1
|
Sando SR, Bhatla N, Lee EL, Horvitz HR. An hourglass circuit motif transforms a motor program via subcellularly localized muscle calcium signaling and contraction. eLife 2021; 10:59341. [PMID: 34212858 PMCID: PMC8331187 DOI: 10.7554/elife.59341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/26/2021] [Indexed: 12/27/2022] Open
Abstract
Neural control of muscle function is fundamental to animal behavior. Many muscles can generate multiple distinct behaviors. Nonetheless, individual muscle cells are generally regarded as the smallest units of motor control. We report that muscle cells can alter behavior by contracting subcellularly. We previously discovered that noxious tastes reverse the net flow of particles through the C. elegans pharynx, a neuromuscular pump, resulting in spitting. We now show that spitting results from the subcellular contraction of the anterior region of the pm3 muscle cell. Subcellularly localized calcium increases accompany this contraction. Spitting is controlled by an ‘hourglass’ circuit motif: parallel neural pathways converge onto a single motor neuron that differentially controls multiple muscles and the critical subcellular muscle compartment. We conclude that subcellular muscle units enable modulatory motor control and propose that subcellular muscle contraction is a fundamental mechanism by which neurons can reshape behavior.
Collapse
Affiliation(s)
- Steven R Sando
- Howard Hughes Medical Institute, Department of Biology, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Nikhil Bhatla
- Howard Hughes Medical Institute, Department of Biology, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States.,Miller Institute, Helen Wills Neuroscience Institute, Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Eugene Lq Lee
- Howard Hughes Medical Institute, Department of Biology, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - H Robert Horvitz
- Howard Hughes Medical Institute, Department of Biology, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
2
|
Grijalva-Mañay R, Dorca-Fornell C, Enríquez-Villacreses W, Miño-Castro G, Oliva R, Ochoa V, Proaño-Tuma K, Armijos-Jaramillo V. DnaJ molecules as potential effectors in Meloidogyne arenaria. An unexplored group of proteins in plant parasitic nematodes. Commun Integr Biol 2019; 12:151-161. [PMID: 31666916 PMCID: PMC6802931 DOI: 10.1080/19420889.2019.1676138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/16/2019] [Indexed: 01/09/2023] Open
Abstract
Plant pathogenic organisms secrete proteins called effectors that recognize, infect and promote disease within host cells. Bacteria, like Pseudomona syringae, use effectors with DnaJ function to disrupt plant defenses. DnaJ proteins (also called Hsp40) are a group of co-chaperone molecules, which assist in the folding of proteins. Despite the described role of DnaJs as effectors in several groups of pathogens, this group of proteins has never been correlated with the infection process in plant parasitic nematodes. In this study, we analyze the importance of DnaJ for plant parasitic nematodes. To do that, we compare the number of DnaJ proteins in nematodes with different lifestyles. Then, we predict the secreted DnaJ proteins in order to detect effector candidates. We found that Meloidogyne species have more secreted DnaJs than the rest of the nematodes analyzed in the study. Particularly, M. arenaria possess the highest proportion of secreted DnaJ sequences in comparison to total DnaJ proteins. Furthermore, we found in this species at least five sequences with a putative nuclear localization signal, three of them with a serine rich region with an unknown function. Then, we chose one of these sequences (MG599854) to perform an expression analysis. We found that MG599854 is over-expressed from 3 days post inoculation onwards in tomato plants. Moreover, MG599854 seems to be enough to produce cell death in Nicotiana benthamiana under transient expression conditions. In concordance with our results, we propose that DnaJ proteins are a potential source of effector proteins in plant parasitic nematodes.
Collapse
Affiliation(s)
- Rosita Grijalva-Mañay
- Department of Life Sciences, Laboratory of Plant Biotechnology, Armed Forces University ESPE, Sangolquí, Ecuador
| | - Carmen Dorca-Fornell
- Department of Life Sciences, Laboratory of Plant Biotechnology, Armed Forces University ESPE, Sangolquí, Ecuador
| | | | - Gabriela Miño-Castro
- Department of Life Sciences, Laboratory of Plant Biotechnology, Armed Forces University ESPE, Sangolquí, Ecuador
| | - Ricardo Oliva
- Genetics and Biotechnology, International Rice Research Institute (IRRI), 4031 Laguna, Philippines
| | - Valeria Ochoa
- Department of Life Sciences, Laboratory of Plant Biotechnology, Armed Forces University ESPE, Sangolquí, Ecuador
| | - Karina Proaño-Tuma
- Department of Life Sciences, Laboratory of Plant Biotechnology, Armed Forces University ESPE, Sangolquí, Ecuador
| | - Vinicio Armijos-Jaramillo
- Carrera de Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador.,Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito, Ecuador
| |
Collapse
|
3
|
Thapliyal S, Babu K. C. elegans Locomotion: Finding Balance in Imbalance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1112:185-196. [PMID: 30637699 DOI: 10.1007/978-981-13-3065-0_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The excitation-inhibition (E-I) imbalance in neural circuits represents a hallmark of several neuropsychiatric disorders. The tiny nematode Caenorhabditis elegans has emerged as an excellent system to study the molecular mechanisms underlying this imbalance in neuronal circuits. The C. elegans body wall muscles receive inputs from both excitatory cholinergic and inhibitory GABAergic motor neurons at neuromuscular junctions (NMJ), making it an excellent model for studying the genetic and molecular mechanisms required for maintaining E-I balance at the NMJ. The cholinergic neurons form dyadic synapses wherein they synapse onto ipsilateral body wall muscles allowing for muscle contraction as well as onto GABAergic motor neurons that in turn synapse on the contralateral body wall muscles causing muscle relaxation. An alternating wave of contraction and relaxation mediated by excitatory and inhibitory signals maintains locomotion in C. elegans. This locomotory behavior requires an intricate balance between the excitatory cholinergic signaling and the inhibitory GABAergic signaling mechanisms.Studies on the C. elegans NMJ have provided insights into several molecular mechanisms that could regulate this balance in neural circuits. This review provides a discussion on multiple genetic factors including neuropeptides and their receptors, cell adhesion molecules, and other molecular pathways that have been associated with maintaining E-I balance in C. elegans motor circuits. Further, it also discusses the implications of these studies that could help us in understanding the role of E-I balance in mammalian neural circuits and how changes in this balance could give rise to brain disorders.
Collapse
Affiliation(s)
- Shruti Thapliyal
- Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India.
| | - Kavita Babu
- Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India.
| |
Collapse
|