1
|
Peng Y, Chen B. Role of cell membrane homeostasis in the pathogenicity of pathogenic filamentous fungi. Virulence 2024; 15:2299183. [PMID: 38156783 PMCID: PMC10761126 DOI: 10.1080/21505594.2023.2299183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024] Open
Abstract
The cell membrane forms a fundamental part of all living cells and participates in a variety of physiological processes, such as material exchange, stress response, cell recognition, signal transduction, cellular immunity, apoptosis, and pathogenicity. Here, we review the mechanisms and functions of the membrane structure (lipid components of the membrane and the biosynthesis of unsaturated fatty acids), membrane proteins (transmembrane proteins and proteins contributing to membrane curvature), transcriptional regulation, and cell wall components that influence the virulence and pathogenicity of filamentous fungi.
Collapse
Affiliation(s)
- Yuejin Peng
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Bin Chen
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
2
|
Koshiba A, Nakano M, Hirata Y, Konishi R, Matsuoka Y, Miwa Y, Mori A, Kondo A, Tanaka T. Enhanced production of isobutyl and isoamyl acetate using Yarrowia lipolytica. Biotechnol Prog 2024; 40:e3499. [PMID: 39056525 DOI: 10.1002/btpr.3499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/03/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Short-chain esters, particularly isobutyl acetate and isoamyl acetate, hold significant industrial value due to their wide-ranging applications in flavors, fragrances, solvents, and biofuels. In this study, we demonstrated the biosynthesis of acetate esters using Yarrowia lipolytica as a host by feeding alcohols to the yeast culture. Initially, we screened for optimal alcohol acyltransferases for ester biosynthesis in Y. lipolytica. Strains of Y. lipolytica expressing atf1 from Saccharomyces cerevisiae, produced 251 or 613 mg/L of isobutyl acetate or of isoamyl acetate, respectively. We found that introducing additional copies of ATF1 enhanced ester production. Furthermore, by increasing the supply of acetyl-CoA and refining the culture conditions, we achieved high production of isoamyl acetate, reaching titers of 3404 mg/L. We expanded our study to include the synthesis of a range of acetate esters, facilitated by enriching the culture medium with various alcohols. This study underscores the versatility and potential of Y. lipolytica in the industrial production of acetate esters.
Collapse
Affiliation(s)
- Ayumi Koshiba
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Mariko Nakano
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Yuuki Hirata
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Rie Konishi
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Yuta Matsuoka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Yuta Miwa
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Ayana Mori
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| |
Collapse
|
3
|
Huang L, Li N, Song Y, Gao J, Nian L, Zhou J, Zhang B, Liu Z, Zheng Y. Development of a marker recyclable CRISPR/Cas9 system for scarless and multigene editing in Fusarium fujikuroi. Biotechnol J 2024; 19:e2400164. [PMID: 39014928 DOI: 10.1002/biot.202400164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
Iterative metabolic engineering of Fusarium fujikuroi has traditionally been hampered by its low homologous recombination efficiency and scarcity of genetic markers. Thus, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas9) system has emerged as a promising tool for precise genome editing in this organism. Some integrated CRISPR/Cas9 strategies have been used to engineer F. fujikuroi to improve GA3 production capabilities, but low editing efficiency and possible genomic instability became the major obstacle. Herein, we developed a marker recyclable CRISPR/Cas9 system for scarless and multigene editing in F. fujikuroi. This system, based on an autonomously replicating sequence, demonstrated the capability of a single plasmid harboring all editing components to achieve 100%, 75%, and 37.5% editing efficiency for single, double, and triple gene targets, respectively. Remarkably, even with a reduction in homologous arms to 50 bp, we achieved a 12.5% gene editing efficiency. By employing this system, we successfully achieved multicopy integration of the truncated 3-hydroxy-3-methyl glutaryl coenzyme A reductase gene (tHMGR), leading to enhanced GA3 production. A key advantage of our plasmid-based gene editing approach was the ability to recycle selective markers through a simplified protoplast preparation and recovery process, which eliminated the need for additional genetic markers. These findings demonstrated that the single-plasmid CRISPR/Cas9 system enables rapid and precise multiple gene deletions/integrations, laying a solid foundation for future metabolic engineering efforts aimed at industrial GA3 production.
Collapse
Affiliation(s)
- Lianggang Huang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Ningning Li
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yixin Song
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jie Gao
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Lu Nian
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Junping Zhou
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Bo Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Zhiqiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yuguo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
4
|
Qiu M, Qiu L, Deng Q, Fang Z, Sun L, Wang Y, Gooneratne R, Zhao J. L-Cysteine hydrochloride inhibits Aspergillus flavus growth and AFB 1 synthesis by disrupting cell structure and antioxidant system balance. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132218. [PMID: 37552922 DOI: 10.1016/j.jhazmat.2023.132218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023]
Abstract
Aflatoxin B1 (AFB1) is the most potent known naturally occurring carcinogen and pose an immense threat to food safety and human health. L-Cysteine hydrochloride (L-CH) is a food additive often used as a fruit and vegetable preservative and also to approved bread consistency. In this study, we investigated the effects and mechanisms of L-CH as an antimicrobial on the growth of Aspergillus flavus (A. flavus) and AFB1 biosynthesis. L-CH significantly inhibited A. flavus mycelial growth, affected mycelial morphology and AFB1 synthesis. Furthermore, L-CH induced glutathione (GSH) synthesis which scavenged intracellular reactive oxygen species (ROS). RNA-Seq indicated that L-CH inhibited hyphal branching, and spore and sclerotia formation by controlling cell wall and spore development-related genes. Activation of the GSH metabolic pathway eliminated intracellular ROS, leading to hyphal dwarfing. L-CH treatment downregulated most of the Aflatoxin (AF) cluster genes and aflS, aflR, AFLA_091090 transcription factors. This study provides new insights into the molecular mechanism of L-CH control of A. flavus and AFB1 foundation. We believe that L-CH could be used as a food additive to control AFB1 in foods and also in the environment.
Collapse
Affiliation(s)
- Mei Qiu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Lihong Qiu
- Department of Clinical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Qi Deng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China.
| | - Zhijia Fang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Yaling Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Jian Zhao
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
5
|
Matsuoka Y, Fujie N, Nakano M, Koshiba A, Kondo A, Tanaka T. Triacetic acid lactone production using 2-pyrone synthase expressing Yarrowia lipolytica via targeted gene deletion. J Biosci Bioeng 2023; 136:320-326. [PMID: 37574415 DOI: 10.1016/j.jbiosc.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023]
Abstract
An environmentally sustainable world can be realized by using microorganisms to produce value-added materials from renewable biomass. Triacetic acid lactone (TAL) is a high-value-added compound that is used as a precursor of various organic compounds such as food additives and pharmaceuticals. In this study, we used metabolic engineering to produce TAL from glucose using an oleaginous yeast Yarrowia lipolytica. We first introduced TAL-producing gene 2-pyrone synthase into Y. lipolytica, which enabled TAL production. Next, we increased TAL production by engineering acetyl-CoA and malonyl-CoA biosynthesis pathways by redirecting carbon flux to glycolysis. Finally, we optimized the carbon and nitrogen ratios in the medium, culminating in the production of 4078 mg/L TAL. The strategy presented in this study had the potential to improve the titer and yield of polyketide biosynthesis.
Collapse
Affiliation(s)
- Yuta Matsuoka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Naofumi Fujie
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Mariko Nakano
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Ayumi Koshiba
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
6
|
The Hydrophobin Gene Family Confers a Fitness Trade-off between Spore Dispersal and Host Colonization in Penicillium expansum. mBio 2022; 13:e0275422. [PMID: 36374077 PMCID: PMC9765440 DOI: 10.1128/mbio.02754-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hydrophobins are small amphipathic surface proteins found exclusively in fungi. In filamentous ascomycetes, one conserved role of a subset of hydrophobins is their requirement for spore dispersal. Other contributions of these proteins to fungal biology are less clear and vary across genera. To determine the functions of hydrophobins in the biology and virulence of this fungus, we created seven single mutants and a septuple-deletion mutant (Δsep) of the entire putative P. expansum hydrophobin gene family. One spore hydrophobin, HfbA, shared 72.56% sequence identity to the Aspergillus fumigatus spore hydrophobin RodA and was required for efficient spore dispersion in P. expansum. The Δsep mutant was likewise reduced in spore dispersal, hypothesized to be due to the aberrant shape and clumping of the Δsep conidia and conidiophores. Additionally, the Δsep mutant presented several differences in physiological traits, including decreased survival in extreme cold temperatures and increased production of several toxic secondary metabolites. Most striking was the unexpected fitness advantage that the Δsep strain displayed in competitive passaging with the wild-type strain on host apple where the mutant significantly increased in percentage of the colonizing population. This work uncovers potential ecological trade-offs of hydrophobin presence in filamentous fungi. IMPORTANCE Hydrophobins are amphipathic secreted proteins uniquely found in filamentous fungi. These proteins self-assemble and constitute the outer most layer of fungal surfaces thus mediating multiple aspects of fungal interactions with their environments. Hydrophobins facilitate spore dispersal, yet a full understanding of the function and need for multiple hydrophobins in fungal species remains elusive. To address the role of this protein family in Penicillium expansum, the causative agent of blue mold disease in pome fruit, all seven putative hydrophobin genes were deleted and the mutant assessed for numerous physiological traits and virulence on fruit. Despite showing a decrease in spore dispersal, the septuple-deletion mutant was more fit than the wild type in competitive pathogenicity tests on apple. Our findings suggest this gene family illustrates a functional trade-off between dispersal and host colonization in P. expansum.
Collapse
|
7
|
Arentshorst M, Reijngoud J, van Tol DJC, Reid ID, Arendsen Y, Pel HJ, van Peij NNME, Visser J, Punt PJ, Tsang A, Ram AFJ. Utilization of ferulic acid in Aspergillus niger requires the transcription factor FarA and a newly identified Far-like protein (FarD) that lacks the canonical Zn(II) 2Cys 6 domain. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:978845. [PMID: 37746181 PMCID: PMC10512302 DOI: 10.3389/ffunb.2022.978845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/17/2022] [Indexed: 09/26/2023]
Abstract
The feruloyl esterase B gene (faeB) is specifically induced by hydroxycinnamic acids (e.g. ferulic acid, caffeic acid and coumaric acid) but the transcriptional regulation network involved in faeB induction and ferulic acid metabolism has only been partially addressed. To identify transcription factors involved in ferulic acid metabolism we constructed and screened a transcription factor knockout library of 239 Aspergillus niger strains for mutants unable to utilize ferulic acid as a carbon source. The ΔfarA transcription factor mutant, already known to be involved in fatty acid metabolism, could not utilize ferulic acid and other hydroxycinnamic acids. In addition to screening the transcription factor mutant collection, a forward genetic screen was performed to isolate mutants unable to express faeB. For this screen a PfaeB-amdS and PfaeB-lux613 dual reporter strain was engineered. The rationale of the screen is that in this reporter strain ferulic acid induces amdS (acetamidase) expression via the faeB promoter resulting in lethality on fluoro-acetamide. Conidia of this reporter strain were UV-mutagenized and plated on fluoro-acetamide medium in the presence of ferulic acid. Mutants unable to induce faeB are expected to be fluoro-acetamide resistant and can be positively selected for. Using this screen, six fluoro-acetamide resistant mutants were obtained and phenotypically characterized. Three mutants had a phenotype identical to the farA mutant and sequencing the farA gene in these mutants indeed showed mutations in FarA which resulted in inability to growth on ferulic acid as well as on short and long chain fatty acids. The growth phenotype of the other three mutants was similar to the farA mutants in terms of the inability to grow on ferulic acid, but these mutants grew normally on short and long chain fatty acids. The genomes of these three mutants were sequenced and allelic mutations in one particular gene (NRRL3_09145) were found. The protein encoded by NRRL3_09145 shows similarity to the FarA and FarB transcription factors. However, whereas FarA and FarB contain both the Zn(II)2Cys6 domain and a fungal-specific transcription factor domain, the protein encoded by NRRL3_09145 (FarD) lacks the canonical Zn(II)2Cys6 domain and possesses only the fungal specific transcription factor domain.
Collapse
Affiliation(s)
- Mark Arentshorst
- Microbial Sciences, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Jos Reijngoud
- Microbial Sciences, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Daan J. C. van Tol
- Microbial Sciences, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Ian D. Reid
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada
| | - Yvonne Arendsen
- DSM Biosciences and Process Innovation, Center for Biotech Innovation, Delft, Netherlands
| | - Herman J. Pel
- DSM Biosciences and Process Innovation, Center for Biotech Innovation, Delft, Netherlands
| | | | - Jaap Visser
- Microbial Sciences, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
- Fungal Genetics and Technology Consultancy, Wageningen, AJ, Netherlands
| | - Peter J. Punt
- Microbial Sciences, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada
| | - Arthur F. J. Ram
- Microbial Sciences, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| |
Collapse
|
8
|
Systematic Characterization of bZIP Transcription Factors Required for Development and Aflatoxin Generation by High-Throughput Gene Knockout in Aspergillus flavus. J Fungi (Basel) 2022; 8:jof8040356. [PMID: 35448587 PMCID: PMC9031554 DOI: 10.3390/jof8040356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/31/2022] Open
Abstract
The basic leucine zipper (bZIP) is an important transcription factor required for fungal development, nutrient utilization, biosynthesis of secondary metabolites, and defense against various stresses. Aspergillus flavus is a major producer of aflatoxin and an opportunistic fungus on a wide range of hosts. However, little is known about the role of most bZIP genes in A. flavus. In this study, we developed a high-throughput gene knockout method based on an Agrobacterium-mediated transformation system. Gene knockout construction by yeast recombinational cloning and screening of the null mutants by double fluorescence provides an efficient way to construct gene-deleted mutants for this multinucleate fungus. We deleted 15 bZIP genes in A. flavus. Twelve of these genes were identified and characterized in this strain for the first time. The phenotypic analysis of these mutants showed that the 15 bZIP genes play a diverse role in mycelial growth (eight genes), conidiation (13 genes), aflatoxin biosynthesis (10 genes), oxidative stress response (11 genes), cell wall stress (five genes), osmotic stress (three genes), acid and alkali stress (four genes), and virulence to kernels (nine genes). Impressively, all 15 genes were involved in the development of sclerotia, and the respective deletion mutants of five of them did not produce sclerotia. Moreover, MetR was involved in this biological process. In addition, HapX and MetR play important roles in the adaptation to excessive iron and sulfur metabolism, respectively. These studies provide comprehensive insights into the role of bZIP transcription factors in this aflatoxigenic fungus of global significance.
Collapse
|
9
|
HapX, an Indispensable bZIP Transcription Factor for Iron Acquisition, Regulates Infection Initiation by Orchestrating Conidial Oleic Acid Homeostasis and Cytomembrane Functionality in Mycopathogen Beauveria bassiana. mSystems 2020; 5:5/5/e00695-20. [PMID: 33051379 PMCID: PMC7567583 DOI: 10.1128/msystems.00695-20] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Conidial maturation and germination are highly coupled physiological processes in filamentous fungi that are critical for the pathogenicity of mycopathogens. Compared to the mechanisms involved in conidial germination, those of conidial reserves during maturation are less understood. The insect-pathogenic fungus Beauveria bassiana, as a representative species of filamentous fungi, is important for applied and fundamental research. In addition to its conserved roles in fungal adaptation to iron status, the bZIP transcription factor HapX acts as a master regulator involved in conidial virulence and regulates fatty acid/lipid metabolism. Further investigation revealed that the Δ9-fatty acid desaturase gene (Ole1) is a direct downstream target of HapX. This study reveals the HapX-Ole1 pathway involved in the fatty acid/lipid accumulation associated with conidial maturation and provides new insights into the startup mechanism of infection caused by spores from pathogenic fungi. In pathogenic filamentous fungi, conidial germination not only is fundamental for propagation in the environment but is also a critical step of infection. In the insect mycopathogen Beauveria bassiana, we genetically characterized the role of the basic leucine zipper (bZIP) transcription factor HapX (BbHapX) in conidial nutrient reserves and pathogen-host interaction. Ablation of BbHapX resulted in an almost complete loss of virulence in the topical inoculation and intrahemocoel injection assays. Comparative transcriptomic analysis revealed that BbHapX is required for fatty acid (FA)/lipid metabolism, and biochemical analyses indicated that BbHapX loss caused a significant reduction in conidial FA contents. Exogenous oleic acid could partially or completely restore the impaired phenotypes of the ΔBbHapX mutant, including germination rate, membrane integrity, vegetative growth, and virulence. BbHapX mediates fungal iron acquisition which is not required for desaturation of stearic acid. Additionally, inactivation of the Δ9-fatty acid desaturase gene (BbOle1) generated defects similar to those of the ΔBbHapX mutant; oleic acid also had significant restorative effects on the defective phenotypes of the ΔBbOle1 mutant. A gel retarding assay revealed that BbHapX directly regulated the expression of BbOle1. Lipidomic analyses indicated that both BbHapX and BbOle1 contributed to the homeostasis of phospholipids with nonpolar tails derived from oleic acid; therefore, exogenous phospholipids could significantly restore membrane integrity. These data reveal that the HapX-Ole1 pathway contributes to conidial fatty acid/lipid reserves and that there are important links between the lipid biology and membrane functionality involved in the early stages of infection caused by B.bassiana. IMPORTANCE Conidial maturation and germination are highly coupled physiological processes in filamentous fungi that are critical for the pathogenicity of mycopathogens. Compared to the mechanisms involved in conidial germination, those of conidial reserves during maturation are less understood. The insect-pathogenic fungus Beauveria bassiana, as a representative species of filamentous fungi, is important for applied and fundamental research. In addition to its conserved roles in fungal adaptation to iron status, the bZIP transcription factor HapX acts as a master regulator involved in conidial virulence and regulates fatty acid/lipid metabolism. Further investigation revealed that the Δ9-fatty acid desaturase gene (Ole1) is a direct downstream target of HapX. This study reveals the HapX-Ole1 pathway involved in the fatty acid/lipid accumulation associated with conidial maturation and provides new insights into the startup mechanism of infection caused by spores from pathogenic fungi.
Collapse
|
10
|
Yang K, Geng Q, Song F, He X, Hu T, Wang S, Tian J. Transcriptome Sequencing Revealed an Inhibitory Mechanism of Aspergillus flavus Asexual Development and Aflatoxin Metabolism by Soy-Fermenting Non-Aflatoxigenic Aspergillus. Int J Mol Sci 2020; 21:E6994. [PMID: 32977505 PMCID: PMC7583960 DOI: 10.3390/ijms21196994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/12/2020] [Accepted: 09/17/2020] [Indexed: 11/16/2022] Open
Abstract
Aflatoxins (AFs) have always been regarded as the most effective carcinogens, posing a great threat to agriculture, food safety, and human health. Aspergillus flavus is the major producer of aflatoxin contamination in crops. The prevention and control of A. flavus and aflatoxin continues to be a global problem. In this study, we demonstrated that the cell-free culture filtrate of Aspergillus oryzae and a non-aflatoxigenic A. flavus can effectively inhibit the production of AFB1 and the growth and reproduction of A. flavus, indicating that both of the non-aflatoxigenic Aspergillus strains secrete inhibitory compounds. Further transcriptome sequencing was performed to analyze the inhibitory mechanism of A. flavus treated with fermenting cultures, and the results revealed that genes involved in the AF biosynthesis pathway and other biosynthetic gene clusters were significantly downregulated, which might be caused by the reduced expression of specific regulators, such as AflS, FarB, and MtfA. The WGCNA results further revealed that genes involved in the TCA cycle and glycolysis were potentially involved in aflatoxin biosynthesis. Our comparative transcriptomics also revealed that two conidia transcriptional factors, brlA and abaA, were found to be significantly downregulated, which might lead to the downregulation of conidiation-specific genes, such as the conidial hydrophobins genes rodA and rodB. In summary, our research provides new insights for the molecular mechanism of controlling AF synthesis to control the proliferation of A. flavus and AF pollution.
Collapse
Affiliation(s)
- Kunlong Yang
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (K.Y.); (Q.G.); (F.S.); (X.H.)
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Qingru Geng
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (K.Y.); (Q.G.); (F.S.); (X.H.)
| | - Fengqin Song
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (K.Y.); (Q.G.); (F.S.); (X.H.)
| | - Xiaona He
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (K.Y.); (Q.G.); (F.S.); (X.H.)
| | - Tianran Hu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Jun Tian
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (K.Y.); (Q.G.); (F.S.); (X.H.)
| |
Collapse
|
11
|
Wang ZL, Pan HB, Huang J, Yu XP. The zinc finger transcription factors Bbctf1α and Bbctf1β regulate the expression of genes involved in lipid degradation and contribute to stress tolerance and virulence in a fungal insect pathogen. PEST MANAGEMENT SCIENCE 2020; 76:2589-2600. [PMID: 32077581 DOI: 10.1002/ps.5797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/09/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND To initiate insect infection, entomopathogenic fungi produce diverse cuticle-degrading enzymes. Of those, lipolytic enzymes participate in epicuticular lipid hydrolysis and thus facilitate fungal penetration through the outermost cuticular barrier of the insect host. The Far/CTF1-type zinc finger transcription factors play an important role in the regulation of lipolytic activity and fungal pathogenicity in plant pathogens but remain functionally unknown in fungal insect pathogens. RESULTS Two Far/CTF1-type transcription factor Bbctf1α and Bbctf1β, which are essential for differential expression of genes involved in the fungal lipid degradation, were identified and functionally characterized in a fungal entomopathogen Beauveria bassiana. Disruption of each gene led to drastic losses of extracellular lipolytic activities under lipidic substrate-inducing conditions, followed by remarkable phenotypic defects associated with the fungal biocontrol potential. These defects mainly included severe impairments of mycelial growth and conidium formation, and drastic losses of tolerance to the stresses of oxidation and cell wall perturbation during colony growth under either normal or induction conditions. Bioassays showed that the virulence of each disruption mutant on the greater wax moth was remarkably attenuated in topical immersion. However, there was no significant difference in intrahemolymph injection when the cuticle penetration process was bypassed. CONCLUSIONS Bbctf1α and Bbctf1β are multifunctional transcription factors that play vital roles in the regulation of fungal lipid utilization and contribute to the vegetative growth, sporulation capacity, environmental fitness and pest control potential in B. bassiana. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zheng-Liang Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou Zhejiang, P. R. China
| | - Hai-Bo Pan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou Zhejiang, P. R. China
| | - Jue Huang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou Zhejiang, P. R. China
| | - Xiao-Ping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou Zhejiang, P. R. China
| |
Collapse
|
12
|
van Leeuwe TM, Arentshorst M, Ernst T, Alazi E, Punt PJ, Ram AFJ. Efficient marker free CRISPR/Cas9 genome editing for functional analysis of gene families in filamentous fungi. Fungal Biol Biotechnol 2019; 6:13. [PMID: 31559019 PMCID: PMC6754632 DOI: 10.1186/s40694-019-0076-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND CRISPR/Cas9 mediated genome editing has expedited the way of constructing multiple gene alterations in filamentous fungi, whereas traditional methods are time-consuming and can be of mutagenic nature. These developments allow the study of large gene families that contain putatively redundant genes, such as the seven-membered family of crh-genes encoding putative glucan-chitin crosslinking enzymes involved in cell wall biosynthesis. RESULTS Here, we present a CRISPR/Cas9 system for Aspergillus niger using a non-integrative plasmid, containing a selection marker, a Cas9 and a sgRNA expression cassette. Combined with selection marker free knockout repair DNA fragments, a set of the seven single knockout strains was obtained through homology directed repair (HDR) with an average efficiency of 90%. Cas9-sgRNA plasmids could effectively be cured by removing selection pressure, allowing the use of the same selection marker in successive transformations. Moreover, we show that either two or even three separate Cas9-sgRNA plasmids combined with marker-free knockout repair DNA fragments can be used in a single transformation to obtain double or triple knockouts with 89% and 38% efficiency, respectively. By employing this technique, a seven-membered crh-gene family knockout strain was acquired in a few rounds of transformation; three times faster than integrative selection marker (pyrG) recycling transformations. An additional advantage of the use of marker-free gene editing is that negative effects of selection marker gene expression are evaded, as we observed in the case of disrupting virtually silent crh family members. CONCLUSIONS Our findings advocate the use of CRISPR/Cas9 to create multiple gene deletions in both a fast and reliable way, while simultaneously omitting possible locus-dependent-side-effects of poor auxotrophic marker expression.
Collapse
Affiliation(s)
- Tim M. van Leeuwe
- Department Molecular Microbiology and Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Mark Arentshorst
- Department Molecular Microbiology and Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Tim Ernst
- Department Molecular Microbiology and Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Ebru Alazi
- Department Molecular Microbiology and Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
- Present Address: Dutch DNA Biotech, Hugo R Kruytgebouw 4-Noord, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Peter J. Punt
- Department Molecular Microbiology and Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
- Dutch DNA Biotech, Hugo R Kruytgebouw 4-Noord, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Arthur F. J. Ram
- Department Molecular Microbiology and Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
13
|
Yang K, Shadkchan Y, Tannous J, Landero Figueroa JA, Wiemann P, Osherov N, Wang S, Keller NP. Contribution of ATPase copper transporters in animal but not plant virulence of the crossover pathogen Aspergillus flavus. Virulence 2019; 9:1273-1286. [PMID: 30027796 PMCID: PMC6177249 DOI: 10.1080/21505594.2018.1496774] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The ubiquitous fungus Aspergillus flavus is notorious for contaminating many important crops and food-stuffs with the carcinogenic mycotoxin, aflatoxin. This fungus is also the second most frequent Aspergillus pathogen after A. fumigatus infecting immunosuppressed patients. In many human fungal pathogens including A. fumigatus, the ability to defend from toxic levels of copper (Cu) is essential in pathogenesis. In A. fumigatus, the Cu-fist DNA binding protein, AceA, and the Cu ATPase transporter, CrpA, play critical roles in Cu defense. Here, we show that A. flavus tolerates higher concentrations of Cu than A. fumigatus and other Aspergillus spp. associated with the presence of two homologs of A. fumigatus CrpA termed CrpA and CrpB. Both crpA and crpB are transcriptionally induced by increasing Cu concentrations via AceA activity. Deletion of crpA or crpB alone did not alter high Cu tolerance, suggesting they are redundant. Deletion of both genes resulted in extreme Cu sensitivity that was greater than that following deletion of the regulatory transcription factor aceA. The ΔcrpAΔcrpB and ΔaceA strains were also sensitive to ROI stress. Compared to wild type, these mutants were impaired in the ability to colonize maize seed treated with Cu fungicide but showed no difference in virulence on non-treated seed. A mouse model of invasive aspergillosis showed ΔcrpAΔcrpB and to a lesser degree ΔaceA to be significantly reduced in virulence, following the greater sensitivity of ΔcrpAΔcrpB to Cu than ΔaceA.
Collapse
Affiliation(s)
- Kunlong Yang
- a Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences , Fujian Agriculture and Forestry University , Fuzhou , China.,b Department of Medical Microbiology and Immunology , University of Wisconsin , Madison , WI , USA
| | - Yana Shadkchan
- c Aspergillus and Antifungal Research Laboratory, Department of Clinical Microbiology and Immunology, Sackler School of Medicine , Tel Aviv University , Tel Aviv , Israel
| | - Joanna Tannous
- b Department of Medical Microbiology and Immunology , University of Wisconsin , Madison , WI , USA
| | - Julio A Landero Figueroa
- d Agilent Metallomics Center, College of Arts & Science, Chemistry Department , University of Cincinnati , Cincinnati , OH , USA
| | - Philipp Wiemann
- b Department of Medical Microbiology and Immunology , University of Wisconsin , Madison , WI , USA
| | - Nir Osherov
- c Aspergillus and Antifungal Research Laboratory, Department of Clinical Microbiology and Immunology, Sackler School of Medicine , Tel Aviv University , Tel Aviv , Israel
| | - Shihua Wang
- a Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences , Fujian Agriculture and Forestry University , Fuzhou , China
| | - Nancy P Keller
- b Department of Medical Microbiology and Immunology , University of Wisconsin , Madison , WI , USA
| |
Collapse
|
14
|
Yang K, Liu Y, Wang S, Wu L, Xie R, Lan H, Fasoyin OE, Wang Y, Wang S. Cyclase-Associated Protein Cap with Multiple Domains Contributes to Mycotoxin Biosynthesis and Fungal Virulence in Aspergillus flavus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4200-4213. [PMID: 30916945 DOI: 10.1021/acs.jafc.8b07115] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In Aspergillus, the cyclic adenosine monophosphate (cAMP) signaling modulates asexual development and mycotoxin biosynthesis. Here, we characterize the cyclase-associated protein Cap in the pathogenic fungus Aspergillus flauvs. The cap disruption mutant exhibited dramatic reduction in hyphal growth, conidiation, and spore germination, while an enhanced production of the sclerotia was observed in this mutant. Importantly, the cap gene was found to be important for mycotoxin biosynthesis and virulence. The domain deletion study demonstrated that each domain played an important role for the Cap protein in regulating cAMP/protein kinase A (PKA) signaling, while only P1 and CARP domains were essential for the full function of Cap. The phosphorylation of Cap at S35 was identified in A. flavus, which was found to play a negligible role for the function of Cap. Overall, our results indicated that Cap with multiple domains engages in mycotoxin production and fungal pathogenicity, which could be designed as potential control targets for preventing this fungal pathogen.
Collapse
Affiliation(s)
- Kunlong Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences , Fujian Agriculture and Forestry University , Fuzhou , Fujian 350002 , People's Republic of China
- School of Life Science , Jiangsu Normal University , Xuzhou , Jiangsu 221116 , People's Republic of China
| | - Yinghang Liu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences , Fujian Agriculture and Forestry University , Fuzhou , Fujian 350002 , People's Republic of China
- State Key Laboratory of Microbial Technology , Shandong University , Jinan , Shandong 250100 , People's Republic of China
| | - Sen Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences , Fujian Agriculture and Forestry University , Fuzhou , Fujian 350002 , People's Republic of China
| | - Lianghuan Wu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences , Fujian Agriculture and Forestry University , Fuzhou , Fujian 350002 , People's Republic of China
| | - Rui Xie
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences , Fujian Agriculture and Forestry University , Fuzhou , Fujian 350002 , People's Republic of China
| | - Huahui Lan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences , Fujian Agriculture and Forestry University , Fuzhou , Fujian 350002 , People's Republic of China
| | - Opemipo Esther Fasoyin
- Biotechnology Research Institute , Chinese Academy of Agricultural Sciences , 12 Zhongguancun South Street , Beijing 100081 , People's Republic of China
| | - Yu Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences , Fujian Agriculture and Forestry University , Fuzhou , Fujian 350002 , People's Republic of China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences , Fujian Agriculture and Forestry University , Fuzhou , Fujian 350002 , People's Republic of China
| |
Collapse
|
15
|
Zhao X, Zhi QQ, Li JY, Keller NP, He ZM. The Antioxidant Gallic Acid Inhibits Aflatoxin Formation in Aspergillus flavus by Modulating Transcription Factors FarB and CreA. Toxins (Basel) 2018; 10:toxins10070270. [PMID: 29970790 PMCID: PMC6071284 DOI: 10.3390/toxins10070270] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 06/23/2018] [Accepted: 06/27/2018] [Indexed: 12/28/2022] Open
Abstract
Aflatoxin biosynthesis is correlated with oxidative stress and is proposed to function as a secondary defense mechanism to redundant intracellular reactive oxygen species (ROS). We find that the antioxidant gallic acid inhibits aflatoxin formation and growth in Aspergillus flavus in a dose-dependent manner. Global expression analysis (RNA-Seq) of gallic acid-treated A. flavus showed that 0.8% (w/v) gallic acid revealed two possible routes of aflatoxin inhibition. Gallic acid significantly inhibited the expression of farB, encoding a transcription factor that participates in peroxisomal fatty acid β-oxidation, a fundamental contributor to aflatoxin production. Secondly, the carbon repression regulator encoding gene, creA, was significantly down regulated by gallic acid treatment. CreA is necessary for aflatoxin synthesis, and aflatoxin biosynthesis genes were significantly downregulated in ∆creA mutants. In addition, the results of antioxidant enzyme activities and the lipid oxidation levels coupled with RNA-Seq data of antioxidant genes indicated that gallic acid may reduce oxidative stress through the glutathione- and thioredoxin-dependent systems in A. flavus.
Collapse
Affiliation(s)
- Xixi Zhao
- The Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, China.
| | - Qing-Qing Zhi
- The Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, China.
| | - Jie-Ying Li
- The Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, China.
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Zhu-Mei He
- The Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
16
|
Aspergillus flavus Secondary Metabolites: More than Just Aflatoxins. Food Saf (Tokyo) 2018; 6:7-32. [PMID: 32231944 DOI: 10.14252/foodsafetyfscj.2017024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/09/2018] [Indexed: 11/21/2022] Open
Abstract
Aspergillus flavus is best known for producing the family of potent carcinogenic secondary metabolites known as aflatoxins. However, this opportunistic plant and animal pathogen also produces numerous other secondary metabolites, many of which have also been shown to be toxic. While about forty of these secondary metabolites have been identified from A. flavus cultures, analysis of the genome has predicted the existence of at least 56 secondary metabolite gene clusters. Many of these gene clusters are not expressed during growth of the fungus on standard laboratory media. This presents researchers with a major challenge of devising novel strategies to manipulate the fungus and its genome so as to activate secondary metabolite gene expression and allow identification of associated cluster metabolites. In this review, we discuss the genetic, biochemical and bioinformatic methods that are being used to identify previously uncharacterized secondary metabolite gene clusters and their associated metabolites. It is important to identify as many of these compounds as possible to determine their bioactivity with respect to fungal development, survival, virulence and especially with respect to any potential synergistic toxic effects with aflatoxin.
Collapse
|
17
|
Bhatnagar D, Rajasekaran K, Gilbert M, Cary J, Magan N. Advances in molecular and genomic research to safeguard food and feed supply from aflatoxin contamination. WORLD MYCOTOXIN J 2018. [DOI: 10.3920/wmj2017.2283] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Worldwide recognition that aflatoxin contamination of agricultural commodities by the fungus Aspergillus flavus is a global problem has significantly benefitted from global collaboration for understanding the contaminating fungus, as well as for developing and implementing solutions against the contamination. The effort to address this serious food and feed safety issue has led to a detailed understanding of the taxonomy, ecology, physiology, genomics and evolution of A. flavus, as well as strategies to reduce or control pre-harvest aflatoxin contamination, including (1) biological control, using atoxigenic aspergilli, (2) proteomic and genomic analyses for identifying resistance factors in maize as potential breeding markers to enable development of resistant maize lines, and (3) enhancing host-resistance by bioengineering of susceptible crops, such as cotton, maize, peanut and tree nuts. A post-harvest measure to prevent the occurrence of aflatoxin contamination in storage is also an important component for reducing exposure of populations worldwide to aflatoxins in food and feed supplies. The effect of environmental changes on aflatoxin contamination levels has recently become an important aspect for study to anticipate future contamination levels. The ability of A. flavus to produce dozens of secondary metabolites, in addition to aflatoxins, has created a new avenue of research for understanding the role these metabolites play in the survival and biodiversity of this fungus. The understanding of A. flavus, the aflatoxin contamination problem, and control measures to prevent the contamination has become a unique example for an integrated approach to safeguard global food and feed safety.
Collapse
Affiliation(s)
- D. Bhatnagar
- US Department of Agriculture, Agricultural Research Service, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, USA
| | - K. Rajasekaran
- US Department of Agriculture, Agricultural Research Service, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, USA
| | - M. Gilbert
- US Department of Agriculture, Agricultural Research Service, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, USA
| | - J.W. Cary
- US Department of Agriculture, Agricultural Research Service, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, USA
| | - N. Magan
- Applied Mycology Group, Cranfield University, MK45 4DT, Cranfield, United Kingdom
| |
Collapse
|
18
|
Rewiring Yarrowia lipolytica toward triacetic acid lactone for materials generation. Proc Natl Acad Sci U S A 2018; 115:2096-2101. [PMID: 29440400 DOI: 10.1073/pnas.1721203115] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Polyketides represent an extremely diverse class of secondary metabolites often explored for their bioactive traits. These molecules are also attractive building blocks for chemical catalysis and polymerization. However, the use of polyketides in larger scale chemistry applications is stymied by limited titers and yields from both microbial and chemical production. Here, we demonstrate that an oleaginous organism (specifically, Yarrowia lipolytica) can overcome such production limitations owing to a natural propensity for high flux through acetyl-CoA. By exploring three distinct metabolic engineering strategies for acetyl-CoA precursor formation, we demonstrate that a previously uncharacterized pyruvate bypass pathway supports increased production of the polyketide triacetic acid lactone (TAL). Ultimately, we establish a strain capable of producing over 35% of the theoretical conversion yield to TAL in an unoptimized tube culture. This strain also obtained an averaged maximum titer of 35.9 ± 3.9 g/L with an achieved maximum specific productivity of 0.21 ± 0.03 g/L/h in bioreactor fermentation. Additionally, we illustrate that a β-oxidation-related overexpression (PEX10) can support high TAL production and is capable of achieving over 43% of the theoretical conversion yield under nitrogen starvation in a test tube. Next, through use of this bioproduct, we demonstrate the utility of polyketides like TAL to modify commodity materials such as poly(epichlorohydrin), resulting in an increased molecular weight and shift in glass transition temperature. Collectively, these findings establish an engineering strategy enabling unprecedented production from a type III polyketide synthase as well as establish a route through O-functionalization for converting polyketides into new materials.
Collapse
|
19
|
Hanano A, Alkara M, Almousally I, Shaban M, Rahman F, Hassan M, Murphy DJ. The Peroxygenase Activity of the Aspergillus flavus Caleosin, AfPXG, Modulates the Biosynthesis of Aflatoxins and Their Trafficking and Extracellular Secretion via Lipid Droplets. Front Microbiol 2018; 9:158. [PMID: 29467750 PMCID: PMC5808235 DOI: 10.3389/fmicb.2018.00158] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/23/2018] [Indexed: 11/29/2022] Open
Abstract
Aflatoxins (AF) are highly detrimental to human and animal health. We recently demonstrated that the Aspergillus flavus caleosin, AfPXG, had peroxygenase activity and mediated fungal development and AF accumulation. We now report the characterization of an AfPXG-deficient line using reference strain NRRL3357. The resulting fungal phenotype included a severe decrease in mycelium growth, failure to sporulate, and reduced AF production. Increasing cellular oxidative status by administration of hydrogen peroxide and cumene hydroperoxide did not restore the AfPXG-deficient phenotype, which suggests that AfPXG-deficiency is not directly related to oxidative stress. To investigate possible alternative roles of AfPXG, a gain of function approach was used to overexpress AfPXG, with the reporter gene Gfp, in an AfPXG-deficient line, termed AfPXG+ . The resulting phenotype included elevated numbers of stable lipid droplets (LDs) plus enhanced AF production. Highly purified LDs from AfPXG+ cultures sequestered AF and this ability was positively correlated with overall LD number. Site-specific mutagenesis of AfPXG to delete Histidine 85 (AfPXGHis85), a residue essential for its catalytic activity, or deletion of the putative LD targeting domain (AfPXGD126-140), showed that AfPXG-peroxygenase activity was required for AF biosynthesis and that integration of AF into LDs was required for their export via a LD-dependent pathway. Ectopic expression in fungal cells of the plant LD-associated protein, oleosin, also resulted in both additional LD accumulation and enhanced AF secretion. These results suggest that both fungal LDs and their associated caleosin proteins are intimately involved in the biosynthesis, trafficking, and secretion of AF.
Collapse
Affiliation(s)
- Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria
| | - Mari Alkara
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria
| | - Ibrahem Almousally
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria
| | - Mouhnad Shaban
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria
| | - Farzana Rahman
- Genomics and Computational Biology Research Group, University of South Wales, Pontypridd, United Kingdom
| | - Mehedi Hassan
- Genomics and Computational Biology Research Group, University of South Wales, Pontypridd, United Kingdom
| | - Denis J. Murphy
- Genomics and Computational Biology Research Group, University of South Wales, Pontypridd, United Kingdom
| |
Collapse
|