1
|
Tang C, Fan Y, Wang T, Wang J, Xiao M, He M, Chang X, Li Y, Li X. Metabolomic Profiling of Floccularia luteovirens from Different Geographical Regions Proposes a Novel Perspective on Their Antioxidative Activities. Antioxidants (Basel) 2024; 13:620. [PMID: 38790725 PMCID: PMC11118160 DOI: 10.3390/antiox13050620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Floccularia luteovirens, an endemic resource of the Tibetan Plateau, possesses significant medicinal and ecological values. However, the understanding of antioxidant capacity and metabolic profiling of F. luteovirens from diverse regions remains elusive due to limited resources. Therefore, to comprehensively comprehend the antioxidant capacity and metabolite diversity of F. luteovirens, we conducted a rounded analysis of its antioxidant capacity from three distinct regions using both untargeted and targeted metabolomics. Determination of antioxidant indices, such as ferric ion-reducing antioxidant power (FRAP), total phenolic content (TPC), and flavonoid content (FC), revealed the robust antioxidant capacity of F. luteovirens. QL F. luteovirens (QLFL) exhibited no significant difference compared to ZD F. luteovirens (ZDFL); however, both were significantly distinct from XH F. luteovirens (XHFL) across multiple indices. Furthermore, a positive correlation was observed between FRAP and flavonoid content. A total of 5782 metabolites were identified and chemically classified. Metabolites of F. luteovirens varied significantly at different regions and eight key differential metabolites were screened. Phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, and cyanoamino acid metabolism were the main different regulatory pathways. Consequently, the disparities in the antioxidant activity of F. luteovirens may primarily be ascribed to the biosynthesis and metabolism of phenylalanine, while vanillic acid could potentially serve as a pivotal metabolite influencing the antioxidative capacity of F. luteovirens by targeted metabolomics. These findings enhance our understanding of the composition of F. luteovirens and provide valuable resources for its comprehensive utilization and targeted development.
Collapse
Affiliation(s)
- Chuyu Tang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (Y.F.); (T.W.); (M.X.); (M.H.)
| | - Yuejun Fan
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (Y.F.); (T.W.); (M.X.); (M.H.)
| | - Tao Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (Y.F.); (T.W.); (M.X.); (M.H.)
| | - Jie Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China;
| | - Mengjun Xiao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (Y.F.); (T.W.); (M.X.); (M.H.)
| | - Min He
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (Y.F.); (T.W.); (M.X.); (M.H.)
| | - Xiyun Chang
- Qinghai Institute of Health Sciences, Xining 810016, China;
| | - Yuling Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (Y.F.); (T.W.); (M.X.); (M.H.)
| | - Xiuzhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (Y.F.); (T.W.); (M.X.); (M.H.)
| |
Collapse
|
2
|
Ni Y, Cao L, Li W, Zhang Q, Feng R, Zhao Z, Zhao X. The Research Status and Prospects of Floccularia luteovirens: A Mycorrhizal Fungus with Edible Fruiting Bodies. J Fungi (Basel) 2023; 9:1071. [PMID: 37998876 PMCID: PMC10672661 DOI: 10.3390/jof9111071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023] Open
Abstract
Floccularia luteovirens, a rare wild edible and medicinal fungus, is endemic to the Tibetan plateau. However, attempts to artificially domesticate this species have not been successful, resulting in extremely limited utilization of this valuable resource. This paper presents the geographical distribution of F. luteovirens, along with its ecological and biological characteristics. It explores population relations, symbiotic relationships, soil microbial community relations, fruiting body occurrence conditions, nutritional metabolism, and reproductive patterns. The cultivation techniques, as well as the edible and medicinal value of this mushroom, are also reviewed. Through an overall analysis of the physiological characteristics and current research status of F. luteovirens, the paper discusses its development prospects. The aim is to provide a reference for other researchers and promote its artificial domestication, resource development, and utilization.
Collapse
Affiliation(s)
- Yanqing Ni
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Y.N.); (Q.Z.); (R.F.)
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China;
| | - Luping Cao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Wensheng Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China;
| | - Qin Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Y.N.); (Q.Z.); (R.F.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| | - Rencai Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Y.N.); (Q.Z.); (R.F.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| | - Zhiqiang Zhao
- Zhuoni County Agricultural Technology Extension Station, Gannan 747600, China;
| | - Xu Zhao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Y.N.); (Q.Z.); (R.F.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| |
Collapse
|
3
|
Guo J, Xie Z, Jiang H, Xu H, Liu B, Meng Q, Peng Q, Tang Y, Duan Y. The Molecular Mechanism of Yellow Mushroom (Floccularia luteovirens) Response to Strong Ultraviolet Radiation on the Qinghai-Tibet Plateau. Front Microbiol 2022; 13:918491. [PMID: 35794915 PMCID: PMC9251379 DOI: 10.3389/fmicb.2022.918491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022] Open
Abstract
The Qinghai-Tibet Plateau (QTP) is the highest plateau in the world, and its ultraviolet (UV) radiation is much greater than that of other regions in the world. Yellow mushroom (Floccularia luteovirens) is a unique and widely distributed edible fungus on the QTP. However, the molecular mechanism of F. luteovirens’s response to strong UV radiation remains unclear. Herein, we reported the 205 environmental adaptation and information processing genes from genome of F. luteovirens. In addition, we assembled the RNA sequence of UV-affected F. luteovirens at different growth stages. The results showed that in response to strong UV radiation, a total of 11,871 significantly different genes were identified, of which 4,444 genes in the vegetative mycelium (VM) stage were significantly different from the young fruiting bodies (YFB) stage, and only 2,431 genes in the YFB stage were significantly different from fruiting bodies (FB) stage. A total of 225 differentially expressed genes (DEGs) were found to be involved in environmental signal transduction, biochemical reaction preparation and stress response pathway, pigment metabolism pathway, and growth cycle regulation, so as to sense UV radiation, promote repair damage, regulate intracellular homeostasis, and reduce oxidative damage of UV radiation. On the basis of these results, a molecular regulation model was proposed for the response of F. luteovirens to strong UV radiation. These results revealed the molecular mechanism of adaptation of F. luteovirens adapting to strong UV radiation, and provided novel insights into mechanisms of fungi adapting to extreme environmental conditions on the QTP; the production the riboflavin pigment of the endemic fungi (Yellow mushroom) in the QTP was one of the response to extreme environment of the strong UV radiation.
Collapse
Affiliation(s)
- Jing Guo
- College of Ecological and Environment Engineering, Qinghai University, Xining, China
- State Key Laboratory Breeding Base for Innovation and Utilization of Plateau Crop Germplasm, Qinghai University, Xining, China
| | - Zhanling Xie
- College of Ecological and Environment Engineering, Qinghai University, Xining, China
- State Key Laboratory Breeding Base for Innovation and Utilization of Plateau Crop Germplasm, Qinghai University, Xining, China
- *Correspondence: Zhanling Xie,
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China
| | - Hongyan Xu
- College of Ecological and Environment Engineering, Qinghai University, Xining, China
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
| | - Baolong Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Qing Meng
- College of Ecological and Environment Engineering, Qinghai University, Xining, China
- State Key Laboratory Breeding Base for Innovation and Utilization of Plateau Crop Germplasm, Qinghai University, Xining, China
| | - Qingqing Peng
- College of Ecological and Environment Engineering, Qinghai University, Xining, China
- State Key Laboratory Breeding Base for Innovation and Utilization of Plateau Crop Germplasm, Qinghai University, Xining, China
| | | | - Yingzhu Duan
- Test Station for Grassland Improvement, Xining, China
| |
Collapse
|
4
|
Chemical Constituents and Molecular Mechanism of the Yellow Phenotype of Yellow Mushroom (Floccularia luteovirens). J Fungi (Basel) 2022; 8:jof8030314. [PMID: 35330317 PMCID: PMC8949800 DOI: 10.3390/jof8030314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Yellow mushroom (Floccularia luteovirens) is a natural resource that is highly nutritional, has a high economic value, and is found in Northwest China. Despite its value, the chemical and molecular mechanisms of yellow phenotype formation are still unclear. (2) Methods: This study uses the combined analysis of transcriptome and metabolome to explain the molecular mechanism of the formation of yellow mushroom. Subcellular localization and transgene overexpression techniques were used to verify the function of the candidate gene. (3) Results: 112 compounds had a higher expression in yellow mushroom; riboflavin was the ninth most-expressed compound. HPLC showed that a key target peak at 23.128 min under visible light at 444 nm was Vb2. All proteins exhibited the closest relationship with Agaricus bisporus var. bisporus H97. One riboflavin transporter, CL911.Contig3_All (FlMCH5), was highly expressed in yellow mushrooms with a different value (log2 fold change) of −12.98, whereas it was not detected in white mushrooms. FlMCH5 was homologous to the riboflavin transporter MCH5 or MFS transporter in other strains, and the FlMCH5-GFP fusion protein was mainly located in the cell membrane. Overexpression of FlMCH5 in tobacco increased the content of riboflavin in three transgenic plants to 26 μg/g, 26.52 μg/g, and 36.94 μg/g, respectively. (4) Conclusions: In this study, it is clear that riboflavin is the main coloring compound of yellow mushrooms, and FlMCH5 is the key transport regulatory gene that produces the yellow phenotype.
Collapse
|
5
|
Liu Z, Lu H, Zhang X, Chen Q. The Genomic and Transcriptomic Analyses of Floccularia luteovirens, a Rare Edible Fungus in the Qinghai-Tibet Plateau, Provide Insights into the Taxonomy Placement and Fruiting Body Formation. J Fungi (Basel) 2021; 7:jof7110887. [PMID: 34829176 PMCID: PMC8618933 DOI: 10.3390/jof7110887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 12/13/2022] Open
Abstract
Floccularia luteovirens is a famous and precious edible mushroom (Huang Mogu) on the Qinghai–Tibet plateau that has a unique flavor and remarkable medical functions. Herein, we report a reference-grade 27 Mb genome of F. luteovirens containing 7068 protein-coding genes. The genome component and gene functions were predicted. Genome ontology enrichment and pathway analyses indicated the potential production capacity for terpenoids, polyketides and polysaccharides. Moreover, 16 putative gene clusters and 145 genes coding for secondary metabolites were obtained, including guadinomine and melleolides. In addition, phylogenetic and comparative genomic analyses shed light on the precise classification of F. luteovirens suggesting that it belongs to the genus Floccularia instead of Armillaria. RNA-sequencing and comparative transcriptomic analysis revealed differentially expressed genes during four developmental stages of F. luteovirens, that of which helps to identify important genes regulating fruiting body formation for strain modification. This study will provide insight into artificial cultivation and increase the production of useful metabolites.
Collapse
Affiliation(s)
- Zhengjie Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Z.L.); (H.L.); (X.Z.)
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Hongyun Lu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Z.L.); (H.L.); (X.Z.)
| | - Xinglin Zhang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Z.L.); (H.L.); (X.Z.)
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Z.L.); (H.L.); (X.Z.)
- Correspondence: ; Tel.: +86-0571-8698-4316
| |
Collapse
|