1
|
Miyairi Y, Ohkawara B, Sato A, Sawada R, Ishii H, Tomita H, Inoue T, Nakashima H, Ito M, Masuda A, Hosono Y, Imagama S, Ohno K. A class of chemical compounds enhances clustering of muscle nicotinic acetylcholine receptor in cultured myogenic cells. Biochem Biophys Res Commun 2024; 731:150400. [PMID: 39024975 DOI: 10.1016/j.bbrc.2024.150400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Neuromuscular signal transmission is affected in various diseases including myasthenia gravis, congenital myasthenic syndromes, and sarcopenia. We used an ATF2-luciferase system to monitor the phosphorylation of MuSK in HEK293 cells introduced with MUSK and LRP4 cDNAs to find novel chemical compounds that enhanced agrin-mediated acetylcholine receptor (AChR) clustering. Four compounds with similar chemical structures carrying benzene rings and heterocyclic rings increased the luciferase activities 8- to 30-folds, and two of them showed continuously graded dose dependence. The effects were higher than that of disulfiram, a clinically available aldehyde dehydrogenase inhibitor, which we identified to be the most competent preapproved drug to enhance ATF2-luciferase activity in the same assay system. In C2C12 myotubes, all the compounds increased the area, intensity, length, and number of AChR clusters. Three of the four compounds increased the phosphorylation of MuSK, but not of Dok7, JNK. ERK, or p38. Monitoring cell toxicity using the neurite elongation of NSC34 neuronal cells as a surrogate marker showed that all the compounds had no effects on the neurite elongation up to 1 μM. Extensive docking simulation and binding structure prediction of the four compounds with all available human proteins using AutoDock Vina and DiffDock showed that the four compounds were unlikely to directly bind to MuSK or Dok7, and the exact target remained unknown. The identified compounds are expected to serve as a seed to develop a novel therapeutic agent to treat defective NMJ signal transmission.
Collapse
Affiliation(s)
- Yuichi Miyairi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan; Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan.
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan.
| | - Ayato Sato
- Institute for Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan; Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Ryusuke Sawada
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Hisao Ishii
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan.
| | - Hiroyuki Tomita
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan.
| | - Taro Inoue
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan.
| | - Hiroaki Nakashima
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan.
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan.
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan.
| | - Yasuyuki Hosono
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Shiro Imagama
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan.
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan; Graduate School of Nutritoinal Sciencess, Nagoya University of Arts and Sciences, 57 Takenoyama, Iwasaki, Nisshin, 470-0196, Japan.
| |
Collapse
|
2
|
Castets P, Ham DJ, Rüegg MA. The TOR Pathway at the Neuromuscular Junction: More Than a Metabolic Player? Front Mol Neurosci 2020; 13:162. [PMID: 32982690 PMCID: PMC7485269 DOI: 10.3389/fnmol.2020.00162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/05/2020] [Indexed: 12/18/2022] Open
Abstract
The neuromuscular junction (NMJ) is the chemical synapse connecting motor neurons and skeletal muscle fibers. NMJs allow all voluntary movements, and ensure vital functions like breathing. Changes in the structure and function of NMJs are hallmarks of numerous pathological conditions that affect muscle function including sarcopenia, the age-related loss of muscle mass and function. However, the molecular mechanisms leading to the morphological and functional perturbations in the pre- and post-synaptic compartments of the NMJ remain poorly understood. Here, we discuss the role of the metabolic pathway associated to the kinase TOR (Target of Rapamycin) in the development, maintenance and alterations of the NMJ. This is of particular interest as the TOR pathway has been implicated in aging, but its role at the NMJ is still ill-defined. We highlight the respective functions of the two TOR-associated complexes, TORC1 and TORC2, and discuss the role of localized protein synthesis and autophagy regulation in motor neuron terminals and sub-synaptic regions of muscle fibers and their possible effects on NMJ maintenance.
Collapse
Affiliation(s)
- Perrine Castets
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | | |
Collapse
|
3
|
Cui XW, Ren JY, Gu YH, Li QF, Wang ZC. NF1, Neurofibromin and Gene Therapy: Prospects of Next-Generation Therapy. Curr Gene Ther 2020; 20:100-108. [PMID: 32767931 DOI: 10.2174/1566523220666200806111451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/28/2022]
Abstract
Neurofibromatosis type 1 [NF1] is an autosomal dominant genetic disorder affecting multiple organs. NF1 is well known for its various clinical manifestations, including café-au-late macules, Lisch nodules, bone deformity and neurofibromas. However, there is no effective therapy for NF1. Current therapies are aimed at alleviating NF1 clinical symptoms but not curing the disease. By altering pathogenic genes, gene therapy regulates cell activities at the nucleotide level. In this review, we described the structure and functions of neurofibromin domains, including GAP-related domain [GRD], cysteine-serine rich domain [CSRD], leucine-rich domain [LRD] and C-terminal domain [CTD], which respectively alter downstream pathways. By transfecting isolated sequences of these domains, researchers can partially restore normal cell functions in neurofibroma cell lines. Furthermore, recombinant transgene sequences may be designed to encode truncated proteins, which is functional and easy to be packaged into viral vectors. In addition, the treatment effect of gene therapy is also determined by various factors such as the vectors selection, transgene packaging strategies and drug administration. We summarized multiple NF1 gene therapy strategies and discussed their feasibility from multiple angles. Different protein domains alter the function and downstream pathways of neurofibromin.
Collapse
Affiliation(s)
- Xi-Wei Cui
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jie-Yi Ren
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yi-Hui Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qing-Feng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zhi-Chao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|