1
|
Harry ND, Zakas C. Maternal patterns of inheritance alter transcript expression in eggs. BMC Genomics 2023; 24:191. [PMID: 37038099 PMCID: PMC10084599 DOI: 10.1186/s12864-023-09291-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/01/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Modifications to early development can lead to evolutionary diversification. The early stages of development are under maternal control, as mothers produce eggs loaded with nutrients, proteins and mRNAs that direct early embryogenesis. Maternally provided mRNAs are the only expressed genes in initial stages of development and are tightly regulated. Differences in maternal mRNA provisioning could lead to phenotypic changes in embryogenesis and ultimately evolutionary changes in development. However, the extent that maternal mRNA expression in eggs can vary is unknown for most developmental models. Here, we use a species with dimorphic development- where females make eggs and larvae of different sizes and life-history modes-to investigate the extent of variation in maternal mRNA provisioning to the egg. RESULTS We find that there is significant variation in gene expression across eggs of different development modes, and that there are both qualitative and quantitative differences in mRNA expression. We separate parental effects from allelic effects, and find that both mechanisms contribute to mRNA expression differences. We also find that offspring of intraspecific crosses differentially provision their eggs based on the parental cross direction (a parental effect), which has not been previously demonstrated in reproductive traits like oogenesis. CONCLUSION We find that maternally controlled initiation of development is functionally distinct between eggs of different sizes and maternal genotypes. Both allele-specific effects and parent-of-origin effects contribute to gene expression differences in eggs. The latter indicates an intergenerational effect where a parent's genotype can affect gene expression in an egg made by the next generation.
Collapse
Affiliation(s)
- Nathan D Harry
- Department of Biological Sciences, North Carolina State University, 112 Derieux Place, Raleigh, NC, 27607, USA
| | - Christina Zakas
- Department of Biological Sciences, North Carolina State University, 112 Derieux Place, Raleigh, NC, 27607, USA.
| |
Collapse
|
2
|
Ledón-Rettig CC. A transcriptomic investigation of heat-induced transgenerational plasticity in beetles. Biol J Linn Soc Lond 2023. [DOI: 10.1093/biolinnean/blac151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
AbstractIn response to environmental stressors, parents can shape the developmental outcomes of their offspring by contributing non-genetic but heritable factors. The transmission of such factors can potentially allow offspring, from the beginning of their lives, to express phenotypes that match their anticipated environments. In this study, I ask whether enhanced growth in larvae of Onthophagus taurus (the bull-headed dung beetle) is modified by parental exposure to heat or by exposure of the offspring to heat during early life. I find that, irrespective of the early environment of the offspring, individuals produced by parents exposed to heat grow larger. Furthermore, taking a transcriptomic approach, I find that ecdysone signalling might mediate the transgenerational effect and that increased insulin signalling or reduced production of heat shock proteins might be responsible for the enhanced growth in larvae derived from parents exposed to heat. Together, my results provide evidence for a thermally induced transgenerational effect and a foundation for functional testing of candidate mechanisms mediating the effect.
Collapse
|
3
|
Cartwright EL, Lott SE. Evolved Differences in cis and trans Regulation Between the Maternal and Zygotic mRNA Complements in the Drosophila Embryo. Genetics 2020; 216:805-821. [PMID: 32928902 PMCID: PMC7648588 DOI: 10.1534/genetics.120.303626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 08/26/2020] [Indexed: 11/18/2022] Open
Abstract
How gene expression can evolve depends on the mechanisms driving gene expression. Gene expression is controlled in different ways in different developmental stages; here we ask whether different developmental stages show different patterns of regulatory evolution. To explore the mode of regulatory evolution, we used the early stages of embryonic development controlled by two different genomes, that of the mother and that of the zygote. During embryogenesis in all animals, initial developmental processes are driven entirely by maternally provided gene products deposited into the oocyte. The zygotic genome is activated later, when developmental control is handed off from maternal gene products to the zygote during the maternal-to-zygotic transition. Using hybrid crosses between sister species of Drosophila (Dsimulans, D. sechellia, and D. mauritiana) and transcriptomics, we find that the regulation of maternal transcript deposition and zygotic transcription evolve through different mechanisms. We find that patterns of transcript level inheritance in hybrids, relative to parental species, differ between maternal and zygotic transcripts, and maternal transcript levels are more likely to be conserved. Changes in transcript levels occur predominantly through differences in trans regulation for maternal genes, while changes in zygotic transcription occur through a combination of both cis and trans regulatory changes. Differences in the underlying regulatory landscape in the mother and the zygote are likely the primary determinants for how maternal and zygotic transcripts evolve.
Collapse
Affiliation(s)
- Emily L Cartwright
- Department of Evolution and Ecology, University of California, Davis, California 95616
| | - Susan E Lott
- Department of Evolution and Ecology, University of California, Davis, California 95616
| |
Collapse
|
4
|
Ewe CK, Torres Cleuren YN, Rothman JH. Evolution and Developmental System Drift in the Endoderm Gene Regulatory Network of Caenorhabditis and Other Nematodes. Front Cell Dev Biol 2020; 8:170. [PMID: 32258041 PMCID: PMC7093329 DOI: 10.3389/fcell.2020.00170] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/02/2020] [Indexed: 01/17/2023] Open
Abstract
Developmental gene regulatory networks (GRNs) underpin metazoan embryogenesis and have undergone substantial modification to generate the tremendous variety of animal forms present on Earth today. The nematode Caenorhabditis elegans has been a central model for advancing many important discoveries in fundamental mechanistic biology and, more recently, has provided a strong base from which to explore the evolutionary diversification of GRN architecture and developmental processes in other species. In this short review, we will focus on evolutionary diversification of the GRN for the most ancient of the embryonic germ layers, the endoderm. Early embryogenesis diverges considerably across the phylum Nematoda. Notably, while some species deploy regulative development, more derived species, such as C. elegans, exhibit largely mosaic modes of embryogenesis. Despite the relatively similar morphology of the nematode gut across species, widespread variation has been observed in the signaling inputs that initiate the endoderm GRN, an exemplar of developmental system drift (DSD). We will explore how genetic variation in the endoderm GRN helps to drive DSD at both inter- and intraspecies levels, thereby resulting in a robust developmental system. Comparative studies using divergent nematodes promise to unveil the genetic mechanisms controlling developmental plasticity and provide a paradigm for the principles governing evolutionary modification of an embryonic GRN.
Collapse
Affiliation(s)
- Chee Kiang Ewe
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | | | - Joel H. Rothman
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
5
|
Gulyas L, Powell JR. Predicting the Future: Parental Progeny Investment in Response to Environmental Stress Cues. Front Cell Dev Biol 2019; 7:115. [PMID: 31275936 PMCID: PMC6593227 DOI: 10.3389/fcell.2019.00115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/05/2019] [Indexed: 01/13/2023] Open
Abstract
Environmental stressors can severely limit the ability of an organism to reproduce as lifespan is decreased and resources are shifted away from reproduction to survival. Although this is often detrimental to the organism's reproductive fitness, certain other reproductive stress responses may mitigate this effect by increasing the likelihood of progeny survival in the F1 and subsequent generations. Here we review three means by which these progeny may be conferred a competitive edge as a result of stress encountered in the parental generation: heritable epigenetic modifications to nucleotides and histones, simple maternal investments of cytosolic components, and the partially overlapping phenomenon of terminal investment, which can entail extreme parental investment strategies in either cytosolic components or gamete production. We examine instances of these categories and their ability to subsequently impact offspring fitness and reproduction. Ultimately, without impacting nucleotide sequence, these more labile alterations may shape development, evolution, ecology and even human health, necessitating further understanding and research into the specific mechanisms by which environmental stressors are sensed and elicit a corresponding response in the parental germline.
Collapse
Affiliation(s)
- Leah Gulyas
- Department of Biology, Gettysburg College, Gettysburg, PA, United States
| | - Jennifer R Powell
- Department of Biology, Gettysburg College, Gettysburg, PA, United States
| |
Collapse
|
6
|
Krittika S, Lenka A, Yadav P. Evidence of dietary protein restriction regulating pupation height, development time and lifespan in Drosophila melanogaster. Biol Open 2019; 8:bio042952. [PMID: 31171531 PMCID: PMC6602320 DOI: 10.1242/bio.042952] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/07/2019] [Indexed: 01/12/2023] Open
Abstract
Fitness and behavioral traits are optimized according to the rearing environment to ensure survival of most organisms including fruit flies Drosophila melanogaster Fruit flies are known to uphold various trade-offs in their lifespan, development time, fecundity, etc., to confer better survival in the particular exposed environment. The diet of D. melanogaster plays a major role between larval and adult fitness or fitness related traits; its role in the regulation of correlations between pupation height, pre-adult development and adult fitness has not been studied empirically. In our study, we assayed the effect of restricting dietary protein alone from the larval stage to adult stage in fruit flies and studied development time, pre-adult survivorship, pupation height, larval feeding rate and their corresponding lifespan under a light/dark cycle (LD12:12 h). We found that under very low protein concentration in diet, development time and lifespan of the flies increased significantly, along with decreased pupation height and vice versa, while pre-adult survivorship remained unchanged across diets. The results from our study can be taken to suggest that development time is negatively and positively correlated with pupation height and adult lifespan respectively. Thus, a higher protein restriction decreases pupation height and increases development time and vice versa, thereby emphasizing differential alterations taken up by various fitness traits, probably to enhance the overall organismal fitness.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sudhakar Krittika
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India
| | - Alisha Lenka
- Gautam Buddha University, School of Biotechnology, Yamuna Expressway, Near, PariChowk, Greater Noida, Uttar Pradesh 201308, India
| | - Pankaj Yadav
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India
| |
Collapse
|
7
|
Leftwich PT, Nash WJ, Friend LA, Chapman T. Contribution of maternal effects to dietary selection in Mediterranean fruit flies. Evolution 2019; 73:278-292. [PMID: 30592536 PMCID: PMC6492002 DOI: 10.1111/evo.13664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 11/25/2018] [Indexed: 01/15/2023]
Abstract
Individual responses to dietary variation represent a fundamental component of fitness, and nutritional adaptation can occur over just a few generations. Maternal effects can show marked proximate responses to nutrition, but whether they contribute to longer term dietary adaptation is unclear. Here, we tested the hypotheses that maternal effects: (i) contribute to dietary adaptation, (ii) diminish when dietary conditions are constant between generations, (iii) are trait-specific and (iv) interact with high- and low-quality food. We used experimental evolution regimes in the medfly (Ceratitis capitata) to test these predictions by subjecting an outbred laboratory-adapted population to replicated experimental evolution on either constant high calorie sugar ('A') or low-calorie starch ('S') larval diets, with a standard adult diet across both regimes. We measured the contribution of maternal effects by comparing developmental and adult phenotypes of individuals reared on their own diet with those swapped onto the opposite diet for either one or two generations (high and low maternal effect conditions, respectively), both at the start and after 30 generations of selection. Initially, there were strong maternal effects on female body mass and male mating success but not larval survival. Interestingly, the initial maternal effects observed in female body mass and male mating success showed sex-specific interactions when individuals from high calorie regimes were tested on low calorie diets. However, as populations responded to selection, the effects of maternal provisioning on all traits diminished. The results broadly supported the predictions. They show how the contribution of maternal effects to dietary responses evolves in a context-dependent manner, with significant variation across different fitness-related traits. We conclude that maternal effects can evolve during nutritional adaptation and hence may be an important life history trait to measure, rather than to routinely minimize.
Collapse
Affiliation(s)
- Philip T. Leftwich
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUnited Kingdom
- The Pirbright InstituteWokingSurreyGU24 0NFUnited Kingdom
| | - William J. Nash
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUnited Kingdom
- Evolutionary Genomics GroupEarlham InstituteNorwich Research ParkNorwichNR4 7UZUnited Kingdom
| | - Lucy A. Friend
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUnited Kingdom
| | - Tracey Chapman
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUnited Kingdom
| |
Collapse
|
8
|
Perez MF, Lehner B. Intergenerational and transgenerational epigenetic inheritance in animals. Nat Cell Biol 2019; 21:143-151. [PMID: 30602724 DOI: 10.1038/s41556-018-0242-9] [Citation(s) in RCA: 300] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
Abstract
Animals transmit not only DNA but also other molecules, such as RNA, proteins and metabolites, to their progeny via gametes. It is currently unclear to what extent these molecules convey information between generations and whether this information changes according to their physiological state and environment. Here, we review recent work on the molecular mechanisms by which 'epigenetic' information is transmitted between generations over different timescales, and the importance of this information for development and physiology.
Collapse
Affiliation(s)
- Marcos Francisco Perez
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ben Lehner
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
9
|
Aw WC, Towarnicki SG, Melvin RG, Youngson NA, Garvin MR, Hu Y, Nielsen S, Thomas T, Pickford R, Bustamante S, Vila-Sanjurjo A, Smyth GK, Ballard JWO. Genotype to phenotype: Diet-by-mitochondrial DNA haplotype interactions drive metabolic flexibility and organismal fitness. PLoS Genet 2018; 14:e1007735. [PMID: 30399141 PMCID: PMC6219761 DOI: 10.1371/journal.pgen.1007735] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/02/2018] [Indexed: 02/07/2023] Open
Abstract
Diet may be modified seasonally or by biogeographic, demographic or cultural shifts. It can differentially influence mitochondrial bioenergetics, retrograde signalling to the nuclear genome, and anterograde signalling to mitochondria. All these interactions have the potential to alter the frequencies of mtDNA haplotypes (mitotypes) in nature and may impact human health. In a model laboratory system, we fed four diets varying in Protein: Carbohydrate (P:C) ratio (1:2, 1:4, 1:8 and 1:16 P:C) to four homoplasmic Drosophila melanogaster mitotypes (nuclear genome standardised) and assayed their frequency in population cages. When fed a high protein 1:2 P:C diet, the frequency of flies harbouring Alstonville mtDNA increased. In contrast, when fed the high carbohydrate 1:16 P:C food the incidence of flies harbouring Dahomey mtDNA increased. This result, driven by differences in larval development, was generalisable to the replacement of the laboratory diet with fruits having high and low P:C ratios, perturbation of the nuclear genome and changes to the microbiome. Structural modelling and cellular assays suggested a V161L mutation in the ND4 subunit of complex I of Dahomey mtDNA was mildly deleterious, reduced mitochondrial functions, increased oxidative stress and resulted in an increase in larval development time on the 1:2 P:C diet. The 1:16 P:C diet triggered a cascade of changes in both mitotypes. In Dahomey larvae, increased feeding fuelled increased β-oxidation and the partial bypass of the complex I mutation. Conversely, Alstonville larvae upregulated genes involved with oxidative phosphorylation, increased glycogen metabolism and they were more physically active. We hypothesise that the increased physical activity diverted energy from growth and cell division and thereby slowed development. These data further question the use of mtDNA as an assumed neutral marker in evolutionary and population genetic studies. Moreover, if humans respond similarly, we posit that individuals with specific mtDNA variations may differentially metabolise carbohydrates, which has implications for a variety of diseases including cardiovascular disease, obesity, and perhaps Parkinson's Disease.
Collapse
Affiliation(s)
- Wen C. Aw
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Samuel G. Towarnicki
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Richard G. Melvin
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Neil A. Youngson
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Michael R. Garvin
- School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Yifang Hu
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Shaun Nielsen
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Torsten Thomas
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Center, The University of New South Wales, Sydney, NSW, Australia
| | - Sonia Bustamante
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Center, The University of New South Wales, Sydney, NSW, Australia
| | - Antón Vila-Sanjurjo
- Grupo GIBE, Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña (UDC), Campus Zapateira s/n, A Coruña, Spain
| | - Gordon K. Smyth
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - J. William O. Ballard
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|