1
|
Du Y, Hu M, Xia Y, Jin K. Unveiling the functions of the Lim-domain binding protein MaPtaB in Metarhizium acridum. PEST MANAGEMENT SCIENCE 2024. [PMID: 39469952 DOI: 10.1002/ps.8488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND The Lim-domain binding protein PtaB, a homolog of Mfg1, governs conidiation and biofilm formation in several fungi. PtaB includes a conserved Lim-binding domain and two predicted nuclear localization sequences at its C terminus, and is co-regulated with the transcription factor Som1 downstream of the cyclic AMP-dependent protein kinase A (cAMP/PKA) pathway. However, the function of PtaB in entomopathogenic fungi remain poorly understood. RESULTS Inactivation of PtaB in Metarhizium acridum resulted in delayed conidial germination, reduced conidial yield and increased sensitivities to cell wall disruptors, ultraviolet B irradiation and heat shock. In addition, the fungal virulence was significantly decreased after deletion of MaPtaB because of impairments in appressorium formation, cuticle penetration and evasion of insect immune responses in M. acridum. The MaPtaB-deletion and MaSom1-deletion strains showed similar phenotypes supporting that MaSom1/MaPtaB complex controls M. acridum normal conidiation and pathogenic progress. Upon loss of MaPtaB or MaSom1, the fungal sporulation mode in M. acridium shifted from microcycle conidiation to normal conidiation on SYA, a microcycle conidiation medium. Transcriptional analysis showed that more differentially expression genes were identified in MaSom1 RNA sequencing, and MaSom1 and MaPtaB may regulate the expression of genes for conidiation, nutrient metabolism and the cell cycle to control conidiation pattern shift. CONCLUSION These data corroborate a complex control function for MaPtaB as an important central factor interacting with MaSom1 in the cAMP/PKA pathway, which links stress tolerance, conidiation and virulence in the entomopathogenic fungus M. acridum. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanru Du
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People's Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People's Republic of China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, People's Republic of China
| | - Meiwen Hu
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People's Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People's Republic of China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, People's Republic of China
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People's Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People's Republic of China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, People's Republic of China
| | - Kai Jin
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People's Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People's Republic of China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, People's Republic of China
| |
Collapse
|
2
|
Vandermeulen MD, Lorenz MC, Cullen PJ. Conserved signaling modules regulate filamentous growth in fungi: a model for eukaryotic cell differentiation. Genetics 2024; 228:iyae122. [PMID: 39239926 PMCID: PMC11457945 DOI: 10.1093/genetics/iyae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/20/2024] [Indexed: 09/07/2024] Open
Abstract
Eukaryotic organisms are composed of different cell types with defined shapes and functions. Specific cell types are produced by the process of cell differentiation, which is regulated by signal transduction pathways. Signaling pathways regulate cell differentiation by sensing cues and controlling the expression of target genes whose products generate cell types with specific attributes. In studying how cells differentiate, fungi have proved valuable models because of their ease of genetic manipulation and striking cell morphologies. Many fungal species undergo filamentous growth-a specialized growth pattern where cells produce elongated tube-like projections. Filamentous growth promotes expansion into new environments, including invasion into plant and animal hosts by fungal pathogens. The same signaling pathways that regulate filamentous growth in fungi also control cell differentiation throughout eukaryotes and include highly conserved mitogen-activated protein kinase (MAPK) pathways, which is the focus of this review. In many fungal species, mucin-type sensors regulate MAPK pathways to control filamentous growth in response to diverse stimuli. Once activated, MAPK pathways reorganize cell polarity, induce changes in cell adhesion, and promote the secretion of degradative enzymes that mediate access to new environments. However, MAPK pathway regulation is complicated because related pathways can share components with each other yet induce unique responses (i.e. signal specificity). In addition, MAPK pathways function in highly integrated networks with other regulatory pathways (i.e. signal integration). Here, we discuss signal specificity and integration in several yeast models (mainly Saccharomyces cerevisiae and Candida albicans) by focusing on the filamentation MAPK pathway. Because of the strong evolutionary ties between species, a deeper understanding of the regulation of filamentous growth in established models and increasingly diverse fungal species can reveal fundamentally new mechanisms underlying eukaryotic cell differentiation.
Collapse
Affiliation(s)
| | - Michael C Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
3
|
Komath SS. To each its own: Mechanisms of cross-talk between GPI biosynthesis and cAMP-PKA signaling in Candida albicans versus Saccharomyces cerevisiae. J Biol Chem 2024; 300:107444. [PMID: 38838772 PMCID: PMC11294708 DOI: 10.1016/j.jbc.2024.107444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
Candida albicans is an opportunistic fungal pathogen that can switch between yeast and hyphal morphologies depending on the environmental cues it receives. The switch to hyphal form is crucial for the establishment of invasive infections. The hyphal form is also characterized by the cell surface expression of hyphae-specific proteins, many of which are GPI-anchored and important determinants of its virulence. The coordination between hyphal morphogenesis and the expression of GPI-anchored proteins is made possible by an interesting cross-talk between GPI biosynthesis and the cAMP-PKA signaling cascade in the fungus; a parallel interaction is not found in its human host. On the other hand, in the nonpathogenic yeast, Saccharomyces cerevisiae, GPI biosynthesis is shut down when filamentation is activated and vice versa. This too is achieved by a cross-talk between GPI biosynthesis and cAMP-PKA signaling. How are diametrically opposite effects obtained from the cross-talk between two reasonably well-conserved pathways present ubiquitously across eukarya? This Review attempts to provide a model to explain these differences. In order to do so, it first provides an overview of the two pathways for the interested reader, highlighting the similarities and differences that are observed in C. albicans versus the well-studied S. cerevisiae model, before going on to explain how the different mechanisms of regulation are effected. While commonalities enable the development of generalized theories, it is hoped that a more nuanced approach, that takes into consideration species-specific differences, will enable organism-specific understanding of these processes and contribute to the development of targeted therapies.
Collapse
|
4
|
Sun Q, Xu G, Li X, Li S, Jia Z, Yan M, Chen W, Shi Z, Li Z, Chen M. Functional Study of cAMP-Dependent Protein Kinase A in Penicillium oxalicum. J Fungi (Basel) 2023; 9:1203. [PMID: 38132803 PMCID: PMC10745023 DOI: 10.3390/jof9121203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Signaling pathways play a crucial role in regulating cellulase production. The pathway mediated by signaling proteins plays a crucial role in understanding how cellulase expression is regulated. In this study, using affinity purification of ClrB, we have identified sixteen proteins that potentially interact with ClrB. One of the proteins, the catalytic subunit of cAMP-dependent protein kinase A (PoPKA-C), is an important component of the cAMP/PKA signaling pathway. Knocking out PoPKA-C resulted in significant decreases in the growth, glucose utilization, and cellulose hydrolysis ability of the mutant strain. Furthermore, the cellulase activity and gene transcription levels were significantly reduced in the ΔPoPKA-C mutant, while the expression activity of CreA, a transcriptional regulator of carbon metabolism repression, was notably increased. Additionally, deletion of PoPKA-C also led to earlier timing of conidia production. The expression levels of key transcription factor genes stuA and brlA, which are involved in the production of the conidia, showed significant enhancement in the ΔPoPKA-C mutant. These findings highlight the involvement of PoPKA-C in mycelial development, conidiation, and the regulation of cellulase expression. The functional analysis of PoPKA-C provides insights into the mechanism of the cAMP/PKA signaling pathway in cellulase expression in filamentous fungi and has significant implications for the development of high-yielding cellulase strains.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhonghai Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (Q.S.); (G.X.); (X.L.); (S.L.); (Z.J.); (M.Y.); (W.C.); (Z.S.)
| | - Mei Chen
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (Q.S.); (G.X.); (X.L.); (S.L.); (Z.J.); (M.Y.); (W.C.); (Z.S.)
| |
Collapse
|
5
|
Vandermeulen MD, Cullen PJ. Ecological inducers of the yeast filamentous growth pathway reveal environment-dependent roles for pathway components. mSphere 2023; 8:e0028423. [PMID: 37732804 PMCID: PMC10597418 DOI: 10.1128/msphere.00284-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/31/2023] [Indexed: 09/22/2023] Open
Abstract
Signaling modules, such as mitogen-activated protein kinase (MAPK) pathways, are evolutionarily conserved drivers of cell differentiation and stress responses. In many fungal species including pathogens, MAPK pathways control filamentous growth, where cells differentiate into an elongated cell type. The convenient model budding yeast Saccharomyces cerevisiae undergoes filamentous growth by the filamentous growth (fMAPK) pathway; however, the inducers of the pathway remain unclear, perhaps because pathway activity has been mainly studied in laboratory conditions. To address this knowledge gap, an ecological framework was used, which uncovered new fMAPK pathway inducers, including pectin, a material found in plants, and the metabolic byproduct ethanol. We also show that induction by a known inducer of the pathway, the non-preferred carbon source galactose, required galactose metabolism and induced the pathway differently than glucose limitation or other non-preferred carbon sources. By exploring fMAPK pathway function in fruit, we found that induction of the pathway led to visible digestion of fruit rind through a known target, PGU1, which encodes a pectolytic enzyme. Combinations of inducers (galactose and ethanol) stimulated the pathway to near-maximal levels, which showed dispensability of several fMAPK pathway components (e.g., mucin sensor, p21-activated kinase), but not others (e.g., adaptor, MAPKKK) and required the Ras2-protein kinase A pathway. This included a difference between the transcription factor binding partners for the pathway, as Tec1p, but not Ste12p, was partly dispensable for fMAPK pathway activity. Thus, by exploring ecologically relevant stimuli, new modes of MAPK pathway signaling were uncovered, perhaps revealing how a pathway can respond differently to specific environments. IMPORTANCE Filamentous growth is a cell differentiation response and important aspect of fungal biology. In plant and animal fungal pathogens, filamentous growth contributes to virulence. One signaling pathway that regulates filamentous growth is an evolutionarily conserved MAPK pathway. The yeast Saccharomyces cerevisiae is a convenient model to study MAPK-dependent regulation of filamentous growth, although the inducers of the pathway are not clear. Here, we exposed yeast cells to ecologically relevant compounds (e.g., plant compounds), which identified new inducers of the MAPK pathway. In combination, the inducers activated the pathway to near-maximal levels but did not cause detrimental phenotypes associated with previously identified hyperactive alleles. This context allowed us to identify conditional bypass for multiple pathway components. Thus, near-maximal induction of a MAPK pathway by ecologically relevant inducers provides a powerful tool to assess cellular signaling during a fungal differentiation response.
Collapse
Affiliation(s)
| | - Paul J. Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
6
|
Li N, Qiu Z, Cai W, Shen Y, Wei D, Chen Y, Wang W. The Ras small GTPase RSR1 regulates cellulase production in Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:87. [PMID: 37218014 PMCID: PMC10204303 DOI: 10.1186/s13068-023-02341-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Lignocellulose is the most abundant renewable resource in the world and has attracted widespread attention. It can be hydrolyzed into sugars with the help of cellulases and hemicellulases that are secreted by filamentous fungi. Several studies have revealed that the Ras small GTPase superfamily regulates important cellular physiological processes, including synthesis of metabolites, sporulation, and cell growth and differentiation. However, it remains unknown how and to what extent Ras small GTPases participate in cellulase production. RESULTS In this study, we found that the putative Ras small GTPase RSR1 negatively regulated the expression of cellulases and xylanases. Deletion of rsr1 (∆rsr1) significantly increased cellulase production and decreased the expression levels of ACY1-cAMP-protein kinase A (PKA) signaling pathway genes and the concentration of intracellular cyclic adenosine monophosphate (cAMP). Loss of acy1 based on ∆rsr1 (∆rsr1∆acy1) could further increase cellulase production and the expression levels of cellulase genes, while overexpression of acy1 based on ∆rsr1 (∆rsr1-OEacy1) significantly reduced cellulase production and transcriptional levels of cellulase genes. In addition, our results revealed that RSR1 negatively controlled cellulase production via the ACY1-cAMP-PKA pathway. Transcriptome analysis revealed significantly increased expression of three G-protein coupled receptors (GPCRs; tre62462, tre58767, and tre53238) and approximately two-fold higher expression of ACE3 and XYR1, which transcriptionally activated cellulases with the loss of rsr1. ∆rsr1∆ tre62462 exhibited a decrease in cellulase activity compared to ∆rsr1, while that of ∆rsr1∆tre58767 and ∆rsr1∆tre53238 showed a remarkable improvement compared to ∆rsr1. These findings revealed that GPCRs on the membrane may sense extracellular signals and transmit them to rsr1 and then to ACY1-cAMP-PKA, thereby negatively controlling the expression of the cellulase activators ACE3 and XYR1. These data indicate the crucial role of Ras small GTPases in regulating cellulase gene expression. CONCLUSIONS Here, we demonstrate that some GPCRs and Ras small GTPases play key roles in the regulation of cellulase genes in Trichoderma reesei. Understanding the roles of these components in the regulation of cellulase gene transcription and the signaling processes in T. reesei can lay the groundwork for understanding and transforming other filamentous fungi.
Collapse
Affiliation(s)
- Ni Li
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China
| | - Zhouyuan Qiu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China
| | - Wanchuan Cai
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China
| | - Yaling Shen
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China
| | - Dongzhi Wei
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China
| | - Yumeng Chen
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China
| | - Wei Wang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China.
- Jiangsu Yiming Biological Technology Co., Ltd., Suqian, 223699, Jiangsu, China.
| |
Collapse
|
7
|
Britton SJ, Rogers LJ, White JS, Neven H, Maskell DL. Disparity in pseudohyphal morphogenic switching response to the quorum sensing molecule 2-phenylethanol in commercial brewing strains of Saccharomyces cerevisiae. FEMS MICROBES 2023; 4:xtad002. [PMID: 37333439 PMCID: PMC10117810 DOI: 10.1093/femsmc/xtad002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 12/03/2023] Open
Abstract
Saccharomyces cerevisiae can undergo filamentous growth in response to specific environmental stressors, particularly nitrogen-limitation, whereby cells undergo pseudohyphal differentiation, a process where cells transition from a singular ellipsoidal appearance to multicellular filamentous chains from the incomplete scission of the mother-daughter cells. Previously, it was demonstrated that filamentous growth in S. cerevisiae is co-regulated by multiple signaling networks, including the glucose-sensing RAS/cAMP-PKA and SNF pathways, the nutrient-sensing TOR pathway, the filamentous growth MAPK pathway, and the Rim101 pathway, and can be induced by quorum-sensing aromatic alcohols, such as 2-phenylethanol. However, the prevalent research on the yeast-pseudohyphal transition and its induction by aromatic alcohols in S. cerevisiae has been primarily limited to the strain Σ1278b. Due to the prospective influence of quorum sensing on commercial fermentation, the native variation of yeast-to-filamentous phenotypic transition and its induction by 2-phenylethanol in commercial brewing strains was investigated. Image analysis software was exploited to enumerate the magnitude of whole colony filamentation in 16 commercial strains cultured on nitrogen-limiting SLAD medium; some supplemented with exogenous 2-phenylethanol. The results demonstrate that phenotypic switching is a generalized, highly varied response occurring only in select brewing strains. Nevertheless, strains exhibiting switching behavior altered their filamentation response to exogenous concentrations of 2-phenylethanol.
Collapse
Affiliation(s)
- Scott J Britton
- International Centre for Brewing and Distilling, Institute of Biological Chemistry, Biophysics, and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, EH14 4AS Edinburgh, United Kingdom
- Research & Development, Brewery Duvel Moortgat, 2870 Puurs-Sint-Amands, Belgium
| | | | - Jane S White
- International Centre for Brewing and Distilling, Institute of Biological Chemistry, Biophysics, and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, EH14 4AS Edinburgh, United Kingdom
| | - Hedwig Neven
- Research & Development, Brewery Duvel Moortgat, 2870 Puurs-Sint-Amands, Belgium
- Department M2S, Centre for Food and Microbial Technology (CLMT), KU Leuven, 3000 Leuven, Belgium
| | - Dawn L Maskell
- International Centre for Brewing and Distilling, Institute of Biological Chemistry, Biophysics, and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, EH14 4AS Edinburgh, United Kingdom
| |
Collapse
|
8
|
Zhu MC, Zhao N, Liu YK, Li XM, Zhen ZY, Zheng YQ, Zhang KQ, Yang JK. The cAMP-PKA signalling pathway regulates hyphal growth, conidiation, trap morphogenesis, stress tolerance, and autophagy in Arthrobotrys oligospora. Environ Microbiol 2022; 24:6524-6538. [PMID: 36260054 DOI: 10.1111/1462-2920.16253] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/18/2022] [Indexed: 01/12/2023]
Abstract
The cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) signalling pathway is evolutionarily conserved in eukaryotes and plays a crucial role in defending against external environmental challenges, which can modulate the cellular response to external stimuli. Arthrobotrys oligospora is a typical nematode-trapping fungus that specializes in adhesive networks to kill nematodes. To elucidate the biological roles of the cAMP-PKA signalling pathway, we characterized the orthologous adenylate cyclase AoAcy, a regulatory subunit (AoPkaR), and two catalytic subunits (AoPkaC1 and AoPkaC2) of PKA in A. oligospora by gene disruption, transcriptome, and metabolome analyses. Deletion of Aoacy significantly reduced the levels of cAMP and arthrobotrisins. Results revealed that Aoacy, AopkaR, and AopkaC1 were involved in hyphal growth, trap morphogenesis, sporulation, stress resistance, and autophagy. In addition, Aoacy and AopkaC1 were involved in the regulation of mitochondrial morphology, thereby affecting energy metabolism, whereas AopkaC2 affected sporulation, nuclei, and autophagy. Multi-omics results showed that the cAMP-PKA signalling pathway regulated multiple metabolic and cellular processes. Collectively, these data highlight the indispensable role of cAMP-PKA signalling pathway in the growth, development, and pathogenicity of A. oligospora, and provide insights into the regulatory mechanisms of signalling pathways in sporulation, trap formation, and lifestyle transition.
Collapse
Affiliation(s)
- Mei-Chen Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Na Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Yan-Kun Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Xue-Mei Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Zheng-Yi Zhen
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Ya-Qing Zheng
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Jin-Kui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
9
|
Yeast Protein Kinase A Isoforms: A Means of Encoding Specificity in the Response to Diverse Stress Conditions? Biomolecules 2022; 12:biom12070958. [PMID: 35883514 PMCID: PMC9313097 DOI: 10.3390/biom12070958] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023] Open
Abstract
Eukaryotic cells have developed a complex circuitry of signalling molecules which monitor changes in their intra- and extracellular environments. One of the most widely studied signalling pathways is the highly conserved cyclic AMP (cAMP)/protein kinase A (PKA) pathway, which is a major glucose sensing circuit in the yeast Saccharomyces cerevisiae. PKA activity regulates diverse targets in yeast, positively activating the processes that are associated with rapid cell growth (e.g., fermentative metabolism, ribosome biogenesis and cell division) and negatively regulating the processes that are associated with slow growth, such as respiratory growth, carbohydrate storage and entry into stationary phase. As in higher eukaryotes, yeast has evolved complexity at the level of the PKA catalytic subunit, and Saccharomyces cerevisiae expresses three isoforms, denoted Tpk1-3. Despite evidence for isoform differences in multiple biological processes, the molecular basis of PKA signalling specificity remains poorly defined, and many studies continue to assume redundancy with regards to PKA-mediated regulation. PKA has canonically been shown to play a key role in fine-tuning the cellular response to diverse stressors; however, recent studies have now begun to interrogate the requirement for individual PKA catalytic isoforms in coordinating distinct steps in stress response pathways. In this review, we discuss the known non-redundant functions of the Tpk catalytic subunits and the evolving picture of how these isoforms establish specificity in the response to different stress conditions.
Collapse
|
10
|
cAMP Signalling Pathway in Biocontrol Fungi. Curr Issues Mol Biol 2022; 44:2622-2634. [PMID: 35735620 PMCID: PMC9221721 DOI: 10.3390/cimb44060179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 01/07/2023] Open
Abstract
Biocontrol is a complex process, in which a variety of physiological and biochemical characteristics are altered. The cAMP signalling pathway is an important signal transduction pathway in biocontrol fungi and consists of several key components. The G-protein system contains G-protein coupled receptors (GPCRs), heterotrimeric G-proteins, adenylate cyclase (AC), cAMP-dependent protein kinase (PKA), and downstream transcription factors (TFs). The cAMP signalling pathway can regulate fungal growth, development, differentiation, sporulation, morphology, secondary metabolite production, environmental stress tolerance, and the biocontrol of pathogens. However, few reviews of the cAMP signalling pathway in comprehensive biocontrol processes have been reported. This work reviews and discusses the functions and applications of genes encoding each component in the cAMP signalling pathway from biocontrol fungi, including the G-protein system components, AC, PKA, and TFs, in biocontrol behaviour. Finally, future suggestions are provided for constructing a complete cAMP signalling pathway in biocontrol fungi containing all the components and downstream effectors involved in biocontrol behavior. This review provides useful information for the understanding the biocontrol mechanism of biocontrol fungi by utilising the cAMP signalling pathway.
Collapse
|
11
|
Application of Metabolomics in the Study of Starvation-Induced Autophagy in Saccharomyces cerevisiae: A Scoping Review. J Fungi (Basel) 2021; 7:jof7110987. [PMID: 34829274 PMCID: PMC8619235 DOI: 10.3390/jof7110987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/18/2022] Open
Abstract
This scoping review is aimed at the application of the metabolomics platform to dissect key metabolites and their intermediates to observe the regulatory mechanisms of starvation-induced autophagy in Saccharomyces cerevisiae. Four research papers were shortlisted in this review following the inclusion and exclusion criteria. We observed a commonly shared pathway undertaken by S. cerevisiae under nutritional stress. Targeted and untargeted metabolomics was applied in either of these studies using varying platforms resulting in the annotation of several different observable metabolites. We saw a commonly shared pathway undertaken by S. cerevisiae under nutritional stress. Following nitrogen starvation, the concentration of cellular nucleosides was altered as a result of autophagic RNA degradation. Additionally, it is also found that autophagy replenishes amino acid pools to sustain macromolecule synthesis. Furthermore, in glucose starvation, nucleosides were broken down into carbonaceous metabolites that are being funneled into the non-oxidative pentose phosphate pathway. The ribose salvage allows for the survival of starved yeast. Moreover, acute glucose starvation showed autophagy to be involved in maintaining ATP/energy levels. We highlighted the practicality of metabolomics as a tool to better understand the underlying mechanisms involved to maintain homeostasis by recycling degradative products to ensure the survival of S. cerevisiae under starvation. The application of metabolomics has extended the scope of autophagy and provided newer intervention targets against cancer as well as neurodegenerative diseases in which autophagy is implicated.
Collapse
|
12
|
Zhu H, Liu D, Zheng L, Chen L, Ma A. Characterization of a G protein α subunit encoded gene from the dimorphic fungus-Tremella fuciformis. Antonie van Leeuwenhoek 2021; 114:1949-1960. [PMID: 34510304 DOI: 10.1007/s10482-021-01653-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/02/2021] [Indexed: 11/26/2022]
Abstract
Tremella fuciformis is a dimorphic fungus which can undertake the reversible transition between yeast and pseudohypha forms. G protein α subunit (Gα) carries different signals to regulate a variety of biological processes in eukaryotes, including fungal dimorphism. In this study, a novel Gα subunit encoded gene, TrGpa1, was firstly cloned from T. fuciformis. The TrGpa1 open reading frame has 1059 nucleotides, and encodes a protein which belongs to the group I of Gαi superfamily. Furthermore, the role of TrGpa1 in the T. fuciformis dimorphism was analysed by gene overexpression and knockdown. Stable integration of the target gene into the genome was confirmed by PCR and Southern blot hybridization. Transformants with the highest and lowest TrGpa1 expression levels were selected via quantitative real-time PCR analysis and Western blot. Each transformant was compared with the wild-type strain about the morphological change under different environmental factors, including pH values, temperature, cultivation time, inoculum size, and quorum-sensing molecules (farnesol and tyrosol). Comparing with the wild-type strain, the overexpression transformant always had higher ratios of pseudohyphae, while the knockdown transformant had less proportions of pseudohyphae. Therefore, the TrGpa1 is involved in the dimorphism of T. fuciformis and plays a positive role in promoting pseudohyphal growth.
Collapse
Affiliation(s)
- Hanyu Zhu
- College of Life Science and Environment, Hengyang Normal University, Hengyang, 421000, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dongmei Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liesheng Zheng
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liguo Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Agro-Microbial Resources and Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
13
|
Kumar A. The Complex Genetic Basis and Multilayered Regulatory Control of Yeast Pseudohyphal Growth. Annu Rev Genet 2021; 55:1-21. [PMID: 34280314 DOI: 10.1146/annurev-genet-071719-020249] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic cells are exquisitely responsive to external and internal cues, achieving precise control of seemingly diverse growth processes through a complex interplay of regulatory mechanisms. The budding yeast Saccharomyces cerevisiae provides a fascinating model of cell growth in its stress-responsive transition from planktonic single cells to a filamentous pseudohyphal growth form. During pseudohyphal growth, yeast cells undergo changes in morphology, polarity, and adhesion to form extended and invasive multicellular filaments. This pseudohyphal transition has been studied extensively as a model of conserved signaling pathways regulating cell growth and for its relevance in understanding the pathogenicity of the related opportunistic fungus Candida albicans, wherein filamentous growth is required for virulence. This review highlights the broad gene set enabling yeast pseudohyphal growth, signaling pathways that regulate this process, the role and regulation of proteins conferring cell adhesion, and interesting regulatory mechanisms enabling the pseudohyphal transition. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| |
Collapse
|
14
|
Wu Y, Wu J, Deng M, Lin Y. Yeast cell fate control by temporal redundancy modulation of transcription factor paralogs. Nat Commun 2021; 12:3145. [PMID: 34035307 PMCID: PMC8149833 DOI: 10.1038/s41467-021-23425-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 04/28/2021] [Indexed: 11/19/2022] Open
Abstract
Recent single-cell studies have revealed that yeast stress response involves transcription factors that are activated in pulses. However, it remains unclear whether and how these dynamic transcription factors temporally interact to regulate stress survival. Here we show that budding yeast cells can exploit the temporal relationship between paralogous general stress regulators, Msn2 and Msn4, during stress response. We find that individual pulses of Msn2 and Msn4 are largely redundant, and cells can enhance the expression of their shared targets by increasing their temporal divergence. Thus, functional redundancy between these two paralogs is modulated in a dynamic manner to confer fitness advantages for yeast cells, which might feed back to promote the preservation of their redundancy. This evolutionary implication is supported by evidence from Msn2/Msn4 orthologs and analyses of other transcription factor paralogs. Together, we show a cell fate control mechanism through temporal redundancy modulation in yeast, which may represent an evolutionarily important strategy for maintaining functional redundancy between gene duplicates.
Collapse
Affiliation(s)
- Yan Wu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- School of Mathematical Sciences, Peking University, Beijing, China
| | - Jiaqi Wu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Minghua Deng
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- School of Mathematical Sciences, Peking University, Beijing, China
- Center for Statistical Science, Peking University, Beijing, China
| | - Yihan Lin
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
15
|
Roth C, Murray D, Scott A, Fu C, Averette AF, Sun S, Heitman J, Magwene PM. Pleiotropy and epistasis within and between signaling pathways defines the genetic architecture of fungal virulence. PLoS Genet 2021; 17:e1009313. [PMID: 33493169 PMCID: PMC7861560 DOI: 10.1371/journal.pgen.1009313] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/04/2021] [Accepted: 12/17/2020] [Indexed: 01/11/2023] Open
Abstract
Cryptococcal disease is estimated to affect nearly a quarter of a million people annually. Environmental isolates of Cryptococcus deneoformans, which make up 15 to 30% of clinical infections in temperate climates such as Europe, vary in their pathogenicity, ranging from benign to hyper-virulent. Key traits that contribute to virulence, such as the production of the pigment melanin, an extracellular polysaccharide capsule, and the ability to grow at human body temperature have been identified, yet little is known about the genetic basis of variation in such traits. Here we investigate the genetic basis of melanization, capsule size, thermal tolerance, oxidative stress resistance, and antifungal drug sensitivity using quantitative trait locus (QTL) mapping in progeny derived from a cross between two divergent C. deneoformans strains. Using a "function-valued" QTL analysis framework that exploits both time-series information and growth differences across multiple environments, we identified QTL for each of these virulence traits and drug susceptibility. For three QTL we identified the underlying genes and nucleotide differences that govern variation in virulence traits. One of these genes, RIC8, which encodes a regulator of cAMP-PKA signaling, contributes to variation in four virulence traits: melanization, capsule size, thermal tolerance, and resistance to oxidative stress. Two major effect QTL for amphotericin B resistance map to the genes SSK1 and SSK2, which encode key components of the HOG pathway, a fungal-specific signal transduction network that orchestrates cellular responses to osmotic and other stresses. We also discovered complex epistatic interactions within and between genes in the HOG and cAMP-PKA pathways that regulate antifungal drug resistance and resistance to oxidative stress. Our findings advance the understanding of virulence traits among diverse lineages of Cryptococcus, and highlight the role of genetic variation in key stress-responsive signaling pathways as a major contributor to phenotypic variation.
Collapse
Affiliation(s)
- Cullen Roth
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
| | - Debra Murray
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Alexandria Scott
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Ci Fu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Anna F. Averette
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Paul M. Magwene
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
16
|
Raghavan V, Aquadro CF, Alani E. Baker's Yeast Clinical Isolates Provide a Model for How Pathogenic Yeasts Adapt to Stress. Trends Genet 2019; 35:804-817. [PMID: 31526615 PMCID: PMC6825890 DOI: 10.1016/j.tig.2019.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/07/2019] [Accepted: 08/19/2019] [Indexed: 12/26/2022]
Abstract
Global outbreaks of drug-resistant fungi such as Candida auris are thought to be due at least in part to excessive use of antifungal drugs. Baker's yeast Saccharomyces cerevisiae has gained importance as an emerging opportunistic fungal pathogen that can cause infections in immunocompromised patients. Analyses of over 1000 S. cerevisiae isolates are providing rich resources to better understand how fungi can grow in human environments. A large percentage of clinical S. cerevisiae isolates are heterozygous across many nucleotide sites, and a significant proportion are of mixed ancestry and/or are aneuploid or polyploid. Such features potentially facilitate adaptation to new environments. These observations provide strong impetus for expanding genomic and molecular studies on clinical and wild isolates to understand the prevalence of genetic diversity and instability-generating mechanisms, and how they are selected for and maintained. Such work can also lead to the identification of new targets for antifungal drugs.
Collapse
Affiliation(s)
- Vandana Raghavan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Charles F Aquadro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
17
|
Wang Y, Yan R, Tang L, Zhu L, Zhu D, Bai F. Dimorphism of Trichosporon cutaneum and impact on its lipid production. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:203. [PMID: 31485269 PMCID: PMC6714079 DOI: 10.1186/s13068-019-1543-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Compared to the oleaginous yeast Yarrowia lipolytica, Trichosporon cutaneum can metabolize pentose sugars more efficiently, and in the meantime is more tolerant to inhibitors, which is suitable for lipid production from lignocellulosic biomass. However, this species experiences dimorphic transition between yeast-form cells and hyphae during submerged fermentation, which consequently affects the rheology and mass transfer performance of the fermentation broth and its lipid production. RESULTS The strain T. cutaneum B3 was cultured with medium composed of yeast extract, glucose and basic minerals. The experimental results indicated that yeast-form morphology was developed when yeast extract was supplemented at 1 g/L, but hyphae were observed when yeast extract supplementation was increased to 3 g/L and 5 g/L, respectively. We speculated that difference in nitrogen supply to the medium might be a major reason for the dimorphic transition, which was confirmed by the culture with media supplemented with yeast extract at 1 g/L and urea at 0.5 g/L and 1.0 g/L to maintain total nitrogen at same levels as that detected in the media with yeast extract supplemented at 3 g/L and 5 g/L. The morphological change of T. cutaneum B3 affected not only the content of intracellular lipids but also their composition, due to its impact on the rheology and oxygen mass transfer performance of the fermentation broth, and more lipids with less polyunsaturated fatty acids such as linoleic acid (C18:2) were produced by the yeast-form cells. When T. cutaneum B3 was cultured at an aeration rate of 1.5 vvm for 72 h with the medium composed of 60 g/L glucose, 3 g/L yeast extract and basic minerals, 27.1 g (dry cell weight)/L biomass was accumulated with the lipid content of 46.2%, and lipid productivity and yield were calculated to be 0.174 g/L/h and 0.21 g/g, respectively. Comparative transcriptomics analysis identified differently expressed genes for sugar metabolism and lipid synthesis as well as signal transduction for the dimorphic transition of T. cutaneum B3. CONCLUSIONS Assimilable nitrogen was validated as one of the major reasons for the dimorphic transition between yeast-form morphology and hyphae with T. cutaneum, and the yeast-form morphology was more suitable for lipid production at high content with less polyunsaturated fatty acids as feedstock for biodiesel production.
Collapse
Affiliation(s)
- Ya Wang
- State Key Laboratory of Microbial Metabolism & School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240 China
| | - Riming Yan
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, School of Life Science, Jiangxi Normal University, 99 Ziyang Rd., Nanchang, 330022 China
| | - Lijuan Tang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, School of Life Science, Jiangxi Normal University, 99 Ziyang Rd., Nanchang, 330022 China
| | - Libin Zhu
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, School of Life Science, Jiangxi Normal University, 99 Ziyang Rd., Nanchang, 330022 China
| | - Du Zhu
- School of Life Science, Jiangxi Science and Technology Normal University, 605 Fenglin Rd., Nanchang, 330013 China
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, School of Life Science, Jiangxi Normal University, 99 Ziyang Rd., Nanchang, 330022 China
| | - Fengwu Bai
- State Key Laboratory of Microbial Metabolism & School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240 China
| |
Collapse
|
18
|
Variation in Filamentous Growth and Response to Quorum-Sensing Compounds in Environmental Isolates of Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2019; 9:1533-1544. [PMID: 30862622 PMCID: PMC6505140 DOI: 10.1534/g3.119.400080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In fungi, filamentous growth is a major developmental transition that occurs in response to environmental cues. In diploid Saccharomyces cerevisiae, it is known as pseudohyphal growth and presumed to be a foraging mechanism. Rather than unicellular growth, multicellular filaments composed of elongated, attached cells spread over and into surfaces. This morphogenetic switch can be induced through quorum sensing with the aromatic alcohols phenylethanol and tryptophol. Most research investigating pseudohyphal growth has been conducted in a single lab background, Σ1278b. To investigate the natural variation in this phenotype and its induction, we assayed the diverse 100-genomes collection of environmental isolates. Using computational image analysis, we quantified the production of pseudohyphae and observed a large amount of variation. Population origin was significantly associated with pseudohyphal growth, with the West African population having the most. Surprisingly, most strains showed little or no response to exogenous phenylethanol or tryptophol. We also investigated the amount of natural genetic variation in pseudohyphal growth using a mapping population derived from a highly-heterozygous clinical isolate that contained as much phenotypic variation as the environmental panel. A bulk-segregant analysis uncovered five major peaks with candidate loci that have been implicated in the Σ1278b background. Our results indicate that the filamentous growth response is a generalized, highly variable phenotype in natural populations, while response to quorum sensing molecules is surprisingly rare. These findings highlight the importance of coupling studies in tractable lab strains with natural isolates in order to understand the relevance and distribution of well-studied traits.
Collapse
|