1
|
Sapiro AL, Freund EC, Restrepo L, Qiao HH, Bhate A, Li Q, Ni JQ, Mosca TJ, Li JB. Zinc Finger RNA-Binding Protein Zn72D Regulates ADAR-Mediated RNA Editing in Neurons. Cell Rep 2021; 31:107654. [PMID: 32433963 PMCID: PMC7306179 DOI: 10.1016/j.celrep.2020.107654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/11/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
Adenosine-to-inosine RNA editing, catalyzed by adenosine deaminase acting on RNA (ADAR) enzymes, alters RNA sequences from those encoded by DNA. These editing events are dynamically regulated, but few trans regulators of ADARs are known in vivo. Here, we screen RNA-binding proteins for roles in editing regulation with knockdown experiments in the Drosophila brain. We identify zinc-finger protein at 72D (Zn72D) as a regulator of editing levels at a majority of editing sites in the brain. Zn72D both regulates ADAR protein levels and interacts with ADAR in an RNA-dependent fashion, and similar to ADAR, Zn72D is necessary to maintain proper neuromuscular junction architecture and fly mobility. Furthermore, Zn72D’s regulatory role in RNA editing is conserved because the mammalian homolog of Zn72D, Zfr, regulates editing in mouse primary neurons. The broad and conserved regulation of ADAR editing by Zn72D in neurons sustains critically important editing events. Sapiro et al. identify Drosophila Zn72D as an influential regulator of neuronal A-to-I RNA editing and synaptic morphology. Zn72D regulates ADAR levels and editing at a large subset of editing sites, providing insight into the maintenance of critical tissue-specific RNA editing events.
Collapse
Affiliation(s)
- Anne L Sapiro
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Emily C Freund
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Lucas Restrepo
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Huan-Huan Qiao
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Amruta Bhate
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Qin Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Jian-Quan Ni
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, China
| | - Timothy J Mosca
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Jiang YY, Maier W, Chukka UN, Choromanski M, Lee C, Joachimiak E, Wloga D, Yeung W, Kannan N, Frankel J, Gaertig J. Mutual antagonism between Hippo signaling and cyclin E drives intracellular pattern formation. J Cell Biol 2020; 219:e202002077. [PMID: 32642758 PMCID: PMC7480119 DOI: 10.1083/jcb.202002077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/11/2020] [Accepted: 06/04/2020] [Indexed: 11/23/2022] Open
Abstract
Not much is known about how organelles organize into patterns. In ciliates, the cortical pattern is propagated during "tandem duplication," a cell division that remodels the parental cell into two daughter cells. A key step is the formation of the division boundary along the cell's equator. In Tetrahymena thermophila, the cdaA alleles prevent the formation of the division boundary. We find that the CDAA gene encodes a cyclin E that accumulates in the posterior cell half, concurrently with accumulation of CdaI, a Hippo/Mst kinase, in the anterior cell half. The division boundary forms between the margins of expression of CdaI and CdaA, which exclude each other from their own cortical domains. The activities of CdaA and CdaI must be balanced to initiate the division boundary and to position it along the cell's equator. CdaA and CdaI cooperate to position organelles near the new cell ends. Our data point to an intracellular positioning mechanism involving antagonistic Hippo signaling and cyclin E.
Collapse
Affiliation(s)
- Yu-Yang Jiang
- Department of Cellular Biology, University of Georgia, Athens, GA
| | - Wolfgang Maier
- Bioinformatics, University of Freiburg, Freiburg, Germany
| | | | | | - Chinkyu Lee
- Department of Cellular Biology, University of Georgia, Athens, GA
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Wayland Yeung
- Institute of Bioinformatics, University of Georgia, Athens, GA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, GA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA
| | - Joseph Frankel
- Department of Biology, University of Iowa, Iowa City, IA
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA
| |
Collapse
|
3
|
Khoury MJ, Bilder D. Distinct activities of Scrib module proteins organize epithelial polarity. Proc Natl Acad Sci U S A 2020; 117:11531-11540. [PMID: 32414916 PMCID: PMC7260944 DOI: 10.1073/pnas.1918462117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A polarized architecture is central to both epithelial structure and function. In many cells, polarity involves mutual antagonism between the Par complex and the Scribble (Scrib) module. While molecular mechanisms underlying Par-mediated apical determination are well-understood, how Scrib module proteins specify the basolateral domain remains unknown. Here, we demonstrate dependent and independent activities of Scrib, Discs-large (Dlg), and Lethal giant larvae (Lgl) using the Drosophila follicle epithelium. Our data support a linear hierarchy for localization, but rule out previously proposed protein-protein interactions as essential for polarization. Cortical recruitment of Scrib does not require palmitoylation or polar phospholipid binding but instead an independent cortically stabilizing activity of Dlg. Scrib and Dlg do not directly antagonize atypical protein kinase C (aPKC), but may instead restrict aPKC localization by enabling the aPKC-inhibiting activity of Lgl. Importantly, while Scrib, Dlg, and Lgl are each required, all three together are not sufficient to antagonize the Par complex. Our data demonstrate previously unappreciated diversity of function within the Scrib module and begin to define the elusive molecular functions of Scrib and Dlg.
Collapse
Affiliation(s)
- Mark J Khoury
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - David Bilder
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
4
|
Biwot JC, Zhang HB, Chen MY, Wang YF. A new function of immunity-related gene Zn72D in male fertility of Drosophila melanogaster. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21612. [PMID: 31482645 DOI: 10.1002/arch.21612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/21/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Zn72D encodes the Drosophila zinc finger protein Zn72D. It was first identified to be involved in phagocytosis and indicated to have a role in immunity. Then it was demonstrated to have a function in RNA splicing and dosage compensation in Drosophila melanogaster. In this study, we discovered a new function of Zn72D in male fertility. We showed that knockdown of Zn72D in fly testes caused an extremely low egg hatch rate. Immunofluorescence staining of Zn72D knockdown testes exhibited scattered spermatid nuclei and no actin cones or individualization complexes (ICs) during spermiogenesis, whereas the early-stage germ cells and the spermatocytes were observed clearly. There were no mature sperms in the seminal vesicles of Zn72D knockdown fly testes, although a few sperms could be found close to the seminal vesicle. We further showed that many cytoskeleton-related genes were significantly downregulated in fly testes due to Zn72D knockdown. Taken together these findings suggest that Zn72D may have an important function in spermatogenesis by sustaining the cytoskeleton-based morphogenesis and individualization thus ensuring the proper formation of sperm in D. melanogaster.
Collapse
Affiliation(s)
- John C Biwot
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Hua-Bao Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Meng-Yan Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yu-Feng Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
5
|
Bonello TT, Peifer M. Scribble: A master scaffold in polarity, adhesion, synaptogenesis, and proliferation. J Cell Biol 2018; 218:742-756. [PMID: 30598480 PMCID: PMC6400555 DOI: 10.1083/jcb.201810103] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/26/2018] [Accepted: 12/14/2018] [Indexed: 02/08/2023] Open
Abstract
Key events ranging from cell polarity to proliferation regulation to neuronal signaling rely on the assembly of multiprotein adhesion or signaling complexes at particular subcellular sites. Multidomain scaffolding proteins nucleate assembly and direct localization of these complexes, and the protein Scribble and its relatives in the LAP protein family provide a paradigm for this. Scribble was originally identified because of its role in apical-basal polarity and epithelial integrity in Drosophila melanogaster It is now clear that Scribble acts to assemble and position diverse multiprotein complexes in processes ranging from planar polarity to adhesion to oriented cell division to synaptogenesis. Here, we explore what we have learned about the mechanisms of action of Scribble in the context of its multiple known interacting partners and discuss how this knowledge opens new questions about the full range of Scribble protein partners and their structural and signaling roles.
Collapse
Affiliation(s)
- Teresa T Bonello
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC .,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
6
|
The Histone Demethylase KDM5 Is Essential for Larval Growth in Drosophila. Genetics 2018; 209:773-787. [PMID: 29764901 PMCID: PMC6028249 DOI: 10.1534/genetics.118.301004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/11/2018] [Indexed: 02/07/2023] Open
Abstract
Regulated gene expression is necessary for developmental and homeostatic processes. The KDM5 family of transcriptional regulators are histone H3 lysine 4 demethylases that can function through both demethylase-dependent and -independent mechanisms. While loss and overexpression of KDM5 proteins are linked to intellectual disability and cancer, respectively, their normal developmental functions remain less characterized. Drosophila melanogaster provides an ideal system to investigate KDM5 function, as it encodes a single ortholog in contrast to the four paralogs found in mammalian cells. To examine the consequences of complete loss of KDM5, we generated a null allele of Drosophila kdm5, also known as little imaginal discs (lid), and show that it is essential for viability. Animals lacking KDM5 show a dramatically delayed larval development that coincides with decreased proliferation and increased cell death in wing imaginal discs. Interestingly, this developmental delay is independent of the well-characterized Jumonji C (JmjC) domain-encoded histone demethylase activity of KDM5, suggesting key functions for less characterized domains. Consistent with the phenotypes observed, transcriptome analyses of kdm5 null mutant wing imaginal discs revealed the dysregulation of genes involved in several cellular processes, including cell cycle progression and DNA repair. Together, our analyses reveal KDM5 as a key regulator of larval growth and offer an invaluable tool for defining the biological activities of KDM5 family proteins.
Collapse
|
7
|
Stephens R, Lim K, Portela M, Kvansakul M, Humbert PO, Richardson HE. The Scribble Cell Polarity Module in the Regulation of Cell Signaling in Tissue Development and Tumorigenesis. J Mol Biol 2018; 430:3585-3612. [PMID: 29409995 DOI: 10.1016/j.jmb.2018.01.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 01/22/2023]
Abstract
The Scribble cell polarity module, comprising Scribbled (Scrib), Discs-large (Dlg) and Lethal-2-giant larvae (Lgl), has a tumor suppressive role in mammalian epithelial cancers. The Scribble module proteins play key functions in the establishment and maintenance of different modes of cell polarity, as well as in the control of tissue growth, differentiation and directed cell migration, and therefore are major regulators of tissue development and homeostasis. Whilst molecular details are known regarding the roles of Scribble module proteins in cell polarity regulation, their precise mode of action in the regulation of other key cellular processes remains enigmatic. An accumulating body of evidence indicates that Scribble module proteins play scaffolding roles in the control of various signaling pathways, which are linked to the control of tissue growth, differentiation and cell migration. Multiple Scrib, Dlg and Lgl interacting proteins have been discovered, which are involved in diverse processes, however many function in the regulation of cellular signaling. Herein, we review the components of the Scrib, Dlg and Lgl protein interactomes, and focus on the mechanism by which they regulate cellular signaling pathways in metazoans, and how their disruption leads to cancer.
Collapse
Affiliation(s)
- Rebecca Stephens
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Krystle Lim
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Marta Portela
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute (CSIC), Avenida Doctor Arce, 37, Madrid 28002, Spain
| | - Marc Kvansakul
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Patrick O Humbert
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia; Department of Biochemistry & Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Helena E Richardson
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia; Department of Biochemistry & Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Anatomy & Neurobiology, University of Melbourne, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
8
|
Gu T, Zhao T, Kohli U, Hewes RS. The large and small SPEN family proteins stimulate axon outgrowth during neurosecretory cell remodeling in Drosophila. Dev Biol 2017; 431:226-238. [PMID: 28916169 DOI: 10.1016/j.ydbio.2017.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/08/2017] [Accepted: 09/09/2017] [Indexed: 11/16/2022]
Abstract
Split ends (SPEN) is the founding member of a well conserved family of nuclear proteins with critical functions in transcriptional regulation and the post-transcriptional processing and nuclear export of transcripts. In animals, the SPEN proteins fall into two size classes that perform either complementary or antagonistic functions in different cellular contexts. Here, we show that the two Drosophila representatives of this family, SPEN and Spenito (NITO), regulate metamorphic remodeling of the CCAP/bursicon neurosecretory cells. CCAP/bursicon cell-targeted overexpression of SPEN had no effect on the larval morphology or the pruning back of the CCAP/bursicon cell axons at the onset of metamorphosis. During the subsequent outgrowth phase of metamorphic remodeling, overexpression of either SPEN or NITO strongly inhibited axon extension, axon branching, peripheral neuropeptide accumulation, and soma growth. Cell-targeted loss-of-function alleles for both spen and nito caused similar reductions in axon outgrowth, indicating that the absolute levels of SPEN and NITO activity are critical to support the developmental plasticity of these neurons. Although nito RNAi did not affect SPEN protein levels, the phenotypes produced by SPEN overexpression were suppressed by nito RNAi. We propose that SPEN and NITO function additively or synergistically in the CCAP/bursicon neurons to regulate multiple aspects of neurite outgrowth during metamorphic remodeling.
Collapse
Affiliation(s)
- Tingting Gu
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Tao Zhao
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Uday Kohli
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Randall S Hewes
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
9
|
Gunnar E, Bivik C, Starkenberg A, Thor S. sequoia controls the type I>0 daughter proliferation switch in the developing Drosophila nervous system. Development 2016; 143:3774-3784. [PMID: 27578794 DOI: 10.1242/dev.139998] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/22/2016] [Indexed: 01/16/2023]
Abstract
Neural progenitors typically divide asymmetrically to renew themselves, while producing daughters with more limited potential. In the Drosophila embryonic ventral nerve cord, neuroblasts initially produce daughters that divide once to generate two neurons/glia (type I proliferation mode). Subsequently, many neuroblasts switch to generating daughters that differentiate directly (type 0). This programmed type I>0 switch is controlled by Notch signaling, triggered at a distinct point of lineage progression in each neuroblast. However, how Notch signaling onset is gated was unclear. We recently identified Sequoia (Seq), a C2H2 zinc-finger transcription factor with homology to Drosophila Tramtrack (Ttk) and the positive regulatory domain (PRDM) family, as important for lineage progression. Here, we find that seq mutants fail to execute the type I>0 daughter proliferation switch and also display increased neuroblast proliferation. Genetic interaction studies reveal that seq interacts with the Notch pathway, and seq furthermore affects expression of a Notch pathway reporter. These findings suggest that seq may act as a context-dependent regulator of Notch signaling, and underscore the growing connection between Seq, Ttk, the PRDM family and Notch signaling.
Collapse
Affiliation(s)
- Erika Gunnar
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping SE-58185, Sweden
| | - Caroline Bivik
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping SE-58185, Sweden
| | - Annika Starkenberg
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping SE-58185, Sweden
| | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping SE-58185, Sweden
| |
Collapse
|
10
|
Becker H, Renner S, Technau GM, Berger C. Cell-Autonomous and Non-cell-autonomous Function of Hox Genes Specify Segmental Neuroblast Identity in the Gnathal Region of the Embryonic CNS in Drosophila. PLoS Genet 2016; 12:e1005961. [PMID: 27015425 PMCID: PMC4807829 DOI: 10.1371/journal.pgen.1005961] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 03/04/2016] [Indexed: 12/12/2022] Open
Abstract
During central nervous system (CNS) development neural stem cells (Neuroblasts, NBs) have to acquire an identity appropriate to their location. In thoracic and abdominal segments of Drosophila, the expression pattern of Bithorax-Complex Hox genes is known to specify the segmental identity of NBs prior to their delamination from the neuroectoderm. Compared to the thoracic, ground state segmental units in the head region are derived to different degrees, and the precise mechanism of segmental specification of NBs in this region is still unclear. We identified and characterized a set of serially homologous NB-lineages in the gnathal segments and used one of them (NB6-4 lineage) as a model to investigate the mechanism conferring segment-specific identities to gnathal NBs. We show that NB6-4 is primarily determined by the cell-autonomous function of the Hox gene Deformed (Dfd). Interestingly, however, it also requires a non-cell-autonomous function of labial and Antennapedia that are expressed in adjacent anterior or posterior compartments. We identify the secreted molecule Amalgam (Ama) as a downstream target of the Antennapedia-Complex Hox genes labial, Dfd, Sex combs reduced and Antennapedia. In conjunction with its receptor Neurotactin (Nrt) and the effector kinase Abelson tyrosine kinase (Abl), Ama is necessary in parallel to the cell-autonomous Dfd pathway for the correct specification of the maxillary identity of NB6-4. Both pathways repress CyclinE (CycE) and loss of function of either of these pathways leads to a partial transformation (40%), whereas simultaneous mutation of both pathways leads to a complete transformation (100%) of NB6-4 segmental identity. Finally, we provide genetic evidences, that the Ama-Nrt-Abl-pathway regulates CycE expression by altering the function of the Hippo effector Yorkie in embryonic NBs. The disclosure of a non-cell-autonomous influence of Hox genes on neural stem cells provides new insight into the process of segmental patterning in the developing CNS. The central nervous system (CNS) needs to be subdivided into functionally specified regions. In the developing CNS of Drosophila, each neural stem cell, called neuroblasts (NB), acquires a unique identity according to its anterior-posterior and dorso-ventral position to generate a specific cell lineage. Along the anterior-posterior body axis, Hox genes of the Bithorax-Complex convey segmental identities to NBs in the trunk segments. In the derived gnathal and brain segments, the mechanisms specifying segmental NB identities are largely unknown. We investigated the role of Hox genes of the Antennapedia-Complex in the gnathal CNS. In addition to cell-autonomous Hox gene function, we unexpectedly uncovered a parallel non-cell-autonomous pathway in mediating segmental specification of embryonic NBs in gnathal segments. Both pathways restrict the expression of the cell cycle gene CyclinE, ensuring the proper specification of a glial cell lineage. Whereas the Hox gene Deformed mediates this cell-autonomously, labial and Antennapedia influence the identity via transcriptional regulation of the secreted molecule Amalgam (and its downstream pathway) in a non-cell-autonomous manner. These findings shed new light on the role of the highly conserved Hox genes during segmental patterning of neural stem cells in the CNS.
Collapse
Affiliation(s)
- Henrike Becker
- Institute of Genetics, University of Mainz, Mainz, Germany
| | - Simone Renner
- Institute of Genetics, University of Mainz, Mainz, Germany
| | - Gerhard M. Technau
- Institute of Genetics, University of Mainz, Mainz, Germany
- * E-mail: (CB); (GMT)
| | - Christian Berger
- Institute of Genetics, University of Mainz, Mainz, Germany
- * E-mail: (CB); (GMT)
| |
Collapse
|
11
|
Yamashita K, Ide M, Furukawa KT, Suzuki A, Hirano H, Ohno S. Tumor suppressor protein Lgl mediates G1 cell cycle arrest at high cell density by forming an Lgl-VprBP-DDB1 complex. Mol Biol Cell 2015; 26:2426-38. [PMID: 25947136 PMCID: PMC4571298 DOI: 10.1091/mbc.e14-10-1462] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 04/28/2015] [Indexed: 11/25/2022] Open
Abstract
Lgl is a conserved tumor suppressor suggested to be involved in cell polarity regulation and suppression of cell proliferation. Lgl inhibits formation of the VprBP-DDB1-Cul4A-Roc1 ubiquitin E3 ligase complex, which is implicated in cell cycle progression, by promoting formation of the Lgl-VprBP-DDB1 complex to prevent overproliferation. Lethal giant larvae (Lgl) is an evolutionarily conserved tumor suppressor whose loss of function causes disrupted epithelial architecture with enhanced cell proliferation and defects in cell polarity. A role for Lgl in the establishment and maintenance of cell polarity via suppression of the PAR-aPKC polarity complex is established; however, the mechanism by which Lgl regulates cell proliferation is not fully understood. Here we show that depletion of Lgl1 and Lgl2 in MDCK epithelial cells results in overproliferation and overproduction of Lgl2 causes G1 arrest. We also show that Lgl associates with the VprBP-DDB1 complex independently of the PAR-aPKC complex and prevents the VprBP-DDB1 subunits from binding to Cul4A, a central component of the CRL4 [VprBP] ubiquitin E3 ligase complex implicated in G1- to S-phase progression. Consistently, depletion of VprBP or Cul4 rescues the overproliferation of Lgl-depleted cells. In addition, the affinity between Lgl2 and the VprBP-DDB1 complex increases at high cell density. Further, aPKC-mediated phosphorylation of Lgl2 negatively regulates the interaction between Lgl2 and VprBP-DDB1 complex. These results suggest a mechanism protecting overproliferation of epithelial cells in which Lgl plays a critical role by inhibiting formation of the CRL4 [VprBP] complex, resulting in G1 arrest.
Collapse
Affiliation(s)
- Kazunari Yamashita
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama 236-0004, Japan
| | - Mariko Ide
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama 236-0004, Japan
| | - Kana T Furukawa
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama 236-0004, Japan
| | - Atsushi Suzuki
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama 236-0004, Japan Molecular Cellular Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Hisashi Hirano
- Supramolecular Biology, International Graduate School of Arts and Sciences, Yokohama City University, Yokohama 230-0045, Japan
| | - Shigeo Ohno
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama 236-0004, Japan
| |
Collapse
|
12
|
Grifoni D, Bellosta P. Drosophila Myc: A master regulator of cellular performance. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:570-81. [PMID: 25010747 DOI: 10.1016/j.bbagrm.2014.06.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/26/2014] [Accepted: 06/30/2014] [Indexed: 11/25/2022]
Abstract
The identification of the Drosophila homolog of the human MYC oncogene has fostered a series of studies aimed to address its functions in development and cancer biology. Due to its essential roles in many fundamental biological processes it is hard to imagine a molecular mechanism in which MYC function is not required. For this reason, the easily manipulated Drosophila system has greatly helped in the dissection of the genetic and molecular pathways that regulate and are regulated by MYC function. In this review, we focus on studies of MYC in the fruitfly with particular emphasis on metabolism and cell competition, highlighting the contributions of this model system in the last decade to our understanding of MYC's complex biological nature. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.
Collapse
Affiliation(s)
- Daniela Grifoni
- Department of "Farmacia e Biotecnologie", University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| | - Paola Bellosta
- Department of "Bioscienze", University of Milan, Via Celoria 26, 20133 Milan, Italy.
| |
Collapse
|
13
|
Ables ET, Drummond-Barbosa D. Cyclin E controls Drosophila female germline stem cell maintenance independently of its role in proliferation by modulating responsiveness to niche signals. Development 2013; 140:530-40. [PMID: 23293285 DOI: 10.1242/dev.088583] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Stem cells must proliferate while maintaining 'stemness'; however, much remains to be learned about how factors that control the division of stem cells influence their identity. Multiple stem cell types display cell cycles with short G1 phases, thought to minimize susceptibility to differentiation factors. Drosophila female germline stem cells (GSCs) have short G1 and long G2 phases, and diet-dependent systemic factors often modulate G2. We previously observed that Cyclin E (CycE), a known G1/S regulator, is atypically expressed in GSCs during G2/M; however, it remained unclear whether CycE has cell cycle-independent roles in GSCs or whether it acts exclusively by modulating the cell cycle. In this study, we detected CycE activity during G2/M, reflecting its altered expression pattern, and showed that CycE and its canonical partner, Cyclin-dependent kinase 2 (Cdk2), are required not only for GSC proliferation, but also for GSC maintenance. In genetic mosaics, CycE- and Cdk2-deficient GSCs are rapidly lost from the niche, remain arrested in a G1-like state, and undergo excessive growth and incomplete differentiation. However, we found that CycE controls GSC maintenance independently of its role in the cell cycle; GSCs harboring specific hypomorphic CycE mutations are not efficiently maintained despite normal proliferation rates. Finally, CycE-deficient GSCs have an impaired response to niche bone morphogenetic protein signals that are required for GSC self-renewal, suggesting that CycE modulates niche-GSC communication. Taken together, these results show unequivocally that the roles of CycE/Cdk2 in GSC division cycle regulation and GSC maintenance are separable, and thus potentially involve distinct sets of phosphorylation targets.
Collapse
Affiliation(s)
- Elizabeth T Ables
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | | |
Collapse
|
14
|
Abstract
Cell polarization and cell division are two fundamental cellular processes. The mechanisms that establish and maintain cell polarity and the mechanisms by which cells progress through the cell cycle are now fairly well understood following decades of experimental work. There is also increasing evidence that the polarization state of a cell affects its proliferative properties. The challenge now is to understand how these two phenomena are mechanistically connected. The aim of the present chapter is to provide an overview of the evidence of cross-talk between apicobasal polarity and proliferation, and the current state of knowledge of the precise mechanism by which this cross-talk is achieved.
Collapse
|
15
|
Lin JI, Mitchell NC, Kalcina M, Tchoubrieva E, Stewart MJ, Marygold SJ, Walker CD, Thomas G, Leevers SJ, Pearson RB, Quinn LM, Hannan RD. Drosophila ribosomal protein mutants control tissue growth non-autonomously via effects on the prothoracic gland and ecdysone. PLoS Genet 2011; 7:e1002408. [PMID: 22194697 PMCID: PMC3240600 DOI: 10.1371/journal.pgen.1002408] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 10/20/2011] [Indexed: 11/30/2022] Open
Abstract
The ribosome is critical for all aspects of cell growth due to its essential role in protein synthesis. Paradoxically, many Ribosomal proteins (Rps) act as tumour suppressors in Drosophila and vertebrates. To examine how reductions in Rps could lead to tissue overgrowth, we took advantage of the observation that an RpS6 mutant dominantly suppresses the small rough eye phenotype in a cyclin E hypomorphic mutant (cycEJP). We demonstrated that the suppression of cycEJP by the RpS6 mutant is not a consequence of restoring CycE protein levels or activity in the eye imaginal tissue. Rather, the use of UAS-RpS6 RNAi transgenics revealed that the suppression of cycEJP is exerted via a mechanism extrinsic to the eye, whereby reduced Rp levels in the prothoracic gland decreases the activity of ecdysone, the steroid hormone, delaying developmental timing and hence allowing time for tissue and organ overgrowth. These data provide for the first time a rationale to explain the counter-intuitive organ overgrowth phenotypes observed for certain members of the Minute class of Drosophila Rp mutants. They also demonstrate how Rp mutants can affect growth and development cell non-autonomously. Ribosomes are required for protein synthesis, which is essential for cell growth and division, thus mutations that reduce Rp expression would be expected to limit cell growth. Paradoxically, heterozygous deletion or mutation of certain Rps can actually promote growth and proliferation and in some cases bestow predisposition to cancer. The underlying mechanism(s) behind these unexpected overgrowth phenotypes despite impairment of ribosome biogenesis has remained obscure. We have addressed this question using the power of Drosophila genetics, taking advantage of our observation that four different Rp mutants, or Minutes, are able to suppress a small rough eye phenotype associated with a mutation of the essential controller of cell proliferation cyclin E (cycEJP). Our findings demonstrate that suppression of cycEJP by the RpS6 mutant is exerted via a tissue non-autonomous mechanism whereby reduced Rp in the prothoracic gland decreases activity of the steroid hormone ecdysone, delaying development and hence allowing time for compensatory growth. These data provide for the first time a rationale to explain the counter-intuitive organ overgrowth phenotypes observed for certain Drosophila Minutes. Our findings also have implications for the effect of Rp mutants on endocrine related control of tissue growth in higher organisms.
Collapse
Affiliation(s)
- Jane I. Lin
- Peter MacCallum Cancer Centre, East Melbourne, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Australia
| | - Naomi C. Mitchell
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Australia
| | - Marina Kalcina
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Australia
| | | | - Mary J. Stewart
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - Steven J. Marygold
- Growth Regulation Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Cherryl D. Walker
- Growth Regulation Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - George Thomas
- University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Sally J. Leevers
- Growth Regulation Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Richard B. Pearson
- Peter MacCallum Cancer Centre, East Melbourne, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Australia
- Department of Biochemistry and Cell Biology, Monash University, Clayton, Australia
| | - Leonie M. Quinn
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Australia
- * E-mail: (LMQ); (RDH)
| | - Ross D. Hannan
- Peter MacCallum Cancer Centre, East Melbourne, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Australia
- Department of Biochemistry and Cell Biology, Monash University, Clayton, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
- * E-mail: (LMQ); (RDH)
| |
Collapse
|
16
|
Muschalik N, Knust E. Increased levels of the cytoplasmic domain of Crumbs repolarise developing Drosophila photoreceptors. J Cell Sci 2011; 124:3715-25. [PMID: 22025631 DOI: 10.1242/jcs.091223] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Photoreceptor morphogenesis in Drosophila requires remodelling of apico-basal polarity and adherens junctions (AJs), and includes cell shape changes, as well as differentiation and expansion of the apical membrane. The evolutionarily conserved transmembrane protein Crumbs (Crb) organises an apical membrane-associated protein complex that controls photoreceptor morphogenesis. Expression of the small cytoplasmic domain of Crb in crb mutant photoreceptor cells (PRCs) rescues the crb mutant phenotype to the same extent as the full-length protein. Here, we show that overexpression of the membrane-tethered cytoplasmic domain of Crb in otherwise wild-type photoreceptor cells has major effects on polarity and morphogenesis. Whereas early expression causes severe abnormalities in apico-basal polarity and ommatidial integrity, expression at later stages affects the shape and positioning of AJs. This result supports the importance of Crb for junctional remodelling during morphogenetic changes. The most pronounced phenotype observed upon early expression is the formation of ectopic apical membrane domains, which often develop into a complete second apical pole, including ectopic AJs. Induction of this phenotype requires members of the Par protein network. These data point to a close integration of the Crb complex and Par proteins during photoreceptor morphogenesis and underscore the role of Crb as an apical determinant.
Collapse
Affiliation(s)
- Nadine Muschalik
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307-Dresden, Germany
| | | |
Collapse
|
17
|
Enomoto M, Igaki T. Deciphering tumor-suppressor signaling in flies: genetic link between Scribble/Dlg/Lgl and the Hippo pathways. J Genet Genomics 2011; 38:461-70. [PMID: 22035867 DOI: 10.1016/j.jgg.2011.09.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 09/02/2011] [Accepted: 09/02/2011] [Indexed: 12/12/2022]
Abstract
Loss of apico-basal polarity is one of the crucial factors that drives epithelial tumor progression. scribble/discs large/lethal giant larvae (scrib/dlg/lgl), a group of apico-basal polarity genes, were initially identified as members of "neoplastic" tumor-suppressors in flies. The components of the Hippo signaling pathway, which is crucial for organ size control and cancer development, were also identified through Drosophila genetic screens as members of "hyperplastic" tumor-suppressors. Accumulating evidence in recent studies implies that these two tumor-suppressor signaling pathways are not mutually exclusive but rather cooperatively act to give rise to highly malignant tumors. The interaction of these tumor-suppressor pathways could include deregulations of actin cytoskeleton, cell-cell contact, and apical-domain size of the epithelial cell.
Collapse
Affiliation(s)
- Masato Enomoto
- Department of Cell Biology, G-COE, Kobe University Graduate School of Medicine, Chuo-ku, Japan
| | | |
Collapse
|
18
|
Kolahgar G, Bardet PL, Langton PF, Alexandre C, Vincent JP. Apical deficiency triggers JNK-dependent apoptosis in the embryonic epidermis of Drosophila. Development 2011; 138:3021-31. [PMID: 21693518 DOI: 10.1242/dev.059980] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epithelial homeostasis and the avoidance of diseases such as cancer require the elimination of defective cells by apoptosis. Here, we investigate how loss of apical determinants triggers apoptosis in the embryonic epidermis of Drosophila. Transcriptional profiling and in situ hybridisation show that JNK signalling is upregulated in mutants lacking Crumbs or other apical determinants. This leads to transcriptional activation of the pro-apoptotic gene reaper and to apoptosis. Suppression of JNK signalling by overexpression of Puckered, a feedback inhibitor of the pathway, prevents reaper upregulation and apoptosis. Moreover, removal of endogenous Puckered leads to ectopic reaper expression. Importantly, disruption of the basolateral domain in the embryonic epidermis does not trigger JNK signalling or apoptosis. We suggest that apical, not basolateral, integrity could be intrinsically required for the survival of epithelial cells. In apically deficient embryos, JNK signalling is activated throughout the epidermis. Yet, in the dorsal region, reaper expression is not activated and cells survive. One characteristic of these surviving cells is that they retain discernible adherens junctions despite the apical deficit. We suggest that junctional integrity could restrain the pro-apoptotic influence of JNK signalling.
Collapse
Affiliation(s)
- Golnar Kolahgar
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK
| | | | | | | | | |
Collapse
|
19
|
Cooper MT, Kennison JA. Molecular genetic analyses of polytene chromosome region 72A-D in Drosophila melanogaster reveal a gene desert in 72D. PLoS One 2011; 6:e23509. [PMID: 21853143 PMCID: PMC3154481 DOI: 10.1371/journal.pone.0023509] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 07/19/2011] [Indexed: 11/18/2022] Open
Abstract
We have investigated a region of ∼310 kb of genomic DNA within polytene chromosome subdivisions 72A to 72D of Drosophila melanogaster. This region includes 57 predicted protein-coding genes. Seventeen of these genes are in six clusters that appear to have arisen by tandem duplication. Within this region we found 23 complementation groups that are essential for zygotic viability, and we have identified the transcription units for 18 of the 23. We also found a 55 kb region in 72D that is nonessential. Flies deficient for this region are viable and fertile. Within this nonessential region are 48 DNA sequences of 12 to 33 base pairs that are completely conserved among 12 distantly related Drosophila species. These sequences do not have the evolutionary signature of conserved protein-coding DNA sequences, nor do they appear to encode microRNAs, however, the strong selection suggests functions in wild populations that are not apparent in laboratory cultures. This region resembles dispensable gene deserts previously characterized in the mouse genome.
Collapse
Affiliation(s)
- Monica T. Cooper
- Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - James A. Kennison
- Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
20
|
The chromatin-remodeling protein Osa interacts with CyclinE in Drosophila eye imaginal discs. Genetics 2009; 184:731-44. [PMID: 20008573 DOI: 10.1534/genetics.109.109967] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Coordinating cell proliferation and differentiation is essential during organogenesis. In Drosophila, the photoreceptor, pigment, and support cells of the eye are specified in an orchestrated wave as the morphogenetic furrow passes across the eye imaginal disc. Cells anterior of the furrow are not yet differentiated and remain mitotically active, while most cells in the furrow arrest at G(1) and adopt specific ommatidial fates. We used microarray expression analysis to monitor changes in transcription at the furrow and identified genes whose expression correlates with either proliferation or fate specification. Some of these are members of the Polycomb and Trithorax families that encode epigenetic regulators. Osa is one; it associates with components of the Drosophila SWI/SNF chromatin-remodeling complex. Our studies of this Trithorax factor in eye development implicate Osa as a regulator of the cell cycle: Osa overexpression caused a small-eye phenotype, a reduced number of M- and S-phase cells in eye imaginal discs, and a delay in morphogenetic furrow progression. In addition, we present evidence that Osa interacts genetically and biochemically with CyclinE. Our results suggest a dual mechanism of Osa function in transcriptional regulation and cell cycle control.
Collapse
|
21
|
Bischoff K, Ballew AC, Simon MA, O'Reilly AM. Wing defects in Drosophila xenicid mutant clones are caused by C-terminal deletion of additional sex combs (Asx). PLoS One 2009; 4:e8106. [PMID: 19956620 PMCID: PMC2779589 DOI: 10.1371/journal.pone.0008106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 11/06/2009] [Indexed: 11/21/2022] Open
Abstract
Background The coordinated action of genes that control patterning, cell fate determination, cell size, and cell adhesion is required for proper wing formation in Drosophila. Defects in any of these basic processes can lead to wing aberrations, including blisters. The xenicid mutation was originally identified in a screen designed to uncover regulators of adhesion between wing surfaces [1]. Principal Findings Here, we demonstrate that expression of the βPS integrin or the patterning protein Engrailed are not affected in developing wing imaginal discs in xenicid mutants. Instead, expression of the homeotic protein Ultrabithorax (Ubx) is strongly increased in xenicid mutant cells. Conclusion Our results suggest that upregulation of Ubx transforms cells from a wing blade fate to a haltere fate, and that the presence of haltere cells within the wing blade is the primary defect leading to the adult wing phenotypes observed.
Collapse
Affiliation(s)
- Kara Bischoff
- Department of Biological Sciences, Stanford University, Stanford, California, United States of America
| | - Anna C. Ballew
- Department of Biological Sciences, Stanford University, Stanford, California, United States of America
| | - Michael A. Simon
- Department of Biological Sciences, Stanford University, Stanford, California, United States of America
| | - Alana M. O'Reilly
- Department of Biological Sciences, Stanford University, Stanford, California, United States of America
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
22
|
Rivera C, Yamben IF, Shatadal S, Waldof M, Robinson ML, Griep AE. Cell-autonomous requirements for Dlg-1 for lens epithelial cell structure and fiber cell morphogenesis. Dev Dyn 2009; 238:2292-308. [PMID: 19623611 DOI: 10.1002/dvdy.22036] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cell polarity and adhesion are thought to be key determinants in organismal development. In Drosophila, discs large (dlg) has emerged as an important regulator of epithelial cell proliferation, adhesion, and polarity. Herein, we investigated the role of the mouse homolog of dlg (Dlg-1) in the development of the mouse ocular lens. Tissue-specific ablation of Dlg-1 throughout the lens early in lens development led to an expansion and disorganization of the epithelium that correlated with changes in the distribution of adhesion and polarity factors. In the fiber cells, differentiation defects were observed. These included alterations in cell structure and the disposition of cell adhesion/cytoskeletal factors, delay in denucleation, and reduced levels of alpha-catenin, pERK1/2, and MIP26. These fiber cell defects were recapitulated when Dlg-1 was disrupted only in fiber cells. These results suggest that Dlg-1 acts in a cell autonomous manner to regulate epithelial cell structure and fiber cell differentiation.
Collapse
Affiliation(s)
- Charlene Rivera
- Department of Anatomy, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
23
|
Ahlander J, Bosco G. Sqd interacts with the Drosophila retinoblastoma tumor suppressor Rbf. Biochem Biophys Res Commun 2009; 383:363-7. [PMID: 19364495 DOI: 10.1016/j.bbrc.2009.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 04/03/2009] [Indexed: 01/22/2023]
Abstract
The retinoblastoma tumor suppressor (RB) serves as a scaffold to coordinate binding of numerous proteins, including E2F and histone deacetylases, through its C-terminal domain. The amino-terminal half of RB has few known binding partners and its function is not well understood. We used the amino-terminal domain of the Drosophila retinoblastoma tumor suppressor Rbf (RbfN) to identify novel binding partners by immunoprecipitation coupled with mass spectrometry. Our experiment revealed that the RNA-binding protein Squid (Sqd) is a putative interacting partner of RbfN. Western blot confirmed that Sqd interacts with the amino-terminal domain of Rbf. We observed that Sqd colocalizes with RbfN in Drosophila salivary gland cells. We also show that double RNAi knockdown of Rbf and Sqd in the eye results in an extensive loss of eye bristles, suggesting that Rbf and Sqd function in a common pathway. We conclude from our studies that Rbf physically and genetically interacts with Sqd. We propose that the retinoblastoma tumor suppressor may play a novel role in RNA processing through interaction with RNA-binding proteins.
Collapse
Affiliation(s)
- Joseph Ahlander
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, 85721, USA
| | | |
Collapse
|
24
|
Frequent unanticipated alleles of lethal giant larvae in Drosophila second chromosome stocks. Genetics 2009; 182:407-10. [PMID: 19279324 DOI: 10.1534/genetics.109.101808] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Forty years ago, a high frequency of lethal giant larvae (lgl) alleles in wild populations of Drosophila melanogaster was reported. This locus has been intensively studied for its roles in epithelial polarity, asymmetric neural divisions, and restriction of tissue proliferation. Here, we identify a high frequency of lgl alleles in the Bloomington second chromosome deficiency kit and the University of California at Los Angeles Bruinfly FRT40A-lethal P collection. These unrecognized aberrations confound the use of these workhorse collections for phenotypic screening or genetic mapping. In addition, we determined that independent alleles of insensitive, reported to affect asymmetric cell divisions during sensory organ development, carry lgl deletions that are responsible for the observed phenotypes. Taken together, these results encourage the routine testing of second chromosome stocks for second-site alleles of lgl.
Collapse
|
25
|
Abstract
The neoplastic tumour suppressors, Scribble, Dlg and Lgl, originally discovered in the vinegar fly Drosophila melanogaster, are currently being actively studied for their potential role in mammalian tumourigenesis. In Drosophila, these tumour suppressors function in a common genetic pathway to regulate apicobasal cell polarity and also play important roles in the control of cell proliferation, survival, differentiation and in cell migration/invasion. The precise mechanism by which Scribble, Dlg and Lgl function is not clear; however, they have been implicated in the regulation of signalling pathways, vesicle trafficking and in the Myosin II-actin cytoskeleton. We review the evidence for the involvement of Scribble, Dlg, and Lgl in cancer, and how the various functions ascribed to these tumour suppressors in Drosophila and mammalian systems may impact on the process of tumourigenesis.
Collapse
|
26
|
Sittaramane V, Sawant A, Wolman MA, Maves L, Halloran MC, Chandrasekhar A. The cell adhesion molecule Tag1, transmembrane protein Stbm/Vangl2, and Lamininalpha1 exhibit genetic interactions during migration of facial branchiomotor neurons in zebrafish. Dev Biol 2008; 325:363-73. [PMID: 19013446 DOI: 10.1016/j.ydbio.2008.10.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 10/16/2008] [Accepted: 10/21/2008] [Indexed: 10/21/2022]
Abstract
Interactions between a neuron and its environment play a major role in neuronal migration. We show here that the cell adhesion molecule Transient Axonal Glycoprotein (Tag1) is necessary for the migration of the facial branchiomotor neurons (FBMNs) in the zebrafish hindbrain. In tag1 morphant embryos, FBMN migration is specifically blocked, with no effect on organization or patterning of other hindbrain neurons. Furthermore, using suboptimal morpholino doses and genetic mutants, we found that tag1, lamininalpha1 (lama1) and stbm, which encodes a transmembrane protein Vangl2, exhibit pairwise genetic interactions for FBMN migration. Using time-lapse analyses, we found that FBMNs are affected similarly in all three single morphant embryos, with an inability to extend protrusions in a specific direction, and resulting in the failure of caudal migration. These data suggest that tag1, lama1 and vangl2 participate in a common mechanism that integrates signaling between the FBMN and its environment to regulate migration.
Collapse
Affiliation(s)
- Vinoth Sittaramane
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | |
Collapse
|
27
|
Basolateral junctions utilize warts signaling to control epithelial-mesenchymal transition and proliferation crucial for migration and invasion of Drosophila ovarian epithelial cells. Genetics 2008; 178:1947-71. [PMID: 18430928 DOI: 10.1534/genetics.108.086983] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Fasciclin2 (Fas2) and Discslarge (Dlg) localize to the basolateral junction (BLJ) of Drosophila follicle epithelial cells and inhibit their proliferation and invasion. To identify a BLJ signaling pathway we completed a genomewide screen for mutants that enhance dlg tumorigenesis. We identified two genes that encode known BLJ scaffolding proteins, lethal giant larvae (lgl) and scribble (scrib), and several not previously associated with BLJ function, including warts (wts) and roughened eye (roe), which encode a serine-threonine kinase and a transcription factor, respectively. Like scrib, wts and roe also enhance Fas2 and lgl tumorigenesis. Further, scrib, wts, and roe block border cell migration, and cause noninvasive tumors that resemble dlg partial loss of function, suggesting that the BLJ utilizes Wts signaling to repress EMT and proliferation, but not motility. Apicolateral junction proteins Fat (Ft), Expanded (Ex), and Merlin (Mer) either are not involved in these processes, or have highly spatio-temporally restricted roles, diminishing their significance as upstream inputs to Wts in follicle cells. This is further indicated in that Wts targets, CyclinE and DIAP1, are elevated in Fas2, dlg, lgl, wts, and roe cells, but not Fat, ex, or mer cells. Thus, the BLJ appears to regulate epithelial polarity and dynamics not only as a localized scaffold, but also by communicating signals to the nucleus. Wts may be regulated by distinct junction inputs depending on developmental context.
Collapse
|
28
|
Grzeschik NA, Amin N, Secombe J, Brumby AM, Richardson HE. Abnormalities in cell proliferation and apico-basal cell polarity are separable in Drosophila lgl mutant clones in the developing eye. Dev Biol 2007; 311:106-23. [PMID: 17870065 PMCID: PMC2974846 DOI: 10.1016/j.ydbio.2007.08.025] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 08/06/2007] [Accepted: 08/07/2007] [Indexed: 01/16/2023]
Abstract
In homozygous mutants of Drosophila lethal-2-giant larvae (lgl), tissues lose apico-basal cell polarity and exhibit ectopic proliferation. Here, we use clonal analysis in the developing eye to investigate the effect of lgl null mutations in the context of surrounding wild-type tissue. lgl- clones in the larval eye disc exhibit ectopic expression of the G1-S regulator, Cyclin E, and ectopic proliferation, but do not lose apico-basal cell polarity. Decreasing the perdurance of Lgl protein in larval eye disc clones, by forcing extra proliferation of lgl- tissue (using a Minute background), leads to a loss in cell polarity and to more extreme ectopic cell proliferation. Later in development at the pupal stage, lgl mutant photoreceptor cells show aberrant apico-basal cell polarity, but this is not associated with ectopic proliferation, presumably because cells are differentiated. Thus in a clonal context, the ectopic proliferation and cell polarity defects of lgl- mutants are separable. Furthermore, lgl- mosaic eye discs have alterations in the normal patterns of apoptosis: in larval discs some lgl- and wild-type cells at the clonal boundary undergo apoptosis and are excluded from the epithelia, but apoptosis is decreased elsewhere in the disc, and in pupal retinas lgl- tissue shows less apoptosis.
Collapse
Affiliation(s)
- Nicola A. Grzeschik
- Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
- Anatomy and Cell Biology Department, University of Melbourne, Melbourne, Victoria, Australia
| | - Nancy Amin
- Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
- Anatomy and Cell Biology Department, University of Melbourne, Melbourne, Victoria, Australia
| | - Julie Secombe
- Genetics Department, University of Adelaide, Adelaide, South Australia, Australia
| | - Anthony M. Brumby
- Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
- Anatomy and Cell Biology Department, University of Melbourne, Melbourne, Victoria, Australia
- Genetics Department, University of Adelaide, Adelaide, South Australia, Australia
| | - Helena E. Richardson
- Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
- Anatomy and Cell Biology Department, University of Melbourne, Melbourne, Victoria, Australia
- Genetics Department, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
29
|
Drosophila follicle cell amplicons as models for metazoan DNA replication: a cyclinE mutant exhibits increased replication fork elongation. Proc Natl Acad Sci U S A 2007; 104:16739-46. [PMID: 17940024 DOI: 10.1073/pnas.0707804104] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Gene clusters amplified in the ovarian follicle cells of Drosophila serve as powerful models for metazoan DNA replication. In response to developmental signals, specific genomic regions undergo amplification by repeated firing of replication origins and bidirectional movement of replication forks for approximately 50 kb in each direction. Previous work focused on initiation of amplification, defining replication origins, establishing the role of the prereplication complex and origin recognition complex (ORC), and uncovering regulatory functions for the Myb, E2F1, and Rb transcription factors. Here, we exploit follicle cell amplification to investigate the control of DNA replication fork progression and termination, poorly understood processes in metazoans. We identified a mutant in which, during gene amplification, the replication forks move twice as far from the origin compared with wild type. This phenotype is the result of an amino acid substitution mutation in the cyclinE gene, cyclinE(1f36). The rate of oogenesis is normal in cyclinE(1f36)/cyclinE(Pz8) mutant ovaries, indicating that increased replication fork progression is due to increased replication fork speed, possibly from increased processivity. The increased amplification domains observed in the mutant imply that there are not replication fork barriers preventing replication forks from progressing beyond the normal 100-kb amplified region. These results reveal a previously unrecognized role for CyclinE in controlling replication fork movement.
Collapse
|
30
|
Zinc finger protein Zn72D promotes productive splicing of the maleless transcript. Mol Cell Biol 2007; 27:8760-9. [PMID: 17923683 DOI: 10.1128/mcb.01415-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In organisms with sex chromosomes, dosage compensation equalizes gene expression between the sexes. In Drosophila melanogaster males, the male-specific lethal (MSL) complex of proteins and two noncoding roX RNAs coat the X chromosome, resulting in a twofold transcriptional upregulation to equalize gene expression with that of females. How MSL complex enrichment on the X chromosome is regulated is not well understood. We performed an RNA interference screen to identify new factors required for dosage compensation. Using a Drosophila Schneider S2 cell line in which green fluorescent protein (GFP)-tagged MSL2 localizes to the X chromosome, we assayed approximately 7,200 knockdowns for their effects on GFP-MSL2 distribution. One factor identified is the zinc finger protein Zn72D. In its absence, the MSL complex no longer coats the X chromosome. We demonstrate that Zn72D is required for productive splicing of the transcript for the MSL protein Maleless, explaining the dosage compensation defect. However, Zn72D is required for the viability of both sexes, indicating its functions are not sex specific. Consistent with this, Zn72D colocalizes with elongating RNA polymerase II, implicating it as a more general factor involved in RNA metabolism.
Collapse
|
31
|
dE2F2-independent rescue of proliferation in cells lacking an activator dE2F1. Mol Cell Biol 2007; 27:8561-70. [PMID: 17923695 DOI: 10.1128/mcb.01068-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In Drosophila melanogaster, the loss of activator de2f1 leads to a severe reduction in cell proliferation and repression of E2F targets. To date, the only known way to rescue the proliferation block in de2f1 mutants was through the inactivation of dE2F2. This suggests that dE2F2 provides a major contribution to the de2f1 mutant phenotype. Here, we report that in mosaic animals, in addition to de2f2, the loss of a DEAD box protein Belle (Bel) also rescues proliferation of de2f1 mutant cells. Surprisingly, the rescue occurs in a dE2F2-independent manner since the loss of Bel does not relieve dE2F2-mediated repression. In the eye disc, bel mutant cells fail to undergo a G1 arrest in the morphogenetic furrow, delay photoreceptor recruitment and differentiation, and show a reduction of the transcription factor Ci155. The down-regulation of Ci155 is important since it is sufficient to partially rescue proliferation of de2f1 mutant cells. Thus, mutation of bel relieves the dE2F2-mediated cell cycle arrest in de2f1 mutant cells through a novel Ci155-dependent mechanism without functional inactivation of the dE2F2 repressor.
Collapse
|
32
|
Fumasoni I, Meani N, Rambaldi D, Scafetta G, Alcalay M, Ciccarelli FD. Family expansion and gene rearrangements contributed to the functional specialization of PRDM genes in vertebrates. BMC Evol Biol 2007; 7:187. [PMID: 17916234 PMCID: PMC2082429 DOI: 10.1186/1471-2148-7-187] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 10/04/2007] [Indexed: 12/11/2022] Open
Abstract
Background Progressive diversification of paralogs after gene expansion is essential to increase their functional specialization. However, mode and tempo of this divergence remain mostly unclear. Here we report the comparative analysis of PRDM genes, a family of putative transcriptional regulators involved in human tumorigenesis. Results Our analysis assessed that the PRDM genes originated in metazoans, expanded in vertebrates and further duplicated in primates. We experimentally showed that fast-evolving paralogs are poorly expressed, and that the most recent duplicates, such as primate-specific PRDM7, acquire tissue-specificity. PRDM7 underwent major structural rearrangements that decreased the number of encoded Zn-Fingers and modified gene splicing. Through internal duplication and activation of a non-canonical splice site (GC-AG), PRDM7 can acquire a novel intron. We also detected an alternative isoform that can retain the intron in the mature transcript and that is predominantly expressed in human melanocytes. Conclusion Our findings show that (a) molecular evolution of paralogs correlates with their expression pattern; (b) gene diversification is obtained through massive genomic rearrangements; and (c) splicing modification contributes to the functional specialization of novel genes.
Collapse
Affiliation(s)
- Irene Fumasoni
- Department of Experimental Oncology, European Institute of Oncology, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Inactivating mutations in the Drosophila tumor-suppressor genes result in tissue overgrowth. This can occur because the mutant tissue either grows faster than wild-type tissue and/or continues to grow beyond a time when wild-type tissue stops growing. There are three general classes of tumor-suppressor genes that regulate the growth of imaginal disc epithelia. Mutations in the hyperplastic tumor-suppressor genes result in increased cell proliferation but do not disrupt normal tissue architecture. These genes include pten, Tsc1, Tsc2, and components of the hippo/salvador/warts pathway. Mutations in a second class of genes, the neoplastic tumor-suppressor genes, disrupt proteins that function either as scaffolds at cell-cell junctions (scribble, discs large, lgl) or as components of the endocytic pathway (avalanche, rab5, ESCRT components). For the third group, the nonautonomous tumor-suppressor genes, mutant cells stimulate the proliferation of adjacent wild-type cells. Understanding the interactions between these three classes of genes will improve our understanding of how cell and tissue growth are coordinated during organismal development and perturbed in disease states such as cancer.
Collapse
Affiliation(s)
- Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA.
| | | |
Collapse
|
34
|
Nagasaka K, Nakagawa S, Yano T, Takizawa S, Matsumoto Y, Tsuruga T, Nakagawa K, Minaguchi T, Oda K, Hiraike-Wada O, Ooishi H, Yasugi T, Taketani Y. Human homolog of Drosophila tumor suppressor Scribble negatively regulates cell-cycle progression from G1 to S phase by localizing at the basolateral membrane in epithelial cells. Cancer Sci 2006; 97:1217-25. [PMID: 16965391 PMCID: PMC11158150 DOI: 10.1111/j.1349-7006.2006.00315.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Drosophila tumor suppressor Scribble has been identified as an apical-basolateral polarity determinant in epithelia. A human homolog of Drosophila Scribble, human Scribble (hScrib), has been identified as a protein targeted by human papillomavirus E6 for the ubiquitin-mediated degradation dependent on E6AP, a cellular ubiquitin-protein ligase. Human Scribble is classified as a LAP protein, having leucine-rich repeats (LRRs) and PDZ domains. We investigated whether hScrib, which is thought to have a role in polarity determination based on the data of its Drosophila homolog, is involved in cell-cycle regulation and proliferation control of epithelia. Transfection of hScrib inhibits cell-cycle progression from G1 to S phase, and it up- and down-regulates expression of adenomatous polyposis coli and cyclins A and D1, respectively. Knockdown of hScrib expression by siRNA leads to cell-cycle progression from G1 to S phase. We explored functional domain mapping to reveal which domains of hScrib are critical for its cellular proliferation control and localization at the basolateral membrane. We found that LRRs and PDZ domain 1 are indispensable for hScrib to inhibit cell growth by blocking cell-cycle progression and to keep its proper localization. These data indicate that basolateral membrane localization of hScrib is closely related to its proliferation control. Our findings suggest the possibility that hScrib is involved in signal transduction to negatively regulate cell proliferation by localizing at the basolateral membrane of epithelial cells through LRRs and PDZ domains.
Collapse
Affiliation(s)
- Kazunori Nagasaka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Beaucher M, Goodliffe J, Hersperger E, Trunova S, Frydman H, Shearn A. Drosophila brain tumor metastases express both neuronal and glial cell type markers. Dev Biol 2006; 301:287-97. [PMID: 17055475 PMCID: PMC1859848 DOI: 10.1016/j.ydbio.2006.09.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 08/29/2006] [Accepted: 09/08/2006] [Indexed: 12/23/2022]
Abstract
Loss of either lgl or brat gene activity in Drosophila larvae causes neoplastic brain tumors. Fragments of tumorous brains from either mutant transplanted into adult hosts over-proliferate, and kill their hosts within 2 weeks. We developed an in vivo assay for the metastatic potential of tumor cells by quantifying micrometastasis formation within the ovarioles of adult hosts after transplantation and determined that specific metastatic properties of lgl and brat tumor cells are different. We detected micrometastases in 15.8% of ovarioles from wild type host females 12 days after transplanting lgl tumor cells into their abdominal cavities. This frequency increased significantly with increased proliferation time. We detected micrometastases in 15% of ovarioles from wild type host females 10 days after transplanting brat tumor cells into their abdominal cavities. By contrast, this frequency did not change significantly with increased proliferation time. We found that nearly all lgl micrometastases co-express the neuronal cell marker, ELAV, and the glial cell marker, REPO. These markers are not co-expressed in normal brain cells nor in tumorous brain cells. This indicates deregulated gene expression in these metastatic cells. By contrast, most of the brat micrometastases expressed neither marker. While mutations in both lgl and brat cause neoplastic brain tumors, our results reveal that metastatic cells arising from these tumors have quite different properties. These data may have important implications for the treatment of tumor metastasis.
Collapse
Affiliation(s)
- Michelle Beaucher
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | | | | | |
Collapse
|
36
|
Molnar C, López-Varea A, Hernández R, de Celis JF. A gain-of-function screen identifying genes required for vein formation in the Drosophila melanogaster wing. Genetics 2006; 174:1635-59. [PMID: 16980395 PMCID: PMC1667087 DOI: 10.1534/genetics.106.061283] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The formation of the Drosophila wing involves developmental processes such as cell proliferation, pattern formation, and cell differentiation that are common to all multicellular organisms. The genes controlling these cellular behaviors are conserved throughout the animal kingdom, and the genetic analysis of wing development has been instrumental in their identification and functional characterization. The wing is a postembryonic structure, and most loss-of-function mutations are lethal in homozygous flies before metamorphosis. In this manner, loss-of-function genetic screens aiming to identify genes affecting wing formation have not been systematically utilized. As an alternative, a number of genetic searches have utilized the phenotypic consequences of gene gain-of-expression, as a method more efficient to search for genes required during imaginal development. Here we present the results of a gain-of-function screen designed to identify genes involved in the formation of the wing veins. We generated 13,000 P-GS insertions of a P element containing UAS sequences (P-GS) and combined them with a Gal4 driver expressed mainly in the developing pupal veins. We selected 500 P-GSs that, in combination with the Gal4 driver, result in modifications of the veins, changes in the morphology of the wing, or defects in the differentiation of the trichomes. The P-element insertion sites were mapped to the genomic sequence, identifying 373 gene candidates to participate in wing morphogenesis and vein formation.
Collapse
Affiliation(s)
- Cristina Molnar
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
37
|
Jemc J, Rebay I. Characterization of the split ends-like gene spenito reveals functional antagonism between SPOC family members during Drosophila eye development. Genetics 2006; 173:279-86. [PMID: 16547102 PMCID: PMC1461450 DOI: 10.1534/genetics.106.055558] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The novel family of SPOC domain proteins is composed of broadly conserved nuclear factors that fall into two subclasses, termed large and small, based on protein size. Members of the large subgroup, which includes Drosophila SPEN and human SHARP, have been characterized as transcriptional corepressors acting downstream of a variety of essential cell signaling pathways, while those of the small subclass have remained largely unstudied. Since SPEN has been implicated in Drosophila eye development, and the small SPOC protein NITO is also expressed in the developing eye, we have used this context to perform a structure-function analysis of NITO and to examine the relationship between the two SPOC family subclasses. Our results demonstrate that the phenotypes obtained from overexpressing NITO share striking similarity to those associated with loss of spen. Dosage-sensitive genetic interactions further support a model of functional antagonism between NITO and SPEN during Drosophila eye development. These results suggest that large and small SPOC family proteins may have opposing functions in certain developmental contexts.
Collapse
Affiliation(s)
- Jennifer Jemc
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02142, USA
| | | |
Collapse
|
38
|
Björklund M, Taipale M, Varjosalo M, Saharinen J, Lahdenperä J, Taipale J. Identification of pathways regulating cell size and cell-cycle progression by RNAi. Nature 2006; 439:1009-13. [PMID: 16496002 DOI: 10.1038/nature04469] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 11/21/2005] [Indexed: 01/26/2023]
Abstract
Many high-throughput loss-of-function analyses of the eukaryotic cell cycle have relied on the unicellular yeast species Saccharomyces cerevisiae and Schizosaccharomyces pombe. In multicellular organisms, however, additional control mechanisms regulate the cell cycle to specify the size of the organism and its constituent organs. To identify such genes, here we analysed the effect of the loss of function of 70% of Drosophila genes (including 90% of genes conserved in human) on cell-cycle progression of S2 cells using flow cytometry. To address redundancy, we also targeted genes involved in protein phosphorylation simultaneously with their homologues. We identify genes that control cell size, cytokinesis, cell death and/or apoptosis, and the G1 and G2/M phases of the cell cycle. Classification of the genes into pathways by unsupervised hierarchical clustering on the basis of these phenotypes shows that, in addition to classical regulatory mechanisms such as Myc/Max, Cyclin/Cdk and E2F, cell-cycle progression in S2 cells is controlled by vesicular and nuclear transport proteins, COP9 signalosome activity and four extracellular-signal-regulated pathways (Wnt, p38betaMAPK, FRAP/TOR and JAK/STAT). In addition, by simultaneously analysing several phenotypes, we identify a translational regulator, eIF-3p66, that specifically affects the Cyclin/Cdk pathway activity.
Collapse
Affiliation(s)
- Mikael Björklund
- Molecular and Cancer Biology Program, Biomedicum Helsinki, PO Box 63 (Haartmaninkatu 8), FI-00014 University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
39
|
Mandal S, Guptan P, Owusu-Ansah E, Banerjee U. Mitochondrial regulation of cell cycle progression during development as revealed by the tenured mutation in Drosophila. Dev Cell 2006; 9:843-54. [PMID: 16326395 DOI: 10.1016/j.devcel.2005.11.006] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 11/02/2005] [Accepted: 11/10/2005] [Indexed: 12/28/2022]
Abstract
The precise control of the cell cycle requires regulation by many intrinsic and extrinsic factors. Whether the metabolic status of the cell exerts a direct control over cell cycle checkpoints is not well understood. We isolated a mutation, tenured (tend), in a gene encoding cytochrome oxidase subunit Va. This mutation causes a drop in intracellular ATP to levels sufficient to maintain cell survival, growth, and differentiation, but not to enable progression through the cell cycle. Analysis of this gene in vivo and in cell lines shows that a specific pathway involving AMPK and p53 is activated that causes elimination of Cyclin E, resulting in cell cycle arrest. We demonstrate that in multiple tissues the mitochondrion has a direct and specific role in enforcing a G1-S cell cycle checkpoint during periods of energy deprivation.
Collapse
Affiliation(s)
- Sudip Mandal
- Department of Molecular, Cell, and Developmental Biology, Department of Biological Chemistry and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
40
|
Abstract
The development of human cancer is a multistep process, involving the cooperation of mutations in signalling, cell-cycle and cell-death pathways, as well as interactions between the tumour and the tumour microenvironment. To dissect the steps of tumorigenesis, simple animal models are needed. This article discusses the use of the genetically amenable, multicellular organism, the vinegar fly Drosophila melanogaster. In particular, recent studies have highlighted the power of D. melanogaster for examining cooperative interactions between tumour suppressors and oncogenes and for generating in vivo models of tumour development and metastasis.
Collapse
Affiliation(s)
- Anthony M Brumby
- Cell Cycle and Development Group, Research Division, Peter MacCallum Cancer Centre, 7 St Andrew's Place, 3002, East Melbourne, Victoria, Australia.
| | | |
Collapse
|