1
|
Freoa L, Chevin LM, Christol P, Méléard S, Rera M, Véber A, Gibert JM. Drosophilids with darker cuticle have higher body temperature under light. Sci Rep 2023; 13:3513. [PMID: 36864153 PMCID: PMC9981618 DOI: 10.1038/s41598-023-30652-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
Cuticle pigmentation was shown to be associated with body temperature for several relatively large species of insects, but it was questioned for small insects. Here we used a thermal camera to assess the association between drosophilid cuticle pigmentation and body temperature increase when individuals are exposed to light. We compared mutants of large effects within species (Drosophila melanogaster ebony and yellow mutants). Then we analyzed the impact of naturally occurring pigmentation variation within species complexes (Drosophila americana/Drosophila novamexicana and Drosophila yakuba/Drosophila santomea). Finally we analyzed lines of D. melanogaster with moderate differences in pigmentation. We found significant differences in temperatures for each of the four pairs we analyzed. The temperature differences appeared to be proportional to the differently pigmented area: between Drosophila melanogaster ebony and yellow mutants or between Drosophila americana and Drosophila novamexicana, for which the whole body is differently pigmented, the temperature difference was around 0.6 °C ± 0.2 °C. By contrast, between D. yakuba and D. santomea or between Drosophila melanogaster Dark and Pale lines, for which only the posterior abdomen is differentially pigmented, we detected a temperature difference of about 0.14 °C ± 0.10 °C. This strongly suggests that cuticle pigmentation has ecological implications in drosophilids regarding adaptation to environmental temperature.
Collapse
Affiliation(s)
- Laurent Freoa
- Laboratoire de Biologie du Développement, UMR 7622, CNRS, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 9 Quai St-Bernard, 75005, Paris, France
- CNRS, MAP5, Université Paris Cité, 45 Rue des Saints-Pères, 75006, Paris, France
| | - Luis-Miguel Chevin
- CEFE, CNRS, EPHE, IRD, Univ Montpellier, Univ Paul Valéry Montpellier 3, 34000, Montpellier, France
| | - Philippe Christol
- UMR5214, CNRS, Institut d'électronique et des systèmes, Université de Montpellier, 34000, Montpellier, France
| | - Sylvie Méléard
- CMAP, CNRS, Ecole Polytechnique, France et Institut Universitaire de France, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Michael Rera
- Inserm UMR U1284, Centre de Recherche Interdisciplinaire (CRI Paris), 8 bis Rue Charles V, 75004, Paris, France
| | - Amandine Véber
- CNRS, MAP5, Université Paris Cité, 45 Rue des Saints-Pères, 75006, Paris, France
| | - Jean-Michel Gibert
- Laboratoire de Biologie du Développement, UMR 7622, CNRS, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 9 Quai St-Bernard, 75005, Paris, France.
| |
Collapse
|
2
|
Farnworth MS, Eckermann KN, Ahmed HMM, Mühlen DS, He B, Bucher G. The Red Flour Beetle as Model for Comparative Neural Development: Genome Editing to Mark Neural Cells in Tribolium Brain Development. Methods Mol Biol 2020; 2047:191-217. [PMID: 31552656 DOI: 10.1007/978-1-4939-9732-9_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated) scientists working with Tribolium castaneum can now generate transgenic lines with site-specific insertions at their region of interest. We present two methods to generate in vivo imaging lines suitable for marking subsets of neurons with fluorescent proteins. The first method relies on homologous recombination and uses a 2A peptide to create a bicistronic mRNA. In such lines, the target and the marker proteins are not fused but produced at equal amounts. This work-intensive method is compared with creating gene-specific enhancer traps that do not rely on homologous recombination. These are faster to generate but reflect the expression of the target gene less precisely. Which method to choose, strongly depends on the aims of each research project and in turn impacts of how neural cells and their development are marked. We describe the necessary steps from designing constructs and guide RNAs to embryonic injection and making homozygous stocks.
Collapse
Affiliation(s)
- Max S Farnworth
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany. .,Göttingen Graduate Center for Molecular Biosciences, Neurosciences and Biophysics, Göttingen, Germany.
| | - Kolja N Eckermann
- Göttingen Graduate Center for Molecular Biosciences, Neurosciences and Biophysics, Göttingen, Germany.,Department of Developmental Biology, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
| | - Hassan M M Ahmed
- Department of Developmental Biology, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany.,Department of Crop Protection, Faculty of Agriculture, University of Khartoum, Khartoum-North, Khartoum, Sudan
| | - Dominik S Mühlen
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany.,Göttingen Graduate Center for Molecular Biosciences, Neurosciences and Biophysics, Göttingen, Germany
| | - Bicheng He
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
3
|
Saleh Ziabari O, Shingleton AW. Quantifying Abdominal Pigmentation in Drosophila melanogaster. J Vis Exp 2017. [PMID: 28605370 DOI: 10.3791/55732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Pigmentation is a morphologically simple but highly variable trait that often has adaptive significance. It has served extensively as a model for understanding the development and evolution of morphological phenotypes. Abdominal pigmentation in Drosophila melanogaster has been particularly useful, allowing researchers to identify the loci that underlie inter- and intraspecific variations in morphology. Hitherto, however, D. melanogaster abdominal pigmentation has been largely assayed qualitatively, through scoring, rather than quantitatively, which limits the forms of statistical analysis that can be applied to pigmentation data. This work describes a new methodology that allows for the quantification of various aspects of the abdominal pigmentation pattern of adult D. melanogaster. The protocol includes specimen mounting, image capture, data extraction, and analysis. All the software used for image capture and analysis feature macros written for open-source image analysis. The advantage of this approach is the ability to precisely measure pigmentation traits using a methodology that is highly reproducible across different imaging systems. While the technique has been used to measure variation in the tergal pigmentation patterns of adult D. melanogaster, the methodology is flexible and broadly applicable to pigmentation patterns in myriad different organisms.
Collapse
|