1
|
Aoki I, Golinelli L, Dunkel E, Bhat S, Bassam E, Beets I, Gottschalk A. Hierarchical regulation of functionally antagonistic neuropeptides expressed in a single neuron pair. Nat Commun 2024; 15:9504. [PMID: 39489735 PMCID: PMC11532408 DOI: 10.1038/s41467-024-53899-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Neuronal communication involves small-molecule transmitters, gap junctions, and neuropeptides. While neurons often express multiple neuropeptides, our understanding of the coordination of their actions and their mutual interactions remains limited. Here, we demonstrate that two neuropeptides, NLP-10 and FLP-1, released from the same interneuron pair, AVKL/R, exert antagonistic effects on locomotion speed in Caenorhabditis elegans. NLP-10 accelerates locomotion by activating the G protein-coupled receptor NPR-35 on premotor interneurons that promote forward movement. Notably, we establish that NLP-10 is crucial for the aversive response to mechanical and noxious light stimuli. Conversely, AVK-derived FLP-1 slows down locomotion by suppressing the secretion of NLP-10 from AVK, through autocrine feedback via activation of its receptor DMSR-7 in AVK neurons. Our findings suggest that peptidergic autocrine motifs, exemplified by the interaction between NLP-10 and FLP-1, might represent a widespread mechanism in nervous systems across species. These mutual functional interactions among peptidergic co-transmitters could fine-tune brain activity.
Collapse
Affiliation(s)
- Ichiro Aoki
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, D-60438, Frankfurt, Germany.
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany.
| | | | - Eva Dunkel
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, D-60438, Frankfurt, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany
| | - Shripriya Bhat
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, D-60438, Frankfurt, Germany
| | - Erschad Bassam
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, D-60438, Frankfurt, Germany
| | - Isabel Beets
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, D-60438, Frankfurt, Germany.
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany.
| |
Collapse
|
2
|
Sharma AK, Randi F, Kumar S, Dvali S, Leifer AM. TWISP: a transgenic worm for interrogating signal propagation in Caenorhabditis elegans. Genetics 2024; 227:iyae077. [PMID: 38733622 PMCID: PMC11228852 DOI: 10.1093/genetics/iyae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 02/11/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024] Open
Abstract
Genetically encoded optical indicators and actuators of neural activity allow for all-optical investigations of signaling in the nervous system. But commonly used indicators, actuators, and expression strategies are poorly suited for systematic measurements of signal propagation at brain scale and cellular resolution. Large-scale measurements of the brain require indicators and actuators with compatible excitation spectra to avoid optical crosstalk. They must be highly expressed in every neuron but at the same time avoid lethality and permit the animal to reach adulthood. Their expression must also be compatible with additional fluorescent labels to locate and identify neurons, such as those in the NeuroPAL cell identification system. We present TWISP, a transgenic worm for interrogating signal propagation, that addresses these needs and enables optical measurements of evoked calcium activity at brain scale and cellular resolution in the nervous system of the nematode Caenorhabditis elegans. In every neuron we express a nonconventional optical actuator, the gustatory receptor homolog GUR-3 + PRDX-2, under the control of a drug-inducible system QF + hGR, and a calcium indicator GCAMP6s, in a background with additional fluorophores from the NeuroPAL cell ID system. We show that this combination, but not others tested, avoids optical crosstalk, creates strong expression in the adult, and generates stable transgenic lines for systematic measurements of signal propagation in the worm brain.
Collapse
Affiliation(s)
- Anuj Kumar Sharma
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
| | - Francesco Randi
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
| | - Sandeep Kumar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Sophie Dvali
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
| | - Andrew M Leifer
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
3
|
Yanagi KS, Lehrbach N. Streamlined single shot safe harbor transgene integration in C. elegans using unc-119 rescue. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001230. [PMID: 38872845 PMCID: PMC11170288 DOI: 10.17912/micropub.biology.001230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
Transgenic animals are an invaluable tool in model organism genetics. The ease of modifying the C. elegans genome through high-copy integration of transgenes facilitates the investigation of diverse and fundamental biological processes. However, generation of new multicopy integrated transgenes is limited by the time and labor cost. Further, many transgenes are integrated using non-specific DNA damaging agents. These DNA damaging agents cause unwanted mutations during the integration process and may have deleterious effects. A recently described method for CRISPR/Cas9-based integration of multicopy transgenes at safe harbor loci using Fluorescent Landmark Interference (FLInt) greatly increases the efficiency of multicopy transgene integration and mitigates issues related to off-target mutagenesis during integration. unc-119 rescue is a simple and widely used phenotypic marker in C. elegans transgenesis and genome engineering. To streamline generation of multicopy transgenes via FLInt, we have generated a set of strains suitable for FLInt-mediated integration of transgenes using rescue of the unc-119 mutant phenotype to select transgenic animals. We demonstrate the utility of this approach and outline a protocol that uses unc-119 rescue as a selection marker for streamlined integration of multicopy transgenes at safe harbor loci.
Collapse
Affiliation(s)
- Katherine S. Yanagi
- Basic Sciences Division, Fred Hutch Cancer Center, Seattle, Washington, United States
| | - Nicolas Lehrbach
- Basic Sciences Division, Fred Hutch Cancer Center, Seattle, Washington, United States
| |
Collapse
|
4
|
Randi F, Sharma AK, Dvali S, Leifer AM. Neural signal propagation atlas of Caenorhabditis elegans. Nature 2023; 623:406-414. [PMID: 37914938 PMCID: PMC10632145 DOI: 10.1038/s41586-023-06683-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/27/2023] [Indexed: 11/03/2023]
Abstract
Establishing how neural function emerges from network properties is a fundamental problem in neuroscience1. Here, to better understand the relationship between the structure and the function of a nervous system, we systematically measure signal propagation in 23,433 pairs of neurons across the head of the nematode Caenorhabditis elegans by direct optogenetic activation and simultaneous whole-brain calcium imaging. We measure the sign (excitatory or inhibitory), strength, temporal properties and causal direction of signal propagation between these neurons to create a functional atlas. We find that signal propagation differs from model predictions that are based on anatomy. Using mutants, we show that extrasynaptic signalling not visible from anatomy contributes to this difference. We identify many instances of dense-core-vesicle-dependent signalling, including on timescales of less than a second, that evoke acute calcium transients-often where no direct wired connection exists but where relevant neuropeptides and receptors are expressed. We propose that, in such cases, extrasynaptically released neuropeptides serve a similar function to that of classical neurotransmitters. Finally, our measured signal propagation atlas better predicts the neural dynamics of spontaneous activity than do models based on anatomy. We conclude that both synaptic and extrasynaptic signalling drive neural dynamics on short timescales, and that measurements of evoked signal propagation are crucial for interpreting neural function.
Collapse
Affiliation(s)
- Francesco Randi
- Department of Physics, Princeton University, Princeton, NJ, USA
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Anuj K Sharma
- Department of Physics, Princeton University, Princeton, NJ, USA
| | - Sophie Dvali
- Department of Physics, Princeton University, Princeton, NJ, USA
| | - Andrew M Leifer
- Department of Physics, Princeton University, Princeton, NJ, USA.
- Princeton Neurosciences Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
5
|
Kumar S, Sharma AK, Tran A, Liu M, Leifer AM. Inhibitory feedback from the motor circuit gates mechanosensory processing in Caenorhabditis elegans. PLoS Biol 2023; 21:e3002280. [PMID: 37733772 PMCID: PMC10617738 DOI: 10.1371/journal.pbio.3002280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/31/2023] [Accepted: 07/27/2023] [Indexed: 09/23/2023] Open
Abstract
Animals must integrate sensory cues with their current behavioral context to generate a suitable response. How this integration occurs is poorly understood. Previously, we developed high-throughput methods to probe neural activity in populations of Caenorhabditis elegans and discovered that the animal's mechanosensory processing is rapidly modulated by the animal's locomotion. Specifically, we found that when the worm turns it suppresses its mechanosensory-evoked reversal response. Here, we report that C. elegans use inhibitory feedback from turning-associated neurons to provide this rapid modulation of mechanosensory processing. By performing high-throughput optogenetic perturbations triggered on behavior, we show that turning-associated neurons SAA, RIV, and/or SMB suppress mechanosensory-evoked reversals during turns. We find that activation of the gentle-touch mechanosensory neurons or of any of the interneurons AIZ, RIM, AIB, and AVE during a turn is less likely to evoke a reversal than activation during forward movement. Inhibiting neurons SAA, RIV, and SMB during a turn restores the likelihood with which mechanosensory activation evokes reversals. Separately, activation of premotor interneuron AVA evokes reversals regardless of whether the animal is turning or moving forward. We therefore propose that inhibitory signals from SAA, RIV, and/or SMB gate mechanosensory signals upstream of neuron AVA. We conclude that C. elegans rely on inhibitory feedback from the motor circuit to modulate its response to sensory stimuli on fast timescales. This need for motor signals in sensory processing may explain the ubiquity in many organisms of motor-related neural activity patterns seen across the brain, including in sensory processing areas.
Collapse
Affiliation(s)
- Sandeep Kumar
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Anuj K. Sharma
- Department of Physics, Princeton University, Princeton, New Jersey, United States of America
| | - Andrew Tran
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Mochi Liu
- Department of Physics, Princeton University, Princeton, New Jersey, United States of America
| | - Andrew M. Leifer
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
- Department of Physics, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
6
|
Sharma AK, Randi F, Kumar S, Dvali S, Leifer AM. TWISP: A Transgenic Worm for Interrogating Signal Propagation in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551820. [PMID: 37577580 PMCID: PMC10418184 DOI: 10.1101/2023.08.03.551820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Genetically encoded optical indicators and actuators of neural activity allow for all-optical investigations of signaling in the nervous system. But commonly used indicators, actuators and expression strategies are poorly suited for systematic measurements of signal propagation at brain scale and cellular resolution. Large scale measurements of the brain require indicators and actuators with compatible excitation spectra to avoid optical crosstalk. They must be highly expressed in every neuron but at the same time avoid lethality and permit the animal to reach adulthood. And finally, their expression must be compatible with additional fluorescent labels to locate and identify neurons, such as those in the NeuroPAL cell identification system. We present TWISP, a Transgenic Worm for Interrogating Signal Propagation, that address these needs and enables optical measurements of evoked calcium activity at brain scale and cellular resolution in the nervous system of the nematode Caenorhabditis elegans. We express in every neuron a non-conventional optical actuator, the gustatory receptor homolog GUR-3+PRDX-2 under the control of a drug-inducible system QF+hGR, and calcium indicator GCAMP6s, in a background with additional fluorophores of the NeuroPAL cell ID system. We show that this combination, but not others tested, avoids optical-crosstalk, creates strong expression in the adult, and generates stable transgenic lines for systematic measurements of signal propagation in the worm brain.
Collapse
Affiliation(s)
| | - Francesco Randi
- Department of Physics, Princeton University, Princeton, NJ, 08544
| | - Sandeep Kumar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544
| | - Sophie Dvali
- Department of Physics, Princeton University, Princeton, NJ, 08544
| | - Andrew M Leifer
- Department of Physics, Princeton University, Princeton, NJ, 08544
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544
| |
Collapse
|
7
|
Malaiwong N, Porta-de-la-Riva M, Krieg M. FLInt: single shot safe harbor transgene integration via Fluorescent Landmark Interference. G3 (BETHESDA, MD.) 2023; 13:jkad041. [PMID: 36805659 PMCID: PMC10151404 DOI: 10.1093/g3journal/jkad041] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023]
Abstract
The stable incorporation of transgenes and recombinant DNA material into the host genome is a bottleneck in many bioengineering applications. Due to the low efficiency, identifying the transgenic animals is often a needle in the haystack. Thus, optimal conditions require efficient screening procedures, but also known and safe landing sites that do not interfere with host expression, low input material and strong expression from the new locus. Here, we leverage an existing library of ≈300 different loci coding for fluorescent markers that are distributed over all 6 chromosomes in Caenorhabditis elegans as safe harbors for versatile transgene integration sites using CRISPR/Cas9. We demonstrated that a single crRNA was sufficient for cleavage of the target region and integration of the transgene of interest, which can be easily followed by loss of the fluorescent marker. The same loci can also be used for extrachromosomal landing sites and as co-CRISPR markers without affecting body morphology or animal behavior. Thus, our method overcomes the uncertainty of transgene location during random mutagenesis, facilitates easy screening through fluorescence interference and can be used as co-CRISPR markers without further influence in phenotypes.
Collapse
Affiliation(s)
| | | | - Michael Krieg
- Corresponding author: Institut de Ciències Fotòniques (ICFO), 08860 Castelldefels, Spain.
| |
Collapse
|
8
|
El Mouridi S, Alkhaldi F, Frøkjær-Jensen C. Modular safe-harbor transgene insertion for targeted single-copy and extrachromosomal array integration in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2022; 12:jkac184. [PMID: 35900171 PMCID: PMC9434227 DOI: 10.1093/g3journal/jkac184] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/29/2022] [Indexed: 12/02/2022]
Abstract
Efficient and reproducible transgenesis facilitates and accelerates research using genetic model organisms. Here, we describe a modular safe-harbor transgene insertion (MosTI) for use in Caenorhabditis elegans which improves targeted insertion of single-copy transgenes by homology directed repair and targeted integration of extrachromosomal arrays by nonhomologous end-joining. MosTI allows easy conversion between selection markers at insertion site and a collection of universal targeting vectors with commonly used promoters and fluorophores. Insertions are targeted at three permissive safe-harbor intergenic locations and transgenes are reproducibly expressed in somatic and germ cells. Chromosomal integration is mediated by CRISPR/Cas9, and positive selection is based on a set of split markers (unc-119, hygroR, and gfp) where only animals with chromosomal insertions are rescued, resistant to antibiotics, or fluorescent, respectively. Single-copy insertion is efficient using either constitutive or heat-shock inducible Cas9 expression (25-75%) and insertions can be generated from a multiplexed injection mix. Extrachromosomal array integration is also efficient (7-44%) at modular safe-harbor transgene insertion landing sites or at the endogenous unc-119 locus. We use short-read sequencing to estimate the plasmid copy numbers for 8 integrated arrays (6-37 copies) and long-read Nanopore sequencing to determine the structure and size (5.4 Mb) of 1 array. Using universal targeting vectors, standardized insertion strains, and optimized protocols, it is possible to construct complex transgenic strains which should facilitate the study of increasingly complex biological problems in C. elegans.
Collapse
Affiliation(s)
- Sonia El Mouridi
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Faisal Alkhaldi
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Christian Frøkjær-Jensen
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Yoshina S, Mitani S. Integration of multicopy extrachromosomal transgenes into defined loci without phenotypes. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000571. [PMID: 35693894 PMCID: PMC9187222 DOI: 10.17912/micropub.biology.000571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 01/01/1970] [Accepted: 05/16/2022] [Indexed: 11/10/2022]
Abstract
We show how presumably non-phenotypic loci can be used for integration sites of multi-copy extrachromosomal transgenes, using the CRISPR/Cas9 system. We used four loci, which show no apparent phenotype in our hands, as a model for any other loci with no phenotype.
Collapse
Affiliation(s)
- Sawako Yoshina
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, Tokyo 162-8666, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, Tokyo 162-8666, Japan
| |
Collapse
|
10
|
Liu M, Kumar S, Sharma AK, Leifer AM. A high-throughput method to deliver targeted optogenetic stimulation to moving C. elegans populations. PLoS Biol 2022; 20:e3001524. [PMID: 35089912 PMCID: PMC8827482 DOI: 10.1371/journal.pbio.3001524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 02/09/2022] [Accepted: 12/22/2021] [Indexed: 11/30/2022] Open
Abstract
We present a high-throughput optogenetic illumination system capable of simultaneous closed-loop light delivery to specified targets in populations of moving Caenorhabditis elegans. The instrument addresses three technical challenges: It delivers targeted illumination to specified regions of the animal's body such as its head or tail; it automatically delivers stimuli triggered upon the animal's behavior; and it achieves high throughput by targeting many animals simultaneously. The instrument was used to optogenetically probe the animal's behavioral response to competing mechanosensory stimuli in the the anterior and posterior gentle touch receptor neurons. Responses to more than 43,418 stimulus events from a range of anterior-posterior intensity combinations were measured. The animal's probability of sprinting forward in response to a mechanosensory stimulus depended on both the anterior and posterior stimulation intensity, while the probability of reversing depended primarily on the anterior stimulation intensity. We also probed the animal's response to mechanosensory stimulation during the onset of turning, a relatively rare behavioral event, by delivering stimuli automatically when the animal began to turn. Using this closed-loop approach, over 9,700 stimulus events were delivered during turning onset at a rate of 9.2 events per worm hour, a greater than 25-fold increase in throughput compared to previous investigations. These measurements validate with greater statistical power previous findings that turning acts to gate mechanosensory evoked reversals. Compared to previous approaches, the current system offers targeted optogenetic stimulation to specific body regions or behaviors with many fold increases in throughput to better constrain quantitative models of sensorimotor processing.
Collapse
Affiliation(s)
- Mochi Liu
- Department of Physics, Princeton University, Princeton, New Jersey, United States of America
| | - Sandeep Kumar
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Anuj K. Sharma
- Department of Physics, Princeton University, Princeton, New Jersey, United States of America
| | - Andrew M. Leifer
- Department of Physics, Princeton University, Princeton, New Jersey, United States of America
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
11
|
Niu J, Sanders SS, Jeong HK, Holland SM, Sun Y, Collura KM, Hernandez LM, Huang H, Hayden MR, Smith GM, Hu Y, Jin Y, Thomas GM. Coupled Control of Distal Axon Integrity and Somal Responses to Axonal Damage by the Palmitoyl Acyltransferase ZDHHC17. Cell Rep 2020; 33:108365. [PMID: 33207199 PMCID: PMC7803378 DOI: 10.1016/j.celrep.2020.108365] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/28/2020] [Accepted: 10/19/2020] [Indexed: 12/25/2022] Open
Abstract
After optic nerve crush (ONC), the cell bodies and distal axons of most retinal ganglion cells (RGCs) degenerate. RGC somal and distal axon degenerations were previously thought to be controlled by two parallel pathways, involving activation of the kinase dual leucine-zipper kinase (DLK) and loss of the axon survival factor nicotinamide mononucleotide adenylyltransferase-2 (NMNAT2), respectively. Here, we report that palmitoylation of both DLK and NMNAT2 by the palmitoyl acyltransferase ZDHHC17 couples these signals. ZDHHC17-dependent palmitoylation enables DLK-dependent somal degeneration after ONC and also ensures NMNAT-dependent distal axon integrity in healthy optic nerves. We provide evidence that ZDHHC17 also controls survival-versus-degeneration decisions in dorsal root ganglion (DRG) neurons, and we identify conserved motifs in NMNAT2 and DLK that govern their ZDHHC17-dependent regulation. These findings suggest that the control of somal and distal axon integrity should be considered as a single, holistic process, mediated by the concerted action of two palmitoylation-dependent pathways.
Collapse
Affiliation(s)
- Jingwen Niu
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Shaun S Sanders
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Hey-Kyeong Jeong
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Sabrina M Holland
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Yue Sun
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kaitlin M Collura
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Luiselys M Hernandez
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Haoliang Huang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Michael R Hayden
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - George M Smith
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA; Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gareth M Thomas
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
12
|
Nance J, Frøkjær-Jensen C. The Caenorhabditis elegans Transgenic Toolbox. Genetics 2019; 212:959-990. [PMID: 31405997 PMCID: PMC6707460 DOI: 10.1534/genetics.119.301506] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/01/2019] [Indexed: 12/30/2022] Open
Abstract
The power of any genetic model organism is derived, in part, from the ease with which gene expression can be manipulated. The short generation time and invariant developmental lineage have made Caenorhabditis elegans very useful for understanding, e.g., developmental programs, basic cell biology, neurobiology, and aging. Over the last decade, the C. elegans transgenic toolbox has expanded considerably, with the addition of a variety of methods to control expression and modify genes with unprecedented resolution. Here, we provide a comprehensive overview of transgenic methods in C. elegans, with an emphasis on recent advances in transposon-mediated transgenesis, CRISPR/Cas9 gene editing, conditional gene and protein inactivation, and bipartite systems for temporal and spatial control of expression.
Collapse
Affiliation(s)
- Jeremy Nance
- Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York 10016
| | - Christian Frøkjær-Jensen
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), KAUST Environmental Epigenetics Program (KEEP), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|