1
|
Haile AT, Kovi MR, Johnsen SS, Hvoslef-Eide T, Tesfaye B, Rognli OA. Limited genetic diversity found among genotypes of the Entada landrace ( Ensete ventricosum, (Welw.) Chessman) from Ethiopia. FRONTIERS IN PLANT SCIENCE 2024; 15:1336461. [PMID: 39315368 PMCID: PMC11416936 DOI: 10.3389/fpls.2024.1336461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/12/2024] [Indexed: 09/25/2024]
Abstract
The Entada landrace of enset (Ensete ventricosum (Welw.) Chessman) is probably the most unique indigenous crop in Ethiopia, being maintained and utilized by the Ari people in the South of Ethiopia. Here we describe genetic diversity, selection signatures and relationship of Entada with cultivated and wild enset using 117 Entada genotypes collected from three Entada growing regions in Ethiopia (Sidama, South and North Ari). A total number of 1,617 high-quality SNP markers, obtained from ddRAD-sequences, were used for the diversity studies. Phylogenetic analysis detected a clear distinction between cultivated enset, Entada and wild enset with Entada forming a completely separated clade. However, extremely short branch lengths among the Entada genotypes indicate very little molecular evolution in the Entada lineages. Observed and expected heterozygosities were high, 0.73 and 0.50, respectively. Overall, our results strongly indicate that the Entada genotypes we have studied originated from one or a few clonal lineages that have been propagated and spread among farmers as clones. Prolonged clonal propagation of heterozygous genotypes from a single or few founding lineages has led to populations with very little or no diversity between genotypes, and high heterozygosity within genotypes. Signatures of directional selection were identified at eight loci based on an FST outlier analysis. Four candidate genes detected are involved in axillary shoot growth and might be involved in controlling natural sucker formation in Entada.
Collapse
Affiliation(s)
- Alye Tefera Haile
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
- School of Plant and Horticultural Science, College of Agriculture, Hawassa University, Hawassa, Ethiopia
| | - Mallikarjuna Rao Kovi
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Sylvia Sagen Johnsen
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Trine Hvoslef-Eide
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Bizuayehu Tesfaye
- School of Plant and Horticultural Science, College of Agriculture, Hawassa University, Hawassa, Ethiopia
| | - Odd Arne Rognli
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|
2
|
Martina M, Acquadro A, Gulino D, Brusco F, Rabaglio M, Portis E, Lanteri S. First genetic maps development and QTL mining in Ranunculus asiaticus L. through ddRADseq. FRONTIERS IN PLANT SCIENCE 2022; 13:1009206. [PMID: 36212343 PMCID: PMC9539318 DOI: 10.3389/fpls.2022.1009206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Persian Buttercup (Ranunculus asiaticus L.; 2x=2n=16; estimated genome size: 7.6Gb) is an ornamental and perennial crop native of Asia Minor and Mediterranean basin, marketed both as cut flower or potted plant. Currently new varieties are developed by selecting plants carrying desirable traits in segregating progenies obtained by controlled mating, which are propagated through rhizomes or micro-propagated in vitro. In order to escalate selection efficiency and respond to market requests, more knowledge of buttercup genetics would facilitate the identification of markers associated with loci and genes controlling key ornamental traits, opening the way for molecular assisted breeding programs. Reduced-representation sequencing (RRS) represents a powerful tool for plant genotyping, especially in case of large genomes such as the one of buttercup, and have been applied for the development of high-density genetic maps in several species. We report on the development of the first molecular-genetic maps in R. asiaticus based on of a two-way pseudo-testcross strategy. A double digest restriction-site associated DNA (ddRAD) approach was applied for genotyping two F1 mapping populations, whose female parents were a genotype of a so called 'ponpon' and of a 'double flower' varieties, while the common male parental ('Cipro') was a genotype producing a simple flower. The ddRAD generated a total of ~2Gb demultiplexed reads, resulting in an average of 8,3M reads per line. The sstacks pipeline was applied for the construction of a mock reference genome based on sequencing data, and SNP markers segregating in only one of the parents were retained for map construction by treating the F1 population as a backcross. The four parental maps (two of the female parents and two of the common male parent) were aligned with 106 common markers and 8 linkage groups were identified, corresponding to the haploid chromosome number of the species. An average of 586 markers were associated with each parental map, with a marker density ranging from 1 marker/cM to 4.4 markers/cM. The developed maps were used for QTL analysis for flower color, leading to the identification of major QTLs for purple pigmentation. These results contribute to dissect on the genetics of Persian buttercup, enabling the development of new approaches for future varietal development.
Collapse
Affiliation(s)
- Matteo Martina
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Plant Genetics and Breeding, University of Torino, Grugliasco, Italy
| | - Alberto Acquadro
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Plant Genetics and Breeding, University of Torino, Grugliasco, Italy
| | - Davide Gulino
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Plant Genetics and Breeding, University of Torino, Grugliasco, Italy
| | | | | | - Ezio Portis
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Plant Genetics and Breeding, University of Torino, Grugliasco, Italy
| | - Sergio Lanteri
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Plant Genetics and Breeding, University of Torino, Grugliasco, Italy
| |
Collapse
|
3
|
Martina M, Tikunov Y, Portis E, Bovy AG. The Genetic Basis of Tomato Aroma. Genes (Basel) 2021; 12:genes12020226. [PMID: 33557308 PMCID: PMC7915847 DOI: 10.3390/genes12020226] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
Tomato (Solanum lycopersicum L.) aroma is determined by the interaction of volatile compounds (VOCs) released by the tomato fruits with receptors in the nose, leading to a sensorial impression, such as "sweet", "smoky", or "fruity" aroma. Of the more than 400 VOCs released by tomato fruits, 21 have been reported as main contributors to the perceived tomato aroma. These VOCs can be grouped in five clusters, according to their biosynthetic origins. In the last decades, a vast array of scientific studies has investigated the genetic component of tomato aroma in modern tomato cultivars and their relatives. In this paper we aim to collect, compare, integrate and summarize the available literature on flavour-related QTLs in tomato. Three hundred and 5ifty nine (359) QTLs associated with tomato fruit VOCs were physically mapped on the genome and investigated for the presence of potential candidate genes. This review makes it possible to (i) pinpoint potential donors described in literature for specific traits, (ii) highlight important QTL regions by combining information from different populations, and (iii) pinpoint potential candidate genes. This overview aims to be a valuable resource for researchers aiming to elucidate the genetics underlying tomato flavour and for breeders who aim to improve tomato aroma.
Collapse
Affiliation(s)
- Matteo Martina
- DISAFA, Plant Genetics and Breeding, University of Turin, 10095 Grugliasco, Italy;
| | - Yury Tikunov
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands;
| | - Ezio Portis
- DISAFA, Plant Genetics and Breeding, University of Turin, 10095 Grugliasco, Italy;
- Correspondence: (E.P.); (A.G.B.); Tel.: +39-011-6708807 (E.P.); +31-317-480762 (A.G.B.)
| | - Arnaud G. Bovy
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands;
- Correspondence: (E.P.); (A.G.B.); Tel.: +39-011-6708807 (E.P.); +31-317-480762 (A.G.B.)
| |
Collapse
|
4
|
Yol E, Basak M, Kızıl S, Lucas SJ, Uzun B. A High-Density SNP Genetic Map Construction Using ddRAD-Seq and Mapping of Capsule Shattering Trait in Sesame. FRONTIERS IN PLANT SCIENCE 2021; 12:679659. [PMID: 34140967 PMCID: PMC8204047 DOI: 10.3389/fpls.2021.679659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/23/2021] [Indexed: 05/05/2023]
Abstract
The seed-bearing capsule of sesame shatters at harvest. This wildish trait makes the crop unsuitable for mechanized harvesting and also restricts its commercial potential by limiting the cultivation for countries that have no access to low-cost labor. Therefore, the underlying genetic basis of the capsule shattering trait is highly important in order to develop mechanization-ready varieties for sustainable sesame farming. In the present study, we generated a sesame F2 population derived from a cross between a capsule shattering cultivar (Muganli-57) and a non-shattering mutant (PI 599446), which was used to construct a genetic map based on double-digest restriction-site-associated DNA sequencing. The resulting high-density genetic map contained 782 single-nucleotide polymorphisms (SNPs) and spanned a length of 697.3 cM, with an average marker interval of 0.89 cM. Based on the reference genome, the capsule shattering trait was mapped onto SNP marker S8_5062843 (78.9 cM) near the distal end of LG8 (chromosome 8). In order to reveal genes potentially controlling the shattering trait, the marker region (S8_5062843) was examined, and a candidate gene including six CDSs was identified. Annotation showed that the gene encodes a protein with 440 amino acids, sharing ∼99% homology with transcription repressor KAN1. Compared with the capsule shattering allele, the SNP change and altered splicing in the flanking region of S8_5062843 caused a frameshift mutation in the mRNA, resulting in the loss of function of this gene in the mutant parent and thus in non-shattering capsules and leaf curling. With the use of genomic data, InDel and CAPS markers were developed to differentiate shattering and non-shattering capsule genotypes in marker-assisted selection studies. The obtained results in the study can be beneficial in breeding programs to improve the shattering trait and enhance sesame productivity.
Collapse
Affiliation(s)
- Engin Yol
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, Antalya, Turkey
- *Correspondence: Engin Yol,
| | - Merve Basak
- Department of Medicinal and Aromatic Plants, Akev University, Antalya, Turkey
| | - Sibel Kızıl
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, Antalya, Turkey
| | - Stuart James Lucas
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Bulent Uzun
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, Antalya, Turkey
| |
Collapse
|