3389/fgene.2018.00481] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/28/2018] [Indexed: 01/03/2023] Open
Abstract
Genetic variants that are neutral within, but deleterious between, populations (Dobzhansky-Muller Incompatibilities) are thought to initiate hybrid dysfunction and then to accumulate and complete the speciation process. To identify the types of genetic differences that might initiate speciation, it is useful to study inter-population (intra-species) hybrids that exhibit reduced fitness. In Caenorhabditis briggsae, a close relative of the nematode C. elegans, such minor genetic incompatibilities have been identified. One incompatibility between the mitochondrial and nuclear genomes reduces the fitness of some hybrids. To understand the nuclear genetic architecture of this epistatic interaction, we constructed two sets of recombinant inbred lines by hybridizing two genetically diverse wild populations. In such lines, selection is able to eliminate deleterious combinations of alleles derived from the two parental populations. The genotypes of surviving hybrid lines thus reveal favorable allele combinations at loci experiencing selection. Our genotype data from the resulting lines are consistent with the interpretation that the X alleles participate in epistatic interactions with autosomes and the mitochondrial genome. We evaluate this possibility given predictions that mitochondria-X epistasis should be more prevalent than between mitochondria and autosomes. Our empirical identification of inter-genomic linkage disequilibrium supports the body of literature indicating that the accumulation of mito-nuclear genetic incompatibilities might initiate the speciation process through the generation of less-fit inter-population hybrids.
Collapse
Affiliation(s)
- Rania Haddad
- Department of Biology, California State University, Fresno, Fresno, CA, United States
| | - Brandon Meter
- Department of Biology, California State University, Fresno, Fresno, CA, United States
| | - Joseph A Ross
- Department of Biology, California State University, Fresno, Fresno, CA, United States
| |
Collapse
|
13
|
Presgraves DC. Evaluating genomic signatures of "the large X-effect" during complex speciation. Mol Ecol 2018; 27:3822-3830. [PMID: 29940087 PMCID: PMC6705125 DOI: 10.1111/mec.14777] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/31/2018] [Accepted: 06/07/2018] [Indexed: 12/16/2022]
Abstract
The ubiquity of the "two rules of speciation"-Haldane's rule and the large X-effect-implies a general, special role for sex chromosomes in the evolution of intrinsic postzygotic reproductive isolation. The recent proliferation of genome-scale analyses has revealed two further general observations: (a) complex speciation involving some form of gene flow is not uncommon, and (b) sex chromosomes in male- and in female-heterogametic taxa tend to show elevated differentiation relative to autosomes. Together, these observations are consistent with speciation histories in which population genetic differentiation at autosomal loci is reduced by gene flow while natural selection against hybrid incompatibilities renders sex chromosomes relatively refractory to gene flow. Here, I summarize multilocus population genetic and population genomic evidence for greater differentiation on the X (or Z) vs. the autosomes and consider the possible causes. I review common population genetic circumstances involving no selection and/or no interspecific gene flow that are nevertheless expected to elevate differentiation on sex chromosomes relative to autosomes. I then review theory for why large X-effects exist for hybrid incompatibilities and, more generally, for loci mediating local adaptation. The observed levels of sex chromosome vs. autosomal differentiation, in many cases, appear consistent with simple explanations requiring neither large X-effects nor gene flow. Discerning signatures of large X-effects during complex speciation will therefore require analyses that go beyond chromosome-scale summaries of population genetic differentiation, explicitly test for differential introgression, and/or integrate experimental genetic data.
Collapse
Affiliation(s)
- Daven C. Presgraves
- Department of Biology, University of Rochester, Rochester, New York, 14627, USA
| |
Collapse
|
14
|
Maxwell CS, Sepulveda VE, Turissini DA, Goldman WE, Matute DR. Recent admixture between species of the fungal pathogen Histoplasma. Evol Lett 2018; 2:210-220. [PMID: 30283677 PMCID: PMC6121842 DOI: 10.1002/evl3.59] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 12/30/2022] Open
Abstract
Hybridization between species of pathogens has the potential to speed evolution of virulence by providing the raw material for adaptation through introgression or by assembling new combinations of virulence traits. Fungal diseases are a source high morbidity, and remain difficult to treat. Yet the frequency of hybridization between fungal species has rarely been explored, and the functional role of introgressed alleles remains largely unknown. Histoplasma mississippiense and H. ohiense are sympatric throughout their range in North America and have distinct virulence strategies, making them an ideal system to examine the role introgression may play in fungal pathogens. We identified introgressed tracts in the genomes of a sample of H. mississippiense and H. ohiense isolates. We found strong evidence in each species for recent admixture, but introgressed alleles were present at low frequencies, suggesting that they were deleterious. Consistent with this, coding and regulatory sequences were strongly depleted within introgressed regions, whereas intergenic regions were enriched, indicating that functional introgressed alleles were frequently deleterious in their new genomic context. Surprisingly, we found only two isolates with substantial admixture: the H. mississippiense and H. ohiense genomic reference strains, WU24 and G217B, respectively. Our results show that recent admixture has occurred, that it is frequently deleterious and that conclusions based on studies of the H. mississippiense and H. ohiense type strains should be revisited with more representative samples from the genus.
Collapse
Affiliation(s)
- Colin S Maxwell
- Biology Department University of North Carolina Chapel Hill North Carolina 27599
| | - Victoria E Sepulveda
- Department of Microbiology and Immunology, School of Medicine University of North Carolina Chapel Hill North Carolina 27599
| | - David A Turissini
- Biology Department University of North Carolina Chapel Hill North Carolina 27599
| | - William E Goldman
- Department of Microbiology and Immunology, School of Medicine University of North Carolina Chapel Hill North Carolina 27599
| | - Daniel R Matute
- Biology Department University of North Carolina Chapel Hill North Carolina 27599
| |
Collapse
|
15
|
Moran PA, Pascoal S, Cezard T, Risse JE, Ritchie MG, Bailey NW. Opposing patterns of intraspecific and interspecific differentiation in sex chromosomes and autosomes. Mol Ecol 2018; 27:3905-3924. [DOI: 10.1111/mec.14725] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Peter A. Moran
- School of Biological, Earth and Environmental Sciences; University College Cork; Cork Ireland
| | - Sonia Pascoal
- Department of Zoology; University of Cambridge; Cambridge UK
| | | | - Judith E. Risse
- Bioinformatics; Department of Plant Sciences; Wageningen University; Wageningen The Netherlands
| | - Michael G. Ritchie
- Centre for Biological Diversity; School of Biology; University of St Andrews; St Andrews UK
| | - Nathan W. Bailey
- Centre for Biological Diversity; School of Biology; University of St Andrews; St Andrews UK
| |
Collapse
|
16
|
Sciuchetti L, Dufresnes C, Cavoto E, Brelsford A, Perrin N. Dobzhansky-Muller incompatibilities, dominance drive, and sex-chromosome introgression at secondary contact zones: A simulation study. Evolution 2018; 72:1350-1361. [PMID: 29806172 DOI: 10.1111/evo.13510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 05/08/2018] [Indexed: 11/28/2022]
Abstract
Dobzhansky-Muller (DM) incompatibilities involving sex chromosomes have been proposed to account for Haldane's rule (lowered fitness among hybrid offspring of the heterogametic sex) as well as Darwin's corollary (asymmetric fitness costs with respect to the direction of the cross). We performed simulation studies of a hybrid zone to investigate the effects of different types of DM incompatibilities on cline widths and positions of sex-linked markers. From our simulations, X-Y incompatibilities generate steep clines for both X-linked and Y-linked markers; random effects may produce strong noise in cline center positions when migration is high relative to fitness costs, but X- and Y-centers always coincide strictly. X-autosome and Y-autosome incompatibilities also generate steep clines, but systematic shifts in cline centers occur when migration is high relative to selection, as a result of a dominance drive linked to Darwin's corollary. Interestingly, sex-linked genes always show farther introgression than the associated autosomal genes. We discuss ways of disentangling the potentially confounding effects of sex biases in migration, we compare our results to those of a few documented contact zones, and we stress the need to study independent replicates of the same contact zone.
Collapse
Affiliation(s)
- Luca Sciuchetti
- Department of Ecology & Evolution, University of Lausanne, Biophore Building, Lausanne, 1015, Switzerland
| | - Christophe Dufresnes
- Department of Ecology & Evolution, University of Lausanne, Biophore Building, Lausanne, 1015, Switzerland
- Department of Animal & Plant Sciences, University of Sheffield, Alfred Denny building, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Elisa Cavoto
- Department of Ecology & Evolution, University of Lausanne, Biophore Building, Lausanne, 1015, Switzerland
| | - Alan Brelsford
- Department of Ecology & Evolution, University of Lausanne, Biophore Building, Lausanne, 1015, Switzerland
- Biology Department, University of California, Riverside, CA, 92521
| | - Nicolas Perrin
- Department of Ecology & Evolution, University of Lausanne, Biophore Building, Lausanne, 1015, Switzerland
| |
Collapse
|
17
|
Schrider DR, Ayroles J, Matute DR, Kern AD. Supervised machine learning reveals introgressed loci in the genomes of Drosophila simulans and D. sechellia. PLoS Genet 2018; 14:e1007341. [PMID: 29684059 PMCID: PMC5933812 DOI: 10.1371/journal.pgen.1007341] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 05/03/2018] [Accepted: 03/28/2018] [Indexed: 12/30/2022] Open
Abstract
Hybridization and gene flow between species appears to be common. Even though it is clear that hybridization is widespread across all surveyed taxonomic groups, the magnitude and consequences of introgression are still largely unknown. Thus it is crucial to develop the statistical machinery required to uncover which genomic regions have recently acquired haplotypes via introgression from a sister population. We developed a novel machine learning framework, called FILET (Finding Introgressed Loci via Extra-Trees) capable of revealing genomic introgression with far greater power than competing methods. FILET works by combining information from a number of population genetic summary statistics, including several new statistics that we introduce, that capture patterns of variation across two populations. We show that FILET is able to identify loci that have experienced gene flow between related species with high accuracy, and in most situations can correctly infer which population was the donor and which was the recipient. Here we describe a data set of outbred diploid Drosophila sechellia genomes, and combine them with data from D. simulans to examine recent introgression between these species using FILET. Although we find that these populations may have split more recently than previously appreciated, FILET confirms that there has indeed been appreciable recent introgression (some of which might have been adaptive) between these species, and reveals that this gene flow is primarily in the direction of D. simulans to D. sechellia.
Collapse
Affiliation(s)
- Daniel R. Schrider
- Department of Genetics, Rutgers University, Piscataway, New Jersey, United States of America
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, United States of America
| | - Julien Ayroles
- Ecology and Evolutionary Biology Department, Princeton University, Princeton, New Jersey, United States of America
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Daniel R. Matute
- Biology Department, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Andrew D. Kern
- Department of Genetics, Rutgers University, Piscataway, New Jersey, United States of America
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, United States of America
| |
Collapse
|
18
|
Gompert Z, Mandeville EG, Buerkle CA. Analysis of Population Genomic Data from Hybrid Zones. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2017. [DOI: 10.1146/annurev-ecolsys-110316-022652] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zachariah Gompert
- Department of Biology and Ecology Center, Utah State University, Logan, Utah 84322
| | - Elizabeth G. Mandeville
- Department of Botany and Wyoming Cooperative Fish and Wildlife Research Unit, University of Wyoming, Laramie, Wyoming 82071
| | - C. Alex Buerkle
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, Wyoming 82071
| |
Collapse
|
19
|
Howard DJ, Grosberg RK, Noor MAF, Normark BB, Rand DM, Shaw KL, Willett CS. In memoriam: Richard G. Harrison - his life and legacy. Mol Ecol 2016; 25:2333-6. [DOI: 10.1111/mec.13687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel J. Howard
- Office of the Executive Vice President and Provost; New Mexico State University; Las Cruces NM 88003 USA
| | - Richard K. Grosberg
- Department of Evolution and Ecology; College of Biological Sciences; University of California Davis; Davis CA 95616 USA
| | | | - Benjamin B. Normark
- Department of Biology and Graduate Program in Organismic and Evolutionary Biology; University of Massachusetts; Amherst MA 01003 USA
| | - David M. Rand
- Department of Ecology and Evolutionary Biology; Brown University; Box G-W 80 Waterman Street Providence RI 02912 USA
| | - Kerry L. Shaw
- Department of Neurobiology and Behavior; Cornell University; Ithaca NY 14853 USA
| | - Christopher S. Willett
- Department of Biology; University of North Carolina; CB#3280 Coker Hall Chapel Hill NC 27599 USA
| |
Collapse
|
20
|
Delph LF, Demuth JP. Haldane’s Rule: Genetic Bases and Their Empirical Support. J Hered 2016; 107:383-91. [DOI: 10.1093/jhered/esw026] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/27/2016] [Indexed: 11/14/2022] Open
|
21
|
Harrison RG, Larson EL. Heterogeneous genome divergence, differential introgression, and the origin and structure of hybrid zones. Mol Ecol 2016; 25:2454-66. [PMID: 26857437 DOI: 10.1111/mec.13582] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/19/2016] [Accepted: 01/25/2016] [Indexed: 12/16/2022]
Abstract
Hybrid zones have been promoted as windows on the evolutionary process and as laboratories for studying divergence and speciation. Patterns of divergence between hybridizing species can now be characterized on a genomewide scale, and recent genome scans have focused on the presence of 'islands' of divergence. Patterns of heterogeneous genomic divergence may reflect differential introgression following secondary contact and provide insights into which genome regions contribute to local adaptation, hybrid unfitness and positive assortative mating. However, heterogeneous genome divergence can also arise in the absence of any gene flow, as a result of variation in selection and recombination across the genome. We suggest that to understand hybrid zone origins and dynamics, it is essential to distinguish between genome regions that are divergent between pure parental populations and regions that show restricted introgression where these populations interact in hybrid zones. The latter, more so than the former, reveal the likely genetic architecture of reproductive isolation. Mosaic hybrid zones, because of their complex structure and multiple contacts, are particularly good subjects for distinguishing primary intergradation from secondary contact. Comparisons among independent hybrid zones or transects that involve the 'same' species pair can also help to distinguish between divergence with gene flow and secondary contact. However, data from replicate hybrid zones or replicate transects do not reveal consistent patterns; in a few cases, patterns of introgression are similar across independent transects, but for many taxa, there is distinct lack of concordance, presumably due to variation in environmental context and/or variation in the genetics of the interacting populations.
Collapse
Affiliation(s)
- Richard G Harrison
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Erica L Larson
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| |
Collapse
|