1
|
Intrinsic individual variation in daily activity onset and plastic responses on temporal but not spatial scales in female great tits. Sci Rep 2022; 12:18022. [PMID: 36289438 PMCID: PMC9605954 DOI: 10.1038/s41598-022-22935-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
In a variety of species, individuals appear to be consistent in the daily timing of their activity onset. Such consistent among-individual differences can result from both intrinsic factors, as individuals may e.g. differ genetically, and extrinsic factors, as the environment may vary on spatial and temporal scales. However, previous studies typically did not differentiate between their respective contributions on individual variation in the timing of activities. Here, we repeatedly measured the onset of activity in female great tits (Parus major) on consecutive days during the egg laying phase of the breeding season in four consecutive years. Subsequently, we used a variance partitioning analysis in order to determine which part of the total variation could be attributed to intrinsic (female identity) and extrinsic (nest box identity) factors. Overall, 27% of the total variation could be attributed to female identity. In addition, we found temporal variation in the activity onset, indicating that individuals can plastically adjust their timing. Yet despite their general ability to change the timing of activities over time, spatial environmental factors did not contribute significantly to the observed variation. Individuals may choose a habitat that matches the preferred timing of activities, or might not benefit from adjusting their timing to environmental factors that might vary on spatial scales.
Collapse
|
2
|
Aulsebrook AE, Johnsson RD, Lesku JA. Light, Sleep and Performance in Diurnal Birds. Clocks Sleep 2021; 3:115-131. [PMID: 33525352 PMCID: PMC7931117 DOI: 10.3390/clockssleep3010008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 01/04/2023] Open
Abstract
Sleep has a multitude of benefits and is generally considered necessary for optimal performance. Disruption of sleep by extended photoperiods, moonlight and artificial light could therefore impair performance in humans and non-human animals alike. Here, we review the evidence for effects of light on sleep and subsequent performance in birds. There is accumulating evidence that exposure to natural and artificial sources of light regulates and suppresses sleep in diurnal birds. Sleep also benefits avian cognitive performance, including during early development. Nevertheless, multiple studies suggest that light can prolong wakefulness in birds without impairing performance. Although there is still limited research on this topic, these results raise intriguing questions about the adaptive value of sleep. Further research into the links between light, sleep and performance, including the underlying mechanisms and consequences for fitness, could shed new light on sleep evolution and urban ecology.
Collapse
Affiliation(s)
- Anne E. Aulsebrook
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia
- School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia; (R.D.J.); (J.A.L.)
- Correspondence:
| | - Robin D. Johnsson
- School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia; (R.D.J.); (J.A.L.)
| | - John A. Lesku
- School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia; (R.D.J.); (J.A.L.)
| |
Collapse
|
3
|
Brynychová K, Šálek ME, Vozabulová E, Sládeček M. Daily Rhythms of Female Self-maintenance Correlate with Predation Risk and Male Nest Attendance in a Biparental Wader. J Biol Rhythms 2020; 35:489-500. [PMID: 32677476 DOI: 10.1177/0748730420940465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Parents make tradeoffs between care for offspring and themselves. Such a tradeoff should be reduced in biparental species, when both parents provide parental care. However, in some biparental species, the contribution of one sex varies greatly over time or between pairs. How this variation in parental care influences self-maintenance rhythms is often unclear. In this study, we used continuous video recording to investigate the daily rhythms of sleep and feather preening in incubating females of the Northern Lapwing (Vanellus vanellus), a wader with a highly variable male contribution to incubation. We found that the female's sleep frequency peaked after sunrise and before sunset but was low in the middle of the day and especially during the night. In contrast, preening frequency followed a 24-h rhythm and peaked in the middle of the day. Taken together, incubating females rarely slept or preened during the night, when the predation pressure was highest. Moreover, the sleeping and preening rhythms were modulated by the male contribution to incubation. Females that were paired with more contributing males showed a stronger sleep rhythm but also a weaker preening rhythm. If more incubating males also invest more in nest guarding and deterring daylight predators, their females may afford more sleep on the nest during the day and preen more when they are off the nest. Whether the lack of sleep in females paired with less caregiving males has fitness consequences awaits future investigation.
Collapse
Affiliation(s)
- Kateřina Brynychová
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Praha, Suchdol, Czech Republic
| | - Miroslav E Šálek
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Praha, Suchdol, Czech Republic
| | - Eva Vozabulová
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Praha, Suchdol, Czech Republic
| | - Martin Sládeček
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Praha, Suchdol, Czech Republic
| |
Collapse
|
4
|
Parody-Merino ÁM, Battley PF, Conklin JR, Fidler AE. No evidence for an association between Clock gene allelic variation and migration timing in a long-distance migratory shorebird (Limosa lapponica baueri). Oecologia 2019; 191:843-859. [PMID: 31659437 DOI: 10.1007/s00442-019-04524-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 10/01/2019] [Indexed: 01/09/2023]
Abstract
The gene Clock is a key part of the Core Circadian Oscillator, and the length of the polyglutamine (poly-Q) repeat sequence in Clock (ClkpolyQcds) has been proposed to be associated with the timing of annual cycle events in birds. We tested whether variation in ClkpolyQcds corresponds to variation in migration timing in the bar-tailed godwit (Limosa lapponica baueri), a species in which individuals show strong annual consistency in their migration timing despite the New Zealand population migrating across a 5-week period. We describe allelic variation of the ClkpolyQcds in 135 godwits over-wintering in New Zealand (N.Z.) and investigate whether polymorphism in this region is associated with northward migration timing (chronophenotype) from N.Z. or (for 32 birds tracked by geolocator) after the primary stopover in Asia. Six Clock alleles were detected (Q7‒Q12) and there was substantial variation between individuals (heterozygosity of 0.79). There was no association between ClkpolyQcds polymorphism and migration timing from N.Z. The length of the shorter Clock allele was related to migration timing from Asia, though this relationship arose largely from just a few northern-breeding birds with longer alleles. Other studies show no consistent associations between ClkpolyQcds and migration timing in birds, although Clock may be associated with breeding latitude in some species (as an adaptation to photoperiodic regime). Apparent relationships with migration timing could reflect latitude-related variation in migration timing, rather than Clock directly affecting migration timing. On current evidence, ClkpolyQcds is not a strong candidate for driving migration timing in migratory birds generally.
Collapse
Affiliation(s)
- Ángela M Parody-Merino
- Wildlife and Ecology Group, School of Agriculture and Environment, Massey University, Palmerston North, 4442, New Zealand.
| | - Phil F Battley
- Wildlife and Ecology Group, School of Agriculture and Environment, Massey University, Palmerston North, 4442, New Zealand
| | - Jesse R Conklin
- Conservation Ecology Group, University of Groningen, 9700 AB, Groningen, The Netherlands
| | - Andrew E Fidler
- Institute of Marine Science, University of Auckland, Auckland, 1142, New Zealand
| |
Collapse
|
5
|
Raap T, Thys B, Grunst AS, Grunst ML, Pinxten R, Eens M. Personality and artificial light at night in a semi-urban songbird population: No evidence for personality-dependent sampling bias, avoidance or disruptive effects on sleep behaviour. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1317-1324. [PMID: 30268982 DOI: 10.1016/j.envpol.2018.09.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 09/03/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Light pollution or artificial light at night (ALAN) is an increasing, worldwide challenge that affects many aspects of animal behaviour. Interestingly, the response to ALAN varies widely among individuals within a population and variation in personality (consistent individual differences in behaviour) may be an important factor explaining this variation. Consistent individual differences in exploration behaviour in particular may relate to the response to ALAN, as increasing evidence indicates its relation with how individuals respond to novelty and how they cope with anthropogenic modifications of the environment. Here, we assayed exploration behaviour in a novel environment as a proxy for personality variation in great tits (Parus major). We observed individual sleep behaviour over two consecutive nights, with birds sleeping under natural dark conditions the first night and confronted with ALAN inside the nest box on the second night, representing a modified and novel roosting environment. We examined whether roosting decisions when confronted with a camera (novel object), and subsequently with ALAN, were personality-dependent, as this could potentially create sampling bias. Finally, we assessed whether experimentally challenging individuals with ALAN induced personality-dependent changes in sleep behaviour. Slow and fast explorers were equally likely to roost in a nest box when confronted with either a camera or artificial light inside, indicating the absence of personality-dependent sampling bias or avoidance of exposure to ALAN. Moreover, slow and fast explorers were equally disrupted in their sleep behaviour when challenged with ALAN. Whether other behavioural and physiological effects of ALAN are personality-dependent remains to be determined. Moreover, the sensitivity to disturbance of different behavioural types might depend on the behavioural context and the specific type of challenge in question. In our increasingly urbanized world, determining whether the effects of anthropogenic stressors depend on personality type will be of paramount importance as it may affect population dynamics.
Collapse
Affiliation(s)
- Thomas Raap
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium.
| | - Bert Thys
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium
| | - Andrea S Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium
| | - Melissa L Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium
| | - Rianne Pinxten
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium; Faculty of Social Sciences, Antwerp School of Education, University of Antwerp, Antwerp, Belgium
| | - Marcel Eens
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
6
|
Aulsebrook AE, Jones TM, Mulder RA, Lesku JA. Impacts of artificial light at night on sleep: A review and prospectus. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 329:409-418. [PMID: 29869374 DOI: 10.1002/jez.2189] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/10/2018] [Accepted: 05/22/2018] [Indexed: 12/13/2022]
Abstract
Natural cycles of light and darkness govern the timing of most aspects of animal behavior and physiology. Artificial light at night (ALAN)-a recent and pervasive form of pollution-can mask natural photoperiodic cues and interfere with biological rhythms. One such rhythm vulnerable to perturbation is the sleep-wake cycle. ALAN may greatly influence sleep in humans and wildlife, particularly in animals that sleep predominantly at night. There has been some recent evidence for impacts of ALAN on sleep, but critical questions remain. Some of these can be addressed by adopting approaches already entrenched in sleep research. In this paper, we review the current evidence for impacts of ALAN on sleep, highlight gaps in our understanding, and suggest opportunities for future research.
Collapse
Affiliation(s)
- Anne E Aulsebrook
- The University of Melbourne, School of BioSciences, Melbourne, Victoria, Australia
| | - Therésa M Jones
- The University of Melbourne, School of BioSciences, Melbourne, Victoria, Australia
| | - Raoul A Mulder
- The University of Melbourne, School of BioSciences, Melbourne, Victoria, Australia
| | - John A Lesku
- La Trobe University, School of Life Sciences, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Raap T, Pinxten R, Eens M. Cavities shield birds from effects of artificial light at night on sleep. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 329:449-456. [DOI: 10.1002/jez.2174] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/01/2018] [Accepted: 05/01/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Thomas Raap
- Department of Biology; Behavioural Ecology and Ecophysiology Group; University of Antwerp; Wilrijk Belgium
| | - Rianne Pinxten
- Department of Biology; Behavioural Ecology and Ecophysiology Group; University of Antwerp; Wilrijk Belgium
- Faculty of Social Sciences; Antwerp School of Education; University of Antwerp; Antwerp Belgium
| | - Marcel Eens
- Department of Biology; Behavioural Ecology and Ecophysiology Group; University of Antwerp; Wilrijk Belgium
| |
Collapse
|
8
|
Martorell-Barceló M, Campos-Candela A, Alós J. Fitness consequences of fish circadian behavioural variation in exploited marine environments. PeerJ 2018; 6:e4814. [PMID: 29796349 PMCID: PMC5961624 DOI: 10.7717/peerj.4814] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/27/2018] [Indexed: 12/23/2022] Open
Abstract
The selective properties of fishing that influence behavioural traits have recently gained interest. Recent acoustic tracking experiments have revealed between-individual differences in the circadian behavioural traits of marine free-living fish; these differences are consistent across time and ecological contexts and generate different chronotypes. Here, we hypothesised that the directional selection resulting from fishing influences the wild circadian behavioural variation and affects differently to individuals in the same population differing in certain traits such as awakening time or rest onset time. We developed a spatially explicit social-ecological individual-based model (IBM) to test this hypothesis. The parametrisation of our IBM was fully based on empirical data; which represent a fishery formed by patchily distributed diurnal resident fish that are exploited by a fleet of mobile boats (mostly bottom fisheries). We ran our IBM with and without the observed circadian behavioural variation and estimated selection gradients as a quantitative measure of trait change. Our simulations revealed significant and strong selection gradients against early-riser chronotypes when compared with other behavioural and life-history traits. Significant selection gradients were consistent across a wide range of fishing effort scenarios. Our theoretical findings enhance our understanding of the selective properties of fishing by bridging the gaps among three traditionally separated fields: fisheries science, behavioural ecology and chronobiology. We derive some general predictions from our theoretical findings and outline a list of empirical research needs that are required to further understand the causes and consequences of circadian behavioural variation in marine fish.
Collapse
Affiliation(s)
| | - Andrea Campos-Candela
- Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Esporles, Spain.,Universidad de Alicante, Alicante, Spain
| | - Josep Alós
- Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Esporles, Spain
| |
Collapse
|
9
|
Rattenborg NC, de la Iglesia HO, Kempenaers B, Lesku JA, Meerlo P, Scriba MF. Sleep research goes wild: new methods and approaches to investigate the ecology, evolution and functions of sleep. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0251. [PMID: 28993495 DOI: 10.1098/rstb.2016.0251] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2017] [Indexed: 11/12/2022] Open
Abstract
Despite being a prominent aspect of animal life, sleep and its functions remain poorly understood. As with any biological process, the functions of sleep can only be fully understood when examined in the ecological context in which they evolved. Owing to technological constraints, until recently, sleep has primarily been examined in the artificial laboratory environment. However, new tools are enabling researchers to study sleep behaviour and neurophysiology in the wild. Here, we summarize the various methods that have enabled sleep researchers to go wild, their strengths and weaknesses, and the discoveries resulting from these first steps outside the laboratory. The initial studies to 'go wild' have revealed a wealth of interindividual variation in sleep, and shown that sleep duration is not even fixed within an individual, but instead varies in response to an assortment of ecological demands. Determining the costs and benefits of this inter- and intraindividual variation in sleep may reveal clues to the functions of sleep. Perhaps the greatest surprise from these initial studies is that the reduction in neurobehavioural performance resulting from sleep loss demonstrated in the laboratory is not an obligatory outcome of reduced sleep in the wild.This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'.
Collapse
Affiliation(s)
- Niels C Rattenborg
- Avian Sleep Group, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| | | | - Bart Kempenaers
- Department of Behavioral Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| | - John A Lesku
- School of Life Sciences, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Peter Meerlo
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 Groningen, The Netherlands
| | - Madeleine F Scriba
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
10
|
Dahlhaus R. Of Men and Mice: Modeling the Fragile X Syndrome. Front Mol Neurosci 2018; 11:41. [PMID: 29599705 PMCID: PMC5862809 DOI: 10.3389/fnmol.2018.00041] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/31/2018] [Indexed: 12/26/2022] Open
Abstract
The Fragile X Syndrome (FXS) is one of the most common forms of inherited intellectual disability in all human societies. Caused by the transcriptional silencing of a single gene, the fragile x mental retardation gene FMR1, FXS is characterized by a variety of symptoms, which range from mental disabilities to autism and epilepsy. More than 20 years ago, a first animal model was described, the Fmr1 knock-out mouse. Several other models have been developed since then, including conditional knock-out mice, knock-out rats, a zebrafish and a drosophila model. Using these model systems, various targets for potential pharmaceutical treatments have been identified and many treatments have been shown to be efficient in preclinical studies. However, all attempts to turn these findings into a therapy for patients have failed thus far. In this review, I will discuss underlying difficulties and address potential alternatives for our future research.
Collapse
Affiliation(s)
- Regina Dahlhaus
- Institute for Biochemistry, Emil-Fischer Centre, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
11
|
Helm B, Visser ME, Schwartz W, Kronfeld-Schor N, Gerkema M, Piersma T, Bloch G. Two sides of a coin: ecological and chronobiological perspectives of timing in the wild. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160246. [PMID: 28993490 PMCID: PMC5647273 DOI: 10.1098/rstb.2016.0246] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2017] [Indexed: 12/19/2022] Open
Abstract
Most processes within organisms, and most interactions between organisms and their environment, have distinct time profiles. The temporal coordination of such processes is crucial across levels of biological organization, but disciplines differ widely in their approaches to study timing. Such differences are accentuated between ecologists, who are centrally concerned with a holistic view of an organism in relation to its external environment, and chronobiologists, who emphasize internal timekeeping within an organism and the mechanisms of its adjustment to the environment. We argue that ecological and chronobiological perspectives are complementary, and that studies at the intersection will enable both fields to jointly overcome obstacles that currently hinder progress. However, to achieve this integration, we first have to cross some conceptual barriers, clarifying prohibitively inaccessible terminologies. We critically assess main assumptions and concepts in either field, as well as their common interests. Both approaches intersect in their need to understand the extent and regulation of temporal plasticity, and in the concept of 'chronotype', i.e. the characteristic temporal properties of individuals which are the targets of natural and sexual selection. We then highlight promising developments, point out open questions, acknowledge difficulties and propose directions for further integration of ecological and chronobiological perspectives through Wild Clock research.This article is part of the themed issue 'Wild Clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'.
Collapse
Affiliation(s)
- Barbara Helm
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G128QQ, UK
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO 50, 6700 AB Wageningen, The Netherlands
| | - William Schwartz
- Department of Neurology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, USA
| | | | - Menno Gerkema
- Chronobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Theunis Piersma
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems and Utrecht University, 1790 AB Den Burg, Texel, The Netherlands
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Guy Bloch
- Department of Ecology, Evolution, and Behavior, The A. Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
12
|
Alós J, Martorell-Barceló M, Campos-Candela A. Repeatability of circadian behavioural variation revealed in free-ranging marine fish. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160791. [PMID: 28386434 PMCID: PMC5367275 DOI: 10.1098/rsos.160791] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/12/2017] [Indexed: 05/26/2023]
Abstract
Repeatable between-individual differences in the behavioural manifestation of underlying circadian rhythms determine chronotypes in humans and terrestrial animals. Here, we have repeatedly measured three circadian behaviours, awakening time, rest onset and rest duration, in the free-ranging pearly razorfish, Xyrithchys novacula, facilitated by acoustic tracking technology and hidden Markov models. In addition, daily travelled distance, a standard measure of daily activity as fish personality trait, was repeatedly assessed using a State-Space Model. We have decomposed the variance of these four behavioural traits using linear mixed models and estimated repeatability scores (R) while controlling for environmental co-variates: year of experimentation, spatial location of the activity, fish size and gender and their interactions. Between- and within-individual variance decomposition revealed significant Rs in all traits suggesting high predictability of individual circadian behavioural variation and the existence of chronotypes. The decomposition of the correlations among chronotypes and the personality trait studied here into between- and within-individual correlations did not reveal any significant correlation at between-individual level. We therefore propose circadian behavioural variation as an independent axis of the fish personality, and the study of chronotypes and their consequences as a novel dimension in understanding within-species fish behavioural diversity.
Collapse
Affiliation(s)
- Josep Alós
- Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), C/ Miquel Marqués 21, 07190 Esporles, Illes Balears, Spain
| | | | | |
Collapse
|