1
|
Cabral-de-Mello DC, Mora P, Rico-Porras JM, Ferretti ABSM, Palomeque T, Lorite P. The spread of satellite DNAs in euchromatin and insights into the multiple sex chromosome evolution in Hemiptera revealed by repeatome analysis of the bug Oxycarenus hyalinipennis. INSECT MOLECULAR BIOLOGY 2023; 32:725-737. [PMID: 37615351 DOI: 10.1111/imb.12868] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023]
Abstract
Satellite DNAs (satDNAs) are highly repeated tandem sequences primarily located in heterochromatin, although their occurrence in euchromatin has been reported. Here, our aim was to advance the understanding of satDNA and multiple sex chromosome evolution in heteropterans. We combined cytogenetic and genomic approaches to study, for the first time, the satDNA composition of the genome in an Oxycarenidae bug, Oxycarenus hyalinipennis. The species exhibits a male karyotype of 2n = 19 (14A + 2 m + X1 X2 Y), with a highly differentiated Y chromosome, as demonstrated by C-banding and comparative genomic hybridization, revealing an enrichment of repeats from the male genome. Additionally, comparative analysis between males and females revealed that the 26 identified satDNA families are significantly biased towards male genome, accumulating in discrete regions in the Y chromosome. Exceptionally, the OhyaSat04-125 family was found to be distributed virtually throughout the entire extension of the Y chromosome. This suggests an important role of satDNA in Y chromosome differentiation, in comparison of other repeats, which collectively shows similar abundance between sexes, about 50%. Furthermore, chromosomal mapping of all satDNA families revealed an unexpected high spread in euchromatic regions, covering the entire extension, irrespective of their abundance. Only discrete regions of heterochromatin on the Y chromosome and of the m-chromosomes (peculiar chromosomes commonly observed in heteropterans) were enriched with satDNAs. The putative causes of the intense enrichment of satDNAs in euchromatin are discussed, including the possible existence of burst cycles similar to transposable elements and as a result of holocentricity. These data challenge the classical notion that euchromatin is not enriched with satDNAs.
Collapse
Affiliation(s)
- Diogo C Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências/IB, UNESP-Universidade Estadual Paulista, Rio Claro, Brazil
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Jaén, Spain
| | - Pablo Mora
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Jaén, Spain
| | - José M Rico-Porras
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Jaén, Spain
| | - Ana B S M Ferretti
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências/IB, UNESP-Universidade Estadual Paulista, Rio Claro, Brazil
| | - Teresa Palomeque
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Jaén, Spain
| | - Pedro Lorite
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Jaén, Spain
| |
Collapse
|
2
|
Castillo DM, McCormick B, Kean CM, Natesan S, Barbash DA. Testing the Drosophila maternal haploid gene for functional divergence and a role in hybrid incompatibility. G3 (BETHESDA, MD.) 2022; 12:jkac177. [PMID: 35876798 PMCID: PMC9434238 DOI: 10.1093/g3journal/jkac177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/06/2022] [Indexed: 11/14/2022]
Abstract
Crosses between Drosophila simulans females and Drosophila melanogaster males produce viable F1 sons and poorly viable F1 daughters. Unlike most hybrid incompatibilities, this hybrid incompatibility violates Haldane's rule, the observation that incompatibilities preferentially affect the heterogametic sex. Furthermore, it has a different genetic basis than hybrid lethality in the reciprocal cross, with the causal allele in Drosophila melanogaster being a large species-specific block of complex satellite DNA on its X chromosome known as the 359-bp satellite, rather than a protein-coding locus. The causal allele(s) in Drosophila simulans are unknown but likely involve maternally expressed genes or factors since the F1 females die during early embryogenesis. The maternal haploid (mh) gene is an intriguing candidate because it is expressed maternally and its protein product localizes to the 359-bp repeat. We found that this gene has diverged extensively between Drosophila melanogaster and Drosophila simulans. This observation led to the hypothesis that Drosophila melanogaster mh may have coevolved with the 359-bp repeat and that hybrid incompatibility thus results from the absence of a coevolved mh allele in Drosophila simulans. We tested for the functional divergence of mh by creating matched transformants of Drosophila melanogaster and Drosophila simulans orthologs in both Drosophila melanogaster and Drosophila simulans strains. Surprisingly, we find that Drosophila simulans mh fully complements the female sterile phenotype of Drosophila melanogaster mh mutations. Contrary to our hypothesis, we find no evidence that adding a Drosophila melanogaster mh gene to Drosophila simulans increases hybrid viability.
Collapse
Affiliation(s)
- Dean M Castillo
- Institute of Agriculture and Natural Resources, University of Nebraska, Lincoln, NE 68588, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Benjamin McCormick
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Connor M Kean
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Sahana Natesan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Daniel A Barbash
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
3
|
Bladen J, Phadnis N. Genome evolution: A story of species and satellites. Curr Biol 2022; 32:R736-R738. [PMID: 35820382 DOI: 10.1016/j.cub.2022.05.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Satellite DNA sequences can rapidly expand, and pressure to preserve genome integrity is thought to trigger the adaptive evolution of satellite-associated proteins. The authors of a new study manipulate both sides of this co-evolution in Drosophila to reveal how DNA entanglements can trigger the rapid adaptive evolution of chromatin proteins.
Collapse
Affiliation(s)
- Jackson Bladen
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Nitin Phadnis
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
4
|
Brand CL, Levine MT. Cross-species incompatibility between a DNA satellite and the Drosophila Spartan homolog poisons germline genome integrity. Curr Biol 2022; 32:2962-2971.e4. [PMID: 35643081 PMCID: PMC9283324 DOI: 10.1016/j.cub.2022.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/06/2022] [Accepted: 05/05/2022] [Indexed: 12/19/2022]
Abstract
Satellite DNA spans megabases of eukaryotic sequence and evolves rapidly.1-6 Paradoxically, satellite-rich genomic regions mediate strictly conserved, essential processes such as chromosome segregation and nuclear structure.7-10 A leading resolution to this paradox posits that satellite DNA and satellite-associated chromosomal proteins coevolve to preserve these essential functions.11 We experimentally test this model of intragenomic coevolution by conducting the first evolution-guided manipulation of both chromosomal protein and DNA satellite. The 359bp satellite spans an 11 Mb array in Drosophila melanogaster that is absent from its sister species, Drosophila simulans.12-14 This species-specific DNA satellite colocalizes with the adaptively evolving, ovary-enriched protein, maternal haploid (MH), the Drosophila homolog of Spartan.15 To determine if MH and 359bp coevolve, we swapped the D. simulans version of MH ("MH[sim]") into D. melanogaster. MH[sim] triggers ovarian cell death, reduced ovary size, and loss of mature eggs. Surprisingly, the D. melanogaster mh-null mutant has no such ovary phenotypes,15 suggesting that MH[sim] is toxic in a D. melanogaster background. Using both cell biology and genetics, we discovered that MH[sim] poisons oogenesis through a DNA-damage pathway. Remarkably, deleting the D. melanogaster-specific 359bp satellite array completely restores mh[sim] germline genome integrity and fertility, consistent with a history of coevolution between these two fast-evolving loci. Germline genome integrity and fertility are also restored by overexpressing topoisomerase II (Top2), suggesting that MH[sim] interferes with Top2-mediated processing of 359bp. The observed 359bp-MH[sim] cross-species incompatibility supports a model under which seemingly inert repetitive DNA and essential chromosomal proteins must coevolve to preserve germline genome integrity.
Collapse
Affiliation(s)
- Cara L Brand
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mia T Levine
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Goes CAG, dos Santos RZ, Aguiar WRC, Alves DCV, Silva DMZDA, Foresti F, Oliveira C, Utsunomia R, Porto-Foresti F. Revealing the Satellite DNA History in Psalidodon and Astyanax Characid Fish by Comparative Satellitomics. Front Genet 2022; 13:884072. [PMID: 35801083 PMCID: PMC9253505 DOI: 10.3389/fgene.2022.884072] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
Abstract
Eukaryotic genomes are usually enriched in repetitive DNA sequences, which can be classified as dispersed or tandemly repeated elements. Satellite DNAs are noncoding monomeric sequences organized in a head-to-tail fashion that are generally located on the subtelomeric and/or pericentromeric heterochromatin. In general, a single species incorporates a diverse group of satellite DNA families, which collection is called satellitome. Here, we characterized three new satellitomes from distinct characid fish (Psalidodon fasciatus, P. bockmanni, and Astyanax lacustris) using a combination of genomic, cytogenetic, and bioinformatic protocols. We also compared our data with the available satellitome of P. paranae. We described 57 satellite DNA (satDNA) families of P. fasciatus (80 variants), 50 of P. bockmanni (77 variants), and 33 of A. lacustris (54 variants). Our analyses demonstrated that several sequences were shared among the analyzed species, while some were restricted to two or three species. In total, we isolated 104 distinctive satDNA families present in the four species, of which 10 were shared among all four. Chromosome mapping revealed that the clustered satDNA was mainly located in the subtelomeric and pericentromeric areas. Although all Psalidodon species demonstrated the same pattern of clusterization of satDNA, the number of clusters per genome was variable, indicating a high dynamism of these sequences. In addition, our results expand the knowledge of the As51 satellite DNA family, revealing that P. bockmanni and P. paranae exhibited an abundant variant of 39 bp, while P. fasciatus showed a variant of 43 bp. The majority of satDNAs in the satellitomes analyzed here presented a common library repetitive sequence in Psalidodon and Astyanax, with abundance variations in each species, as expected for closely related groups. In addition, we concluded that the most abundant satDNA in Psalidodon (As51) passed through a diversification process in this group, resulting in new variants exclusive of Psalidodon.
Collapse
Affiliation(s)
- Caio Augusto Gomes Goes
- Laboratório de Genética de Peixes, Faculdade Estadual Paulista “Júlio de Mesquita Filho”, Departamento de Ciências Biológicas, Faculdade de Ciências, Bauru, Brazil
| | - Rodrigo Zeni dos Santos
- Laboratório de Genética de Peixes, Faculdade Estadual Paulista “Júlio de Mesquita Filho”, Departamento de Ciências Biológicas, Faculdade de Ciências, Bauru, Brazil
| | - Weidy Rozendo Clemente Aguiar
- Laboratório de Genética de Peixes, Faculdade Estadual Paulista “Júlio de Mesquita Filho”, Departamento de Ciências Biológicas, Faculdade de Ciências, Bauru, Brazil
| | - Dálete Cássia Vieira Alves
- Instituto de Ciências Biológicas e da Saude, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | | | - Fausto Foresti
- Laboratório de Biologia e Genética de Peixes, Faculdade Estadual Paulista “Júlio de Mesquita Filho”, Instituto de Biociências, Botucatu, Brazil
| | - Claudio Oliveira
- Laboratório de Biologia e Genética de Peixes, Faculdade Estadual Paulista “Júlio de Mesquita Filho”, Instituto de Biociências, Botucatu, Brazil
| | - Ricardo Utsunomia
- Instituto de Ciências Biológicas e da Saude, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - Fabio Porto-Foresti
- Laboratório de Genética de Peixes, Faculdade Estadual Paulista “Júlio de Mesquita Filho”, Departamento de Ciências Biológicas, Faculdade de Ciências, Bauru, Brazil
- *Correspondence: Fabio Porto-Foresti,
| |
Collapse
|
6
|
Affiliation(s)
| | - Francisco J. Ruiz-Ruano
- Department of Organismal Biology – Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- School of Biological Sciences, Norwich Research Park University of East Anglia, Norwich, UK
| |
Collapse
|
7
|
Rapid evolutionary dynamics of an expanding family of meiotic drive factors and their hpRNA suppressors. Nat Ecol Evol 2021; 5:1613-1623. [PMID: 34862477 PMCID: PMC8665063 DOI: 10.1038/s41559-021-01592-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022]
Abstract
Meiotic drivers are a class of selfish genetic elements whose existence is frequently hidden due to concomitant suppressor systems. Accordingly, we know little of their evolutionary breadth and molecular mechanisms. Here, we trace the evolution of the Dox meiotic drive system in Drosophila simulans, which affects male-female balance (sex-ratio). Dox emerged via stepwise mobilization and acquisition of multiple D. melanogaster gene segments including from protamine, which mediates compaction of sperm chromatin. Moreover, we reveal novel Dox homologs and massive amplification of Dox superfamily genes on X chromosomes of its closest sisters D. mauritiana and D. sechellia. Emergence of Dox loci is tightly associated with 359-class satellite repeats that flank de novo genomic copies. In concert, we find coordinated diversification of autosomal hairpin RNA-class siRNA loci that target subsets of Dox superfamily genes. Overall, we reveal fierce genetic arms races between meiotic drive factors and siRNA suppressors associated with recent speciation.
Collapse
|
8
|
Zhuravlev AV, Zakharov GA, Anufrieva EV, Medvedeva AV, Nikitina EA, Savvateeva-Popova EV. Chromatin Structure and "DNA Sequence View": The Role of Satellite DNA in Ectopic Pairing of the Drosophila X Polytene Chromosome. Int J Mol Sci 2021; 22:8713. [PMID: 34445413 PMCID: PMC8395981 DOI: 10.3390/ijms22168713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
Chromatin 3D structure plays a crucial role in regulation of gene activity. Previous studies have envisioned spatial contact formations between chromatin domains with different epigenetic properties, protein compositions and transcription activity. This leaves specific DNA sequences that affect chromosome interactions. The Drosophila melanogaster polytene chromosomes are involved in non-allelic ectopic pairing. The mutant strain agnts3, a Drosophila model for Williams-Beuren syndrome, has an increased frequency of ectopic contacts (FEC) compared to the wild-type strain Canton-S (CS). Ectopic pairing can be mediated by some specific DNA sequences. In this study, using our Homology Segment Analysis software, we estimated the correlation between FEC and frequency of short matching DNA fragments (FMF) for all sections of the X chromosome of Drosophila CS and agnts3 strains. With fragment lengths of 50 nucleotides (nt), CS showed a specific FEC-FMF correlation for 20% of the sections involved in ectopic contacts. The correlation was unspecific in agnts3, which may indicate the alternative epigenetic mechanisms affecting FEC in the mutant strain. Most of the fragments that specifically contributed to FMF were related to 1.688 or 372-bp middle repeats. Thus, middle repetitive DNA may serve as an organizer of ectopic pairing.
Collapse
Affiliation(s)
- Aleksandr V. Zhuravlev
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint Petersburg, Russia; (G.A.Z.); (A.V.M.); (E.A.N.); (E.V.S.-P.)
| | - Gennadii A. Zakharov
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint Petersburg, Russia; (G.A.Z.); (A.V.M.); (E.A.N.); (E.V.S.-P.)
- EPAM Systems Inc., Saint Petersburg 197110, Russia
| | - Ekaterina V. Anufrieva
- Faculty of Biology, Herzen State Pedagogical University of Russia, 191186 Saint Petersburg, Russia;
| | - Anna V. Medvedeva
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint Petersburg, Russia; (G.A.Z.); (A.V.M.); (E.A.N.); (E.V.S.-P.)
| | - Ekaterina A. Nikitina
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint Petersburg, Russia; (G.A.Z.); (A.V.M.); (E.A.N.); (E.V.S.-P.)
- Faculty of Biology, Herzen State Pedagogical University of Russia, 191186 Saint Petersburg, Russia;
| | - Elena V. Savvateeva-Popova
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint Petersburg, Russia; (G.A.Z.); (A.V.M.); (E.A.N.); (E.V.S.-P.)
| |
Collapse
|
9
|
Lauria Sneideman MP, Meller VH. Drosophila Satellite Repeats at the Intersection of Chromatin, Gene Regulation and Evolution. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:1-26. [PMID: 34386870 DOI: 10.1007/978-3-030-74889-0_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Satellite repeats make up a large fraction of the genomes of many higher eukaryotes. Until recently these sequences were viewed as molecular parasites with few functions. Drosophila melanogaster and related species have a wealth of diverse satellite repeats. Comparative studies of Drosophilids have been instrumental in understanding how these rapidly evolving sequences change and move. Remarkably, satellite repeats have been found to modulate gene expression and mediate genetic conflicts between chromosomes and between closely related fly species. This suggests that satellites play a key role in speciation. We have taken advantage of the depth of research on satellite repeats in flies to review the known functions of these sequences and consider their central role in evolution and gene expression.
Collapse
Affiliation(s)
| | - Victoria H Meller
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
10
|
Feliciello I, Pezer Ž, Sermek A, Bruvo Mađarić B, Ljubić S, Ugarković Đ. Satellite DNA-Mediated Gene Expression Regulation: Physiological and Evolutionary Implication. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:145-167. [PMID: 34386875 DOI: 10.1007/978-3-030-74889-0_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Satellite DNAs are tandemly repeated sequences organized in large clusters within (peri)centromeric and/or subtelomeric heterochromatin. However, in many species, satellite DNAs are not restricted to heterochromatin but are also dispersed as short arrays within euchromatin. Such genomic organization together with transcriptional activity seems to be a prerequisite for the gene-modulatory effect of satellite DNAs which was first demonstrated in the beetle Tribolium castaneum upon heat stress. Namely, enrichment of a silent histone mark at euchromatic repeats of a major beetle satellite DNA results in epigenetic silencing of neighboring genes. In addition, human satellite III transcripts induced by heat shock contribute to genome-wide gene silencing, providing protection against stress-induced cell death. Gene silencing mediated by satellite RNA was also shown to be fundamental for the early embryonic development of the mosquito Aedes aegypti. Apart from a physiological role during embryogenesis and heat stress response, activation of satellite DNAs in terms of transcription and proliferation can have an evolutionary impact. Spreading of satellite repeats throughout euchromatin promotes the variation of epigenetic landscapes and gene expression diversity, contributing to the evolution of gene regulatory networks and to genome adaptation in fluctuating environmental conditions.
Collapse
Affiliation(s)
- Isidoro Feliciello
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.,Dipartimento di Medicina Clinica e Chirurgia, Universita' degli Studi di Napoli Federico II, Naples, Italy
| | - Željka Pezer
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Antonio Sermek
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Sven Ljubić
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Đurđica Ugarković
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.
| |
Collapse
|