1
|
Ranasinghe S, Armson A, Lymbery AJ, Zahedi A, Ash A. Medicinal plants as a source of antiparasitics: an overview of experimental studies. Pathog Glob Health 2023; 117:535-553. [PMID: 36805662 PMCID: PMC10392325 DOI: 10.1080/20477724.2023.2179454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Despite advances in modern human and veterinary medicine, gastrointestinal (GI) parasitic infections remain a significant health issue worldwide, mainly in developing countries. Increasing evidence of the multi-drug resistance of these parasites and the side effects of currently available synthetic drugs have led to increased research on alternative medicines to treat parasitic infections. The exploration of potential botanical antiparasitics, which are inexpensive and abundant, may be a promising alternative in this context. This study summarizes the in vitro/in vivo antiparasitic efficacy of different medicinal plants and their components against GI parasites. Published literature from 1990-2020 was retrieved from Google Scholar, Web of Science, PubMed and Scopus. A total of 68 plant species belonging to 32 families have been evaluated as antiparasitic agents against GI parasites worldwide. The majority of studies (70%) were conducted in vitro. Most plants were from the Fabaceae family (53%, n = 18). Methanol (37%, n = 35) was the most used solvent. Leaf (22%, n = 16) was the most used plant part, followed by seed and rhizome (each 12%, n = 9). These studies suggest that herbal medicines hold a great scope for new drug discoveries against parasitic diseases and that the derivatives of these plants are useful structures for drug synthesis and bioactivity optimization.
Collapse
Affiliation(s)
- Sandamalie Ranasinghe
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| | - Anthony Armson
- Exercise Science and Chiropractic, College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia
| | - Alan J. Lymbery
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| | - Alireza Zahedi
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| | - Amanda Ash
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
2
|
Dubois‐Mignon T, Monget P. Gene essentiality and variability: What is the link? A within‐ and between‐species perspective. Bioessays 2022; 44:e2200132. [DOI: 10.1002/bies.202200132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/17/2022] [Accepted: 08/30/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Tania Dubois‐Mignon
- Institut de Biologie de l’École Normale Supérieure Université PSL 46 rue d'Ulm Paris 75005 France
| | - Philippe Monget
- Physiologie de la Reproduction et des Comportements, Centre Val de Loire – UMR INRAE, CNRS, IFCE Université de Tours Nouzilly France
| |
Collapse
|
3
|
Kang N, Luan Y, Jiang Y, Cheng W, Liu Y, Su Z, Liu Y, Tan P. Neuroprotective Effects of Oligosaccharides in Rehmanniae Radix on Transgenic Caenorhabditis elegans Models for Alzheimer’s Disease. Front Pharmacol 2022; 13:878631. [PMID: 35784741 PMCID: PMC9247152 DOI: 10.3389/fphar.2022.878631] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
Rehmanniae Radix (RR, the dried tuberous roots of Rehmannia glutinosa (Gaertn.) DC.) is an important traditional Chinese medicine distributed in Henan, Hebei, Inner Mongolia, and Northeast in China. RR is frequently used to treat diabetes mellitus, cardiovascular disease, osteoporosis and aging-related diseases in a class of prescriptions. The oligosaccharides and catalpol in RR have been confirmed to have neuroprotective effects. However, there are few studies on the anti-Alzheimer’s disease (AD) effect of oligosaccharides in Rehmanniae Radix (ORR). The chemical components and pharmacological effects of dried Rehmannia Radix (DRR) and prepared Rehmannia Radix (PRR) are different because of the different processing methods. ORR has neuroprotective potential, such as improving learning and memory in rats. Therefore, this study aimed to prove the importance of oligosaccharides in DRR (ODRR) and PRR (OPRR) for AD based on the Caenorhabditis elegans (C. elegans) model and the different roles of ODRR and OPRR in the treatment of AD. In this study, we used paralysis assays, lifespan and stress resistance assays, bacterial growth curve, developmental and behavioral parameters, and ability of learning and memory to explore the effects of ODRR and OPRR on anti-AD and anti-aging. Furthermore, the accumulation of reactive oxygen species (ROS); deposition of Aβ; and expression of amy-1, sir-2.1, daf-16, sod-3, skn-1, and hsp-16.2 were analyzed to confirm the efficacy of ODRR and OPRR. OPRR was more effective than ODRR in delaying the paralysis, improving learning ability, and prolonging the lifespan of C. elegans. Further mechanism studies showed that the accumulation of ROS, aggregation, and toxicity of Aβ were reduced, suggesting that ORR alleviated Aβ-induced toxicity, in part, through antioxidant activity and Aβ aggregation inhibiting. The expression of amy-1 was downregulated, and sir-2.1, daf-16, sod-3, and hsp-16.2 were upregulated. Thus, ORR could have a possible therapeutic effect on AD by modulating the expression of amy-1, sir-2.1, daf-16, sod-3, and hsp-16.2. Furthermore, ORR promoted the nuclear localization of daf-16 and further increased the expression of sod-3 and hsp-16.2, which significantly contributed to inhibiting the Aβ toxicity and enhancing oxidative stress resistance. In summary, the study provided a new idea for the development of ORR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peng Tan
- *Correspondence: Yonggang Liu, ; Peng Tan,
| |
Collapse
|
4
|
Invited review: Unearthing the mechanisms of age-related neurodegenerative disease using Caenorhabditis elegans. Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111166. [PMID: 35176489 DOI: 10.1016/j.cbpa.2022.111166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
Abstract
As human life expectancy increases, neurodegenerative diseases present a growing public health threat, for which there are currently few effective treatments. There is an urgent need to understand the molecular and genetic underpinnings of these disorders so new therapeutic targets can be identified. Here we present the argument that the simple nematode worm Caenorhabditis elegans is a powerful tool to rapidly study neurodegenerative disorders due to their short lifespan and vast array of genetic tools, which can be combined with characterization of conserved neuronal processes and behavior orthologous to those disrupted in human disease. We review how pre-existing C. elegans models provide insight into human neurological disease as well as an overview of current tools available to study neurodegenerative diseases in the worm, with an emphasis on genetics and behavior. We also discuss open questions that C. elegans may be particularly well suited for in future studies and how worms will be a valuable preclinical model to better understand these devastating neurological disorders.
Collapse
|
5
|
Yu S, Zheng C, Chu JSC. Identification of Essential Genes in Caenorhabditis elegans with Lethal Mutations Maintained by Genetic Balancers. Methods Mol Biol 2022; 2377:345-362. [PMID: 34709626 DOI: 10.1007/978-1-0716-1720-5_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetic balancer systems, which allow effective capture and maintenance of lethal mutations stably, play an important role in identifying essential genes. Whole-genome sequencing (WGS) followed by bioinformatics analysis, combined with genetic mapping data analysis, allows for an efficient and economical means of identifying genomic mutations in essential genes. Using this approach, we successfully identified 104 essential genes on ChrI, ChrIII, and ChrV in C. elegans. In this report, we described a protocol that sequences the genome of prebalanced Caenorhabditis elegans (C. elegans) strains to carry lethal mutations and identifies candidate causal mutations and candidate essential genes using a robust bioinformatics procedure.
Collapse
Affiliation(s)
- Shicheng Yu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Bioland Laboratory, Guangzhou, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Chaoran Zheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | | |
Collapse
|
6
|
p21-Activated kinase 1 (PAK1) in aging and longevity: An overview. Ageing Res Rev 2021; 71:101443. [PMID: 34390849 DOI: 10.1016/j.arr.2021.101443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
The p21-activated kinases (PAKs) belong to serine/threonine kinases family, regulated by ∼21 kDa small signaling G proteins RAC1 and CDC42. The mammalian PAK family comprises six members (PAK1-6) that are classified into two groups (I and II) based on their domain architecture and regulatory mechanisms. PAKs are implicated in a wide range of cellular functions. PAK1 has recently attracted increasing attention owing to its involvement in oncogenesis, tumor progression, and metastasis as well as several life-limiting diseases and pathological conditions. In Caenorhabditis elegans, PAK1 functions limit the lifespan under basal conditions by inhibiting forkhead transcription factor DAF-16. Interestingly, PAK depletion extended longevity and attenuated the onset of age-related phenotypes in a premature-aging mouse model and delayed senescence in mammalian fibroblasts. These observations implicate PAKs as not only oncogenic but also aging kinases. Therefore, PAK-targeting genetic and/or pharmacological interventions, particularly PAK1-targeting, could be a viable strategy for developing cancer therapies with relatively no side effects and promoting healthy longevity. This review describes PAK family proteins, their biological functions, and their role in regulating aging and longevity using C. elegans. Moreover, we discuss the effect of small-molecule PAK1 inhibitors on the lifespan and healthspan of C. elegans.
Collapse
|
7
|
Li-Leger E, Feichtinger R, Flibotte S, Holzkamp H, Schnabel R, Moerman DG. Identification of essential genes in Caenorhabditis elegans through whole genome sequencing of legacy mutant collections. G3-GENES GENOMES GENETICS 2021; 11:6373896. [PMID: 34550348 PMCID: PMC8664450 DOI: 10.1093/g3journal/jkab328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/27/2021] [Indexed: 01/23/2023]
Abstract
It has been estimated that 15%–30% of the ∼20,000 genes in C. elegans are essential, yet many of these genes remain to be identified or characterized. With the goal of identifying unknown essential genes, we performed whole-genome sequencing on complementation pairs from legacy collections of maternal-effect lethal and sterile mutants. This approach uncovered maternal genes required for embryonic development and genes with apparent sperm-specific functions. In total, 58 putative essential genes were identified on chromosomes III–V, of which 52 genes are represented by novel alleles in this collection. Of these 52 genes, 19 (40 alleles) were selected for further functional characterization. The terminal phenotypes of embryos were examined, revealing defects in cell division, morphogenesis, and osmotic integrity of the eggshell. Mating assays with wild-type males revealed previously unknown male-expressed genes required for fertilization and embryonic development. The result of this study is a catalog of mutant alleles in essential genes that will serve as a resource to guide further study toward a more complete understanding of this important model organism. As many genes and developmental pathways in C. elegans are conserved and essential genes are often linked to human disease, uncovering the function of these genes may also provide insight to further our understanding of human biology.
Collapse
Affiliation(s)
- Erica Li-Leger
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Richard Feichtinger
- Department of Developmental Genetics, Institute of Genetics, Technische Universität Braunschweig, 38106, Germany
| | - Stephane Flibotte
- UBC/LSI Bioinformatics Facility, University of British Columbia, Vancouver, British Columbia, Canada
| | - Heinke Holzkamp
- Department of Developmental Genetics, Institute of Genetics, Technische Universität Braunschweig, 38106, Germany
| | - Ralf Schnabel
- Department of Developmental Genetics, Institute of Genetics, Technische Universität Braunschweig, 38106, Germany
| | - Donald G Moerman
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
8
|
Pant A, Chittayil Krishnakumar K, Chakkalaparambil Dileep N, Yamana M, Meenakshisundaran Alamelu N, Paithankar K, Amash V, Amere Subbarao S. Hsp90 and its mitochondrial homologue TRAP-1 independently regulate hypoxia adaptations in Caenorhabditis elegans. Mitochondrion 2021; 60:101-111. [PMID: 34365052 DOI: 10.1016/j.mito.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 11/30/2022]
Abstract
Mitochondrial adaptations to various environmental cues contribute to cellular and organismal adaptations across multiple model organisms. Due to increased complexity, a direct connection between mitochondrial integrity and oxygen fluctuations, and survival fitness was not demonstrated. Here, using C. elegans as a model system, we studied the role of HIF-1, Hsp90, and TRAP-1 in mitochondrial adaptations during chemical hypoxia. We show that Hsp90mt (Hsp90 mutant) but not HIF-1mt (HIF-1 mutant) affects hypoxia adaptation in nematodes. TRAP-1KD (TRAP-1 knockdown) interfered with the survival and fecundity of worms. Compared to Hsp90mt, TRAP-1KD has induced a significant decrease in mitochondrial integrity and oxygen consumption rate. The complex I inhibitor rotenone did not affect ATP levels in Hsp90mt worms. However, ATP levels were decreased in TRAP-1KD worms under similar conditions. The glucose restriction has reduced, and glucose supplementation has increased the survival rate in Hsp90mt worms. Neither glucose restriction nor glucose supplementation has significantly affected the survival of TRAP-1KD worms in response to hypoxia. However, TRAP-1 inhibition using a nanocarrier drug has dramatically reduced the survival rate in response to hypoxia. Our results suggest that Hsp90 and TRAP-1 independently regulate hypoxia adaptations and metabolic plasticity in C. elegans. Considering the emerging roles of TRAP-1 in altered energy metabolism and cellular adaptations, our findings gain importance.
Collapse
Affiliation(s)
- Aakanksha Pant
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | | | | | - Meghana Yamana
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | | | | | | | | |
Collapse
|
9
|
Wang L, Zuo X, Ouyang Z, Qiao P, Wang F. A Systematic Review of Antiaging Effects of 23 Traditional Chinese Medicines. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5591573. [PMID: 34055012 PMCID: PMC8143881 DOI: 10.1155/2021/5591573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Aging is an inevitable stage of body development. At the same time, aging is a major cause of cancer, cardiovascular disease, and neurodegenerative diseases. Chinese herbal medicine is a natural substance that can effectively delay aging and is expected to be developed as antiaging drugs in the future. Aim of the review. This paper reviews the antiaging effects of 23 traditional Chinese herbal medicines or their active components. Materials and methods. We reviewed the literature published in the last five years on Chinese herbal medicines or their active ingredients and their antiaging role obtained through the following databases: PubMed, EMBASE, Scopus, and Web of Science. RESULTS A total of 2485 papers were found, and 212 papers were screened after removing the duplicates and reading the titles. Twenty-three studies met the requirements of this review and were included. Among these studies, 13 articles used Caenorhabditis elegans as the animal model, and 10 articles used other animal models or cell lines. CONCLUSION Chinese herbal medicines or their active components play an antiaging role by regulating genes related to aging through a variety of signaling pathways. Chinese herbal medicines are expected to be developed as antiaging drugs or used in the medical cosmetology industry.
Collapse
Affiliation(s)
- Lixin Wang
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xu Zuo
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Zhuoer Ouyang
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Ping Qiao
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
10
|
Hunt PR, Camacho JA, Sprando RL. Caenorhabditis elegans for predictive toxicology. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2020.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
van Leeuwen J, Pons C, Tan G, Wang ZY, Hou J, Weile J, Gebbia M, Liang W, Shuteriqi E, Li Z, Lopes M, Ušaj M, Dos Santos Lopes A, van Lieshout N, Myers CL, Roth FP, Aloy P, Andrews BJ, Boone C. Systematic analysis of bypass suppression of essential genes. Mol Syst Biol 2020; 16:e9828. [PMID: 32939983 PMCID: PMC7507402 DOI: 10.15252/msb.20209828] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Essential genes tend to be highly conserved across eukaryotes, but, in some cases, their critical roles can be bypassed through genetic rewiring. From a systematic analysis of 728 different essential yeast genes, we discovered that 124 (17%) were dispensable essential genes. Through whole-genome sequencing and detailed genetic analysis, we investigated the genetic interactions and genome alterations underlying bypass suppression. Dispensable essential genes often had paralogs, were enriched for genes encoding membrane-associated proteins, and were depleted for members of protein complexes. Functionally related genes frequently drove the bypass suppression interactions. These gene properties were predictive of essential gene dispensability and of specific suppressors among hundreds of genes on aneuploid chromosomes. Our findings identify yeast's core essential gene set and reveal that the properties of dispensable essential genes are conserved from yeast to human cells, correlating with human genes that display cell line-specific essentiality in the Cancer Dependency Map (DepMap) project.
Collapse
Affiliation(s)
- Jolanda van Leeuwen
- Center for Integrative
GenomicsBâtiment GénopodeUniversity of LausanneLausanneSwitzerland
- Donnelly Centre for Cellular and
Biomolecular ResearchUniversity of TorontoTorontoONCanada
| | - Carles Pons
- Institute for Research in
Biomedicine (IRB Barcelona)The Barcelona Institute for Science and TechnologyBarcelonaSpain
| | - Guihong Tan
- Donnelly Centre for Cellular and
Biomolecular ResearchUniversity of TorontoTorontoONCanada
| | - Zi Yang Wang
- Donnelly Centre for Cellular and
Biomolecular ResearchUniversity of TorontoTorontoONCanada
- Department of Molecular
GeneticsUniversity of TorontoTorontoONCanada
| | - Jing Hou
- Donnelly Centre for Cellular and
Biomolecular ResearchUniversity of TorontoTorontoONCanada
| | - Jochen Weile
- Donnelly Centre for Cellular and
Biomolecular ResearchUniversity of TorontoTorontoONCanada
- Department of Molecular
GeneticsUniversity of TorontoTorontoONCanada
- Lunenfeld‐Tanenbaum Research
InstituteSinai Health SystemTorontoONCanada
| | - Marinella Gebbia
- Donnelly Centre for Cellular and
Biomolecular ResearchUniversity of TorontoTorontoONCanada
- Lunenfeld‐Tanenbaum Research
InstituteSinai Health SystemTorontoONCanada
| | - Wendy Liang
- Donnelly Centre for Cellular and
Biomolecular ResearchUniversity of TorontoTorontoONCanada
| | - Ermira Shuteriqi
- Donnelly Centre for Cellular and
Biomolecular ResearchUniversity of TorontoTorontoONCanada
| | - Zhijian Li
- Donnelly Centre for Cellular and
Biomolecular ResearchUniversity of TorontoTorontoONCanada
| | - Maykel Lopes
- Center for Integrative
GenomicsBâtiment GénopodeUniversity of LausanneLausanneSwitzerland
| | - Matej Ušaj
- Donnelly Centre for Cellular and
Biomolecular ResearchUniversity of TorontoTorontoONCanada
| | | | - Natascha van Lieshout
- Donnelly Centre for Cellular and
Biomolecular ResearchUniversity of TorontoTorontoONCanada
- Lunenfeld‐Tanenbaum Research
InstituteSinai Health SystemTorontoONCanada
| | - Chad L Myers
- Department of Computer Science and
EngineeringUniversity of Minnesota‐Twin CitiesMinneapolisMNUSA
| | - Frederick P Roth
- Donnelly Centre for Cellular and
Biomolecular ResearchUniversity of TorontoTorontoONCanada
- Department of Molecular
GeneticsUniversity of TorontoTorontoONCanada
- Lunenfeld‐Tanenbaum Research
InstituteSinai Health SystemTorontoONCanada
- Department of Computer
ScienceUniversity of TorontoTorontoONCanada
| | - Patrick Aloy
- Institute for Research in
Biomedicine (IRB Barcelona)The Barcelona Institute for Science and TechnologyBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Brenda J Andrews
- Donnelly Centre for Cellular and
Biomolecular ResearchUniversity of TorontoTorontoONCanada
- Department of Molecular
GeneticsUniversity of TorontoTorontoONCanada
| | - Charles Boone
- Donnelly Centre for Cellular and
Biomolecular ResearchUniversity of TorontoTorontoONCanada
- Department of Molecular
GeneticsUniversity of TorontoTorontoONCanada
| |
Collapse
|
12
|
Campos TL, Korhonen PK, Sternberg PW, Gasser RB, Young ND. Predicting gene essentiality in Caenorhabditis elegans by feature engineering and machine-learning. Comput Struct Biotechnol J 2020; 18:1093-1102. [PMID: 32489524 PMCID: PMC7251299 DOI: 10.1016/j.csbj.2020.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023] Open
Abstract
Defining genes that are essential for life has major implications for understanding critical biological processes and mechanisms. Although essential genes have been identified and characterised experimentally using functional genomic tools, it is challenging to predict with confidence such genes from molecular and phenomic data sets using computational methods. Using extensive data sets available for the model organism Caenorhabditis elegans, we constructed here a machine-learning (ML)-based workflow for the prediction of essential genes on a genome-wide scale. We identified strong predictors for such genes and showed that trained ML models consistently achieve highly-accurate classifications. Complementary analyses revealed an association between essential genes and chromosomal location. Our findings reveal that essential genes in C. elegans tend to be located in or near the centre of autosomal chromosomes; are positively correlated with low single nucleotide polymorphim (SNP) densities and epigenetic markers in promoter regions; are involved in protein and nucleotide processing; are transcribed in most cells; are enriched in reproductive tissues or are targets for small RNAs bound to the argonaut CSR-1. Based on these results, we hypothesise an interplay between epigenetic markers and small RNA pathways in the germline, with transcription-based memory; this hypothesis warrants testing. From a technical perspective, further work is needed to evaluate whether the present ML-based approach will be applicable to other metazoans (including Drosophila melanogaster) for which comprehensive data sets (i.e. genomic, transcriptomic, proteomic, variomic, epigenetic and phenomic) are available.
Collapse
Key Words
- CDS, coding sequence
- CRISPR, Clustered Regularly Interspaced Short Palindromic Repeats
- Caenorhabditis elegans
- ES, Essentiality Score
- EST, expressed sequence tag
- Essential genes
- Essentiality predictions
- GBM, Gradient Boosting Method
- GFF, general feature format
- GLM, Generalised Linear Model
- GO, gene ontology
- ML, machine-learning
- Machine-learning
- NN, Artificial Neural Network
- PPI, protein-protein interaction
- PR-AUC, Area Under the Precision-Recall Curve
- RF, Random Forest
- RNAi, RNA interference
- ROC-AUC, Area Under the Receiver Operating Characteristic Curve
- SNP, single nucleotide polymorphism
- SPLS, Sparse Partial Least Squares
- SVM, Support-Vector Machine
- TEA, Tissue Enrichment Analysis tool (WormBase)
- TSS, transcription start site
- VCF, variant call file
Collapse
Affiliation(s)
- Tulio L Campos
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.,Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (IAM-Fiocruz), Recife, Pernambuco, Brazil
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
13
|
Zhang S, Li F, Zhou T, Wang G, Li Z. Caenorhabditis elegans as a Useful Model for Studying Aging Mutations. Front Endocrinol (Lausanne) 2020; 11:554994. [PMID: 33123086 PMCID: PMC7570440 DOI: 10.3389/fendo.2020.554994] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
The Caenorhabditis elegans genome possesses homologs of about two-thirds of all human disease genes. Based on its physiological aging characteristics and superiority, the use of C. elegans as a model system for studies on aging, age-related diseases, mechanisms of longevity, and drug screening has been widely acknowledged in recent decades. Lifespan increasing mutations in C. elegans were found to delay aging by impinging several signaling pathways and related epigenetic modifications, including the insulin/IGF-1 signaling (IIS), AMP-activated protein kinase (AMPK), and mechanistic target of rapamycin (mTOR) pathways. Interestingly, dietary restriction (DR) has been shown to increase the lifespan of numerous metazoans and protect them from multiple age-related pathologies. However, the underlying molecular mechanisms are unclear. In recent decades, C. elegans has been used as a unique model system for high-throughput drug screening. Here, we review C. elegans mutants exhibiting increased in lifespan and age-dependent changes under DR, as well as the utility of C. elegans for drug screening. Thus, we provide evidence for the use of this model organism in research on the prevention of aging.
Collapse
|
14
|
Ono K, Qin Z, Johnsen RC, Baillie DL, Ono S. Kettin, the large actin-binding protein with multiple immunoglobulin domains, is essential for sarcomeric actin assembly and larval development in Caenorhabditis elegans. FEBS J 2019; 287:659-670. [PMID: 31411810 DOI: 10.1111/febs.15039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/29/2019] [Accepted: 08/12/2019] [Indexed: 12/30/2022]
Abstract
Among many essential genes in the nematode Caenorhabditis elegans, let-330 is located on the left arm of chromosome V and was identified as the largest target of a mutagen in this region. However, let-330 gene has not been characterized at the molecular level. Here, we report that two sequenced let-330 alleles are nonsense mutations of ketn-1, a previously characterized gene encoding kettin. Kettin is a large actin-binding protein of 472 kDa with 31 immunoglobulin domains and is expressed in muscle cells in C. elegans. let-330/ketn-1 mutants are homozygous lethal at the first larval stage with mild defects in body elongation. These mutants have severe defects in sarcomeric actin and myosin assembly in striated muscle. However, α-actinin and vinculin, which are components of the dense bodies anchoring actin to the membranes, were not significantly disorganized by let-330/ketn-1 mutation. Kettin localizes to embryonic myofibrils before α-actinin is expressed, and α-actinin deficiency does not affect kettin localization in larval muscle. Depletion of vinculin minimally affects kettin localization but significantly reduces colocalization of actin with kettin in embryonic muscle cells. These results indicate that kettin is an essential protein for sarcomeric assembly of actin filaments in muscle cells.
Collapse
Affiliation(s)
- Kanako Ono
- Department of Pathology, Emory University, Atlanta, GA, USA.,Department of Cell Biology, Emory University, Atlanta, GA, USA.,Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Zhaozhao Qin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Robert C Johnsen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - David L Baillie
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, GA, USA.,Department of Cell Biology, Emory University, Atlanta, GA, USA.,Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|