1
|
The Botrytis cinerea Gene Expression Browser. J Fungi (Basel) 2023; 9:jof9010084. [PMID: 36675905 PMCID: PMC9861337 DOI: 10.3390/jof9010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023] Open
Abstract
For comprehensive gene expression analyses of the phytopathogenic fungus Botrytis cinerea, which infects a number of plant taxa and is a cause of substantial agricultural losses worldwide, we developed BEB, a web-based B. cinerea gene Expression Browser. This computationally inexpensive web-based application and its associated database contain manually curated RNA-Seq data for B. cinerea. BEB enables expression analyses of genes of interest under different culture conditions by providing publication-ready heatmaps depicting transcript levels, without requiring advanced computational skills. BEB also provides details of each experiment and user-defined gene expression clustering and visualization options. If needed, tables of gene expression values can be downloaded for further exploration, including, for instance, the determination of differentially expressed genes. The BEB implementation is based on open-source computational technologies that can be deployed for other organisms. In this case, the new implementation will be limited only by the number of transcriptomic experiments that are incorporated into the platform. To demonstrate the usability and value of BEB, we analyzed gene expression patterns across different conditions, with a focus on secondary metabolite gene clusters, chromosome-wide gene expression, previously described virulence factors, and reference genes, providing the first comprehensive expression overview of these groups of genes in this relevant fungal phytopathogen. We expect this tool to be broadly useful in B. cinerea research, providing a basis for comparative transcriptomics and candidate gene identification for functional assays.
Collapse
|
2
|
Case NT, Berman J, Blehert DS, Cramer RA, Cuomo C, Currie CR, Ene IV, Fisher MC, Fritz-Laylin LK, Gerstein AC, Glass NL, Gow NAR, Gurr SJ, Hittinger CT, Hohl TM, Iliev ID, James TY, Jin H, Klein BS, Kronstad JW, Lorch JM, McGovern V, Mitchell AP, Segre JA, Shapiro RS, Sheppard DC, Sil A, Stajich JE, Stukenbrock EE, Taylor JW, Thompson D, Wright GD, Heitman J, Cowen LE. The future of fungi: threats and opportunities. G3 (BETHESDA, MD.) 2022; 12:jkac224. [PMID: 36179219 PMCID: PMC9635647 DOI: 10.1093/g3journal/jkac224] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/12/2022] [Indexed: 01/13/2023]
Abstract
The fungal kingdom represents an extraordinary diversity of organisms with profound impacts across animal, plant, and ecosystem health. Fungi simultaneously support life, by forming beneficial symbioses with plants and producing life-saving medicines, and bring death, by causing devastating diseases in humans, plants, and animals. With climate change, increased antimicrobial resistance, global trade, environmental degradation, and novel viruses altering the impact of fungi on health and disease, developing new approaches is now more crucial than ever to combat the threats posed by fungi and to harness their extraordinary potential for applications in human health, food supply, and environmental remediation. To address this aim, the Canadian Institute for Advanced Research (CIFAR) and the Burroughs Wellcome Fund convened a workshop to unite leading experts on fungal biology from academia and industry to strategize innovative solutions to global challenges and fungal threats. This report provides recommendations to accelerate fungal research and highlights the major research advances and ideas discussed at the meeting pertaining to 5 major topics: (1) Connections between fungi and climate change and ways to avert climate catastrophe; (2) Fungal threats to humans and ways to mitigate them; (3) Fungal threats to agriculture and food security and approaches to ensure a robust global food supply; (4) Fungal threats to animals and approaches to avoid species collapse and extinction; and (5) Opportunities presented by the fungal kingdom, including novel medicines and enzymes.
Collapse
Affiliation(s)
- Nicola T Case
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - David S Blehert
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI 53711, USA
| | - Robert A Cramer
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Christina Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Iuliana V Ene
- Department of Mycology, Institut Pasteur, Université de Paris, Paris 75015, France
| | - Matthew C Fisher
- MRC Centre for Global Infectious Disease Analysis, Imperial College, London W2 1PG, UK
| | | | - Aleeza C Gerstein
- Department of Microbiology and Department of Statistics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - N Louise Glass
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94720, USA
| | - Neil A R Gow
- Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Sarah J Gurr
- Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Chris Todd Hittinger
- Laboratory of Genetics, Center for Genomic Science Innovation, J.F. Crow Institute for the Study of Evolution, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, and Immunology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Iliyan D Iliev
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hailing Jin
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California—Riverside, Riverside, CA 92507, USA
| | - Bruce S Klein
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI 53706, USA
- Department of Internal Medicine, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI 53706, USA
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - James W Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jeffrey M Lorch
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI 53711, USA
| | | | - Aaron P Mitchell
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Julia A Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Donald C Sheppard
- McGill Interdisciplinary Initiative in Infection and Immunology, Departments of Medicine, Microbiology & Immunology, McGill University, Montreal, QC H3A 0G4, Canada
| | - Anita Sil
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94117, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California—Riverside, Riverside, CA 92507, USA
| | - Eva E Stukenbrock
- Max Planck Fellow Group Environmental Genomics, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
- Environmental Genomics, Christian-Albrechts University, Kiel 24118, Germany
| | - John W Taylor
- Department of Plant and Microbial Biology, University of California—Berkeley, Berkeley, CA 94720, USA
| | | | - Gerard D Wright
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Medicine, and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
3
|
Gupta D, Garapati HS, Kakumanu AV, Shukla R, Mishra K. SUMOylation in fungi: A potential target for intervention. Comput Struct Biotechnol J 2020; 18:3484-3493. [PMID: 33294142 PMCID: PMC7691676 DOI: 10.1016/j.csbj.2020.10.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 12/31/2022] Open
Abstract
SUMOylation is a post-translational, reversible modification process which occurs in eukaryotes. Small Ubiquitin like MOdifier or (SUMO) proteins are a family of small proteins that are covalently attached to and detached from other proteins to modify the target protein function. In pathogenic fungi, SUMO has been identified and preliminary studies indicate its importance either for survival and/or for virulence. In this review we provide an overview of the current state of knowledge of SUMOylation in fungi and the effects on pathogenesis. Subsequently we identify the orthologs of the SUMOylation pathway components across fungi. We also show the level of conservation of the proteins involved and identify the similarities/differences in the orthologs across fungi and the human and plant hosts to identify potential targets of intervention.
Collapse
Affiliation(s)
- Dipika Gupta
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Hita Sony Garapati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Akhil V.S. Kakumanu
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Renu Shukla
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Krishnaveni Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|