1
|
Hays M, Young JM, Levan PF, Malik HS. A natural variant of the essential host gene MMS21 restricts the parasitic 2-micron plasmid in Saccharomyces cerevisiae. eLife 2020; 9:62337. [PMID: 33063663 PMCID: PMC7652418 DOI: 10.7554/elife.62337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
Antagonistic coevolution with selfish genetic elements (SGEs) can drive evolution of host resistance. Here, we investigated host suppression of 2-micron (2μ) plasmids, multicopy nuclear parasites that have co-evolved with budding yeasts. We developed SCAMPR (Single-Cell Assay for Measuring Plasmid Retention) to measure copy number heterogeneity and 2μ plasmid loss in live cells. We identified three S. cerevisiae strains that lack endogenous 2μ plasmids and reproducibly inhibit mitotic plasmid stability. Focusing on the Y9 ragi strain, we determined that plasmid restriction is heritable and dominant. Using bulk segregant analysis, we identified a high-confidence Quantitative Trait Locus (QTL) with a single variant of MMS21 associated with increased 2μ instability. MMS21 encodes a SUMO E3 ligase and an essential component of the Smc5/6 complex, involved in sister chromatid cohesion, chromosome segregation, and DNA repair. Our analyses leverage natural variation to uncover a novel means by which budding yeasts can overcome highly successful genetic parasites.
Collapse
Affiliation(s)
- Michelle Hays
- Molecular and Cellular Biology program, University of Washington, Seattle, United States.,Division of Basic Sciences & Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Janet M Young
- Division of Basic Sciences & Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Paula F Levan
- Division of Basic Sciences & Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Harmit S Malik
- Division of Basic Sciences & Fred Hutchinson Cancer Research Center, Seattle, United States.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
2
|
Abstract
We consider evolution of a large population, where fitness of each organism is defined by many phenotypical traits. These traits result from expression of many genes. Under some assumptions on fitness we prove that such model organisms are capable, to some extent, to recognize the fitness landscape. That fitness landscape learning sharply reduces the number of mutations needed for adaptation. Moreover, this learning increases phenotype robustness with respect to mutations, i.e., canalizes the phenotype. We show that learning and canalization work only when evolution is gradual. Organisms can be adapted to many constraints associated with a hard environment, if that environment becomes harder step by step. Our results explain why evolution can involve genetic changes of a relatively large effect and why the total number of changes are surprisingly small.
Collapse
Affiliation(s)
- John Reinitz
- Departments of Statistics, Ecology and Evolution, Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Sergey Vakulenko
- Saint Petersburg National Research University of Information Technologies, Mechanics and Optics, Saint Petersburg, Russian Federation
| | - Dmitri Grigoriev
- CNRS, Mathématiques, Université de Lille, Villeneuve d'Ascq, France
| | - Andreas Weber
- Department of Computer Science, University of Bonn, Bonn, Germany
| |
Collapse
|
3
|
Abstract
We consider evolution of a large population, where fitness of each organism is defined by many phenotypical traits. These traits result from expression of many genes. Under some assumptions on fitness we prove that such model organisms are capable, to some extent, to recognize the fitness landscape. That fitness landscape learning sharply reduces the number of mutations needed for adaptation. Moreover, this learning increases phenotype robustness with respect to mutations, i.e., canalizes the phenotype. We show that learning and canalization work only when evolution is gradual. Organisms can be adapted to many constraints associated with a hard environment, if that environment becomes harder step by step. Our results explain why evolution can involve genetic changes of a relatively large effect and why the total number of changes are surprisingly small.
Collapse
Affiliation(s)
- John Reinitz
- Departments of Statistics, Ecology and Evolution, Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Sergey Vakulenko
- Saint Petersburg National Research University of Information Technologies, Mechanics and Optics, Saint Petersburg, Russian Federation
| | - Dmitri Grigoriev
- CNRS, Mathématiques, Université de Lille, Villeneuve d'Ascq, France
| | - Andreas Weber
- Department of Computer Science, University of Bonn, Bonn, Germany
| |
Collapse
|
4
|
Collot D, Nidelet T, Ramsayer J, Martin OC, Méléard S, Dillmann C, Sicard D, Legrand J. Feedback between environment and traits under selection in a seasonal environment: consequences for experimental evolution. Proc Biol Sci 2018; 285:20180284. [PMID: 29643216 PMCID: PMC5904321 DOI: 10.1098/rspb.2018.0284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/22/2018] [Indexed: 01/08/2023] Open
Abstract
Batch cultures are frequently used in experimental evolution to study the dynamics of adaptation. Although they are generally considered to simply drive a growth rate increase, other fitness components can also be selected for. Indeed, recurrent batches form a seasonal environment where different phases repeat periodically and different traits can be under selection in the different seasons. Moreover, the system being closed, organisms may have a strong impact on the environment. Thus, the study of adaptation should take into account the environment and eco-evolutionary feedbacks. Using data from an experimental evolution on yeast Saccharomyces cerevisiae, we developed a mathematical model to understand which traits are under selection, and what is the impact of the environment for selection in a batch culture. We showed that two kinds of traits are under selection in seasonal environments: life-history traits, related to growth and mortality, but also transition traits, related to the ability to react to environmental changes. The impact of environmental conditions can be summarized by the length of the different seasons which weight selection on each trait: the longer a season is, the higher the selection on associated traits. Since phenotypes drive season length, eco-evolutionary feedbacks emerge. Our results show how evolution in successive batches can affect season lengths and strength of selection on different traits.
Collapse
Affiliation(s)
- Dorian Collot
- GQE-Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Thibault Nidelet
- SPO, Inra, Univ. Montpellier, Montpellier, SupAgro, Montpellier, France
| | - Johan Ramsayer
- GQE-Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
- SPO, Inra, Univ. Montpellier, Montpellier, SupAgro, Montpellier, France
| | - Olivier C Martin
- GQE-Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | | | - Christine Dillmann
- GQE-Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Delphine Sicard
- SPO, Inra, Univ. Montpellier, Montpellier, SupAgro, Montpellier, France
| | - Judith Legrand
- GQE-Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| |
Collapse
|
5
|
Abstract
The ability of an organism to replicate and segregate its genome with high fidelity is vital to its survival and for the production of future generations. Errors in either of these steps (replication or segregation) can lead to a change in ploidy or chromosome number. While these drastic genome changes can be detrimental to the organism, resulting in decreased fitness, they can also provide increased fitness during periods of stress. A change in ploidy or chromosome number can fundamentally change how a cell senses and responds to its environment. Here, we discuss current ideas in fungal biology that illuminate how eukaryotic genome size variation can impact the organism at a cellular and evolutionary level. One of the most fascinating observations from the past 2 decades of research is that some fungi have evolved the ability to tolerate large genome size changes and generate vast genomic heterogeneity without undergoing canonical meiosis.
Collapse
|
6
|
Rausher MD, Huang J. Prolonged Adaptive Evolution of a Defensive Gene in the Solanaceae. Mol Biol Evol 2015; 33:143-51. [PMID: 26412446 DOI: 10.1093/molbev/msv205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although plants and their natural enemies may coevolve for prolonged periods, little is known about how long individual plant defensive genes are involved in the coevolutionary process. We address this issue by examining patterns of selection on the defensive gene threonine deaminase (TD). Tomato (Solanum lycopersicum) has two copies of this gene. One performs the canonical housekeeping function in amino acid metabolism of catalyzing the first reaction in the conversion of threonine to isoleucine. The second copy functions as an antinutritive defense against lepidopteran herbivores by depleting threonine in the insect gut. Wild tobacco (Nicotiana attenuata) also contains a defensive copy. We show that a single copy of TD underwent two or three duplications near the base of the Solanaceae. One copy retains the housekeeping function, whereas a second copy evolved defensive functions. Positive selection occurred on the branch of the TD2 gene tree subtending the common ancestor of the Nicotianoideae and Solanoideae. It also occurred within the Solanoideae clade but not within the Nicotianoideae clade. Finally, it occurred on most branches leading from the common ancestor to S. lycopersicum. Based on recent calibrations of the Solanaceae phylogeny, TD2 experienced adaptive substitutions for a period of 30-50 My. We suggest that the most likely explanation for this result is fluctuating herbivore abundances: When herbivores are rare, relaxed selection increases the likelihood that slightly disadvantageous mutations will be fixed by drift; when herbivores are common, increased selection causes the evolution of compensatory adaptive mutations. Alternative explanations are also discussed.
Collapse
Affiliation(s)
| | - Jie Huang
- Department of Biology, Duke University
| |
Collapse
|
7
|
Zhou A, Hillesland KL, He Z, Schackwitz W, Tu Q, Zane GM, Ma Q, Qu Y, Stahl DA, Wall JD, Hazen TC, Fields MW, Arkin AP, Zhou J. Rapid selective sweep of pre-existing polymorphisms and slow fixation of new mutations in experimental evolution of Desulfovibrio vulgaris. ISME JOURNAL 2015; 9:2360-72. [PMID: 25848870 DOI: 10.1038/ismej.2015.45] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/07/2015] [Accepted: 02/26/2015] [Indexed: 01/19/2023]
Abstract
To investigate the genetic basis of microbial evolutionary adaptation to salt (NaCl) stress, populations of Desulfovibrio vulgaris Hildenborough (DvH), a sulfate-reducing bacterium important for the biogeochemical cycling of sulfur, carbon and nitrogen, and potentially the bioremediation of toxic heavy metals and radionuclides, were propagated under salt stress or non-stress conditions for 1200 generations. Whole-genome sequencing revealed 11 mutations in salt stress-evolved clone ES9-11 and 14 mutations in non-stress-evolved clone EC3-10. Whole-population sequencing data suggested the rapid selective sweep of the pre-existing polymorphisms under salt stress within the first 100 generations and the slow fixation of new mutations. Population genotyping data demonstrated that the rapid selective sweep of pre-existing polymorphisms was common in salt stress-evolved populations. In contrast, the selection of pre-existing polymorphisms was largely random in EC populations. Consistently, at 100 generations, stress-evolved population ES9 showed improved salt tolerance, namely increased growth rate (2.0-fold), higher biomass yield (1.8-fold) and shorter lag phase (0.7-fold) under higher salinity conditions. The beneficial nature of several mutations was confirmed by site-directed mutagenesis. All four tested mutations contributed to the shortened lag phases under higher salinity condition. In particular, compared with the salt tolerance improvement in ES9-11, a mutation in a histidine kinase protein gene lytS contributed 27% of the growth rate increase and 23% of the biomass yield increase while a mutation in hypothetical gene DVU2472 contributed 24% of the biomass yield increase. Our results suggested that a few beneficial mutations could lead to dramatic improvements in salt tolerance.
Collapse
Affiliation(s)
- Aifen Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | | | - Zhili He
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Wendy Schackwitz
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Qichao Tu
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Grant M Zane
- Departments of Biochemistry and Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO, USA
| | - Qiao Ma
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.,Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Yuanyuan Qu
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.,Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - David A Stahl
- Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Judy D Wall
- Departments of Biochemistry and Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO, USA
| | - Terry C Hazen
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Matthew W Fields
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Adam P Arkin
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.,Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| |
Collapse
|
8
|
Teng X, Dayhoff-Brannigan M, Cheng WC, Gilbert CE, Sing CN, Diny NL, Wheelan SJ, Dunham MJ, Boeke JD, Pineda FJ, Hardwick JM. Genome-wide consequences of deleting any single gene. Mol Cell 2013; 52:485-94. [PMID: 24211263 DOI: 10.1016/j.molcel.2013.09.026] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/18/2013] [Accepted: 09/19/2013] [Indexed: 11/19/2022]
Abstract
Loss or duplication of chromosome segments can lead to further genomic changes associated with cancer. However, it is not known whether only a select subset of genes is responsible for driving further changes. To determine whether perturbation of any given gene in a genome suffices to drive subsequent genetic changes, we analyzed the yeast knockout collection for secondary mutations of functional consequence. Unlike wild-type, most gene knockout strains were found to have one additional mutant gene affecting nutrient responses and/or heat-stress-induced cell death. Moreover, independent knockouts of the same gene often evolved mutations in the same secondary gene. Genome sequencing identified acquired mutations in several human tumor suppressor homologs. Thus, mutation of any single gene may cause a genomic imbalance, with consequences sufficient to drive adaptive genetic changes. This complicates genetic analyses but is a logical consequence of losing a functional unit originally acquired under pressure during evolution.
Collapse
Affiliation(s)
- Xinchen Teng
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Borges V, Ferreira R, Nunes A, Sousa-Uva M, Abreu M, Borrego MJ, Gomes JP. Effect of long-term laboratory propagation on Chlamydia trachomatis genome dynamics. INFECTION GENETICS AND EVOLUTION 2013; 17:23-32. [PMID: 23542454 DOI: 10.1016/j.meegid.2013.03.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 02/26/2013] [Accepted: 03/20/2013] [Indexed: 11/17/2022]
Abstract
It is assumed that bacterial strains maintained in the laboratory for long time shape their genome in a different fashion from the nature-circulating strains. Here, we analyzed the impact of long-term in vitro propagation on the genome of the obligate intracellular pathogen Chlamydia trachomatis. We fully-sequenced the genome of a historical prototype strain (L2/434/Bu) and a clinical isolate (E/CS88), before and after one-year of serial in vitro passaging (up to 3500 bacterial generations). We observed a slow adaptation of C. trachomatis to the in vitro environment, which was essentially governed by four mutations for L2/434/Bu and solely one mutation for E/CS88, corresponding to estimated mutation rates from 3.84 × 10(-10) to 1.10 × 10(-9) mutations per base pair per generation. In a speculative basis, the mutations likely conferred selective advantage as: (i) mathematical modeling showed that selective advantage is mandatory for frequency increase of a mutated clone; (ii) transversions and non-synonymous mutations were overrepresented; (iii) two non-synonymous mutations affected the genes CTL0084 and CTL0610, encoding a putative transferase and a protein likely implicated in transcription regulation respectively, which are families known to be highly prone to undergone laboratory-derived advantageous mutations in other bacteria; and (iv) the mutation for E/CS88 is located likely in the regulatory region of a virulence gene (CT115/incD) believed to play a role in subverting the host cell machinery. Nevertheless, we found no significant differences in the growth rate, plasmid load, and attachment/entry rate, between strains before and after their long-term laboratory propagation. Of note, from the mixture of clones in E/CS88 initial population, an inactivating mutation in the virulence gene CT135 evolved to 100% prevalence, unequivocally indicating that this gene is superfluous for C. trachomatis survival in vitro. Globally, C. trachomatis revealed a slow in vitro adaptation that only modestly modifies the in vivo-derived genomic evolutionary landscape.
Collapse
Affiliation(s)
- Vítor Borges
- Department of Infectious Diseases, National Institute of Health, Av Padre Cruz, 1649-016 Lisbon, Portugal
| | | | | | | | | | | | | |
Collapse
|
10
|
Dettman JR, Rodrigue N, Melnyk AH, Wong A, Bailey SF, Kassen R. Evolutionary insight from whole-genome sequencing of experimentally evolved microbes. Mol Ecol 2012; 21:2058-77. [PMID: 22332770 DOI: 10.1111/j.1365-294x.2012.05484.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Experimental evolution (EE) combined with whole-genome sequencing (WGS) has become a compelling approach to study the fundamental mechanisms and processes that drive evolution. Most EE-WGS studies published to date have used microbes, owing to their ease of propagation and manipulation in the laboratory and relatively small genome sizes. These experiments are particularly suited to answer long-standing questions such as: How many mutations underlie adaptive evolution, and how are they distributed across the genome and through time? Are there general rules or principles governing which genes contribute to adaptation, and are certain kinds of genes more likely to be targets than others? How common is epistasis among adaptive mutations, and what does this reveal about the variety of genetic routes to adaptation? How common is parallel evolution, where the same mutations evolve repeatedly and independently in response to similar selective pressures? Here, we summarize the significant findings of this body of work, identify important emerging trends and propose promising directions for future research. We also outline an example of a computational pipeline for use in EE-WGS studies, based on freely available bioinformatics tools.
Collapse
Affiliation(s)
- Jeremy R Dettman
- Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | | | | | | | | | | |
Collapse
|
11
|
Adaptive evolution of Saccharomyces cerevisiae to generate strains with enhanced glycerol production. Appl Microbiol Biotechnol 2011; 93:1175-84. [DOI: 10.1007/s00253-011-3622-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 09/07/2011] [Accepted: 09/30/2011] [Indexed: 10/17/2022]
|
12
|
Abstract
Since Bateson's discovery that genes can suppress the phenotypic effects of other genes, gene interactions-called epistasis-have been the topic of a vast research effort. Systems and developmental biologists study epistasis to understand the genotype-phenotype map, whereas evolutionary biologists recognize the fundamental importance of epistasis for evolution. Depending on its form, epistasis may lead to divergence and speciation, provide evolutionary benefits to sex and affect the robustness and evolvability of organisms. That epistasis can itself be shaped by evolution has only recently been realized. Here, we review the empirical pattern of epistasis, and some of the factors that may affect the form and extent of epistasis. Based on their divergent consequences, we distinguish between interactions with or without mean effect, and those affecting the magnitude of fitness effects or their sign. Empirical work has begun to quantify epistasis in multiple dimensions in the context of metabolic and fitness landscape models. We discuss possible proximate causes (such as protein function and metabolic networks) and ultimate factors (including mutation, recombination, and the importance of natural selection and genetic drift). We conclude that, in general, pleiotropy is an important prerequisite for epistasis, and that epistasis may evolve as an adaptive or intrinsic consequence of changes in genetic robustness and evolvability.
Collapse
|
13
|
Gifford DR, Schoustra SE, Kassen R. The length of adaptive walks is insensitive to starting fitness in Aspergillus nidulans. Evolution 2011; 65:3070-8. [PMID: 22023575 DOI: 10.1111/j.1558-5646.2011.01380.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Adaptation involves the successive substitution of beneficial mutations by selection, a process known as an adaptive walk. Gradualist models of adaptation, which assume that all mutations are small relative to the distance to a fitness optimum, predict that adaptive walks should be longer when the founding genotype is less well adapted. More recent work modeling adaptation as a sequence of moves in phenotype or genotype space predicts, by contrast, much shorter adaptive walks irrespective of the fitness of the founding genotype. Here, we provide what is, to the best of our knowledge, the first direct test of these alternative models, measuring the length of adaptive walks in evolving lineages of fungus that differ initially in fitness. Contrary to the gradualist view, we show that the length of adaptive walks in the fungus Aspergillus nidulans is insensitive to starting fitness and involves just two mutations on average. This arises because poorly adapted populations tend to fix mutations of larger average effect than those of better-adapted populations. Our results suggest that the length of adaptive walks may be independent of the fitness of the founding genotype and, moreover, that poorly adapted populations can quickly adapt to novel environments.
Collapse
Affiliation(s)
- Danna R Gifford
- Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | |
Collapse
|
14
|
Adaptive evolution of Escherichia coli K-12 MG1655 during growth on a Nonnative carbon source, L-1,2-propanediol. Appl Environ Microbiol 2010; 76:4158-68. [PMID: 20435762 DOI: 10.1128/aem.00373-10] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Laboratory adaptive evolution studies can provide key information to address a wide range of issues in evolutionary biology. Such studies have been limited thus far by the inability of workers to readily detect mutations in evolved microbial strains on a genome scale. This limitation has now been overcome by recently developed genome sequencing technology that allows workers to identify all accumulated mutations that appear during laboratory adaptive evolution. In this study, we evolved Escherichia coli K-12 MG1655 with a nonnative carbon source, l-1,2-propanediol (l-1,2-PDO), for approximately 700 generations. We found that (i) experimental evolution of E. coli for approximately 700 generations in 1,2-PDO-supplemented minimal medium resulted in acquisition of the ability to use l-1,2-PDO as a sole carbon and energy source so that the organism changed from an organism that did not grow at all initially to an organism that had a growth rate of 0.35 h(-1); (ii) six mutations detected by whole-genome resequencing accumulated in the evolved E. coli mutant over the course of adaptive evolution on l-1,2-PDO; (iii) five of the six mutations were within coding regions, and IS5 was inserted between two fuc regulons; (iv) two major mutations (mutations in fucO and its promoter) involved in l-1,2-PDO catabolism appeared early during adaptive evolution; and (v) multiple defined knock-in mutant strains with all of the mutations had growth rates essentially matching that of the evolved strain. These results provide insight into the genetic basis underlying microbial evolution for growth on a nonnative substrate.
Collapse
|
15
|
Abstract
Experimental evolution refers to a broad range of studies in which selection pressures are applied to populations. In some applications, particular traits are desired, while in others the subject of study is the mechanisms of evolution or the different modes of behavior between systems. This chapter will explore the range of studies falling under the experimental evolution umbrella, and their relative merits for different types of applications. Practical aspects of experimental evolution will also be discussed, including commercial suppliers, analysis methods, and best laboratory practices.
Collapse
|
16
|
Schoustra SE, Bataillon T, Gifford DR, Kassen R. The properties of adaptive walks in evolving populations of fungus. PLoS Biol 2009; 7:e1000250. [PMID: 19956798 PMCID: PMC2772970 DOI: 10.1371/journal.pbio.1000250] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 10/16/2009] [Indexed: 12/22/2022] Open
Abstract
The rarity of beneficial mutations has frustrated efforts to develop a quantitative theory of adaptation. Recent models of adaptive walks, the sequential substitution of beneficial mutations by selection, make two compelling predictions: adaptive walks should be short, and fitness increases should become exponentially smaller as successive mutations fix. We estimated the number and fitness effects of beneficial mutations in each of 118 replicate lineages of Aspergillus nidulans evolving for approximately 800 generations at two population sizes using a novel maximum likelihood framework, the results of which were confirmed experimentally using sexual crosses. We find that adaptive walks do indeed tend to be short, and fitness increases become smaller as successive mutations fix. Moreover, we show that these patterns are associated with a decreasing supply of beneficial mutations as the population adapts. We also provide empirical distributions of fitness effects among mutations fixed at each step. Our results provide a first glimpse into the properties of multiple steps in an adaptive walk in asexual populations and lend empirical support to models of adaptation involving selection towards a single optimum phenotype. In practical terms, our results suggest that the bulk of adaptation is likely to be accomplished within the first few steps.
Collapse
Affiliation(s)
- Sijmen E. Schoustra
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail: (SES); (TB)
| | - Thomas Bataillon
- Institute of Biology, Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
- INRA, UMR DIAPC, Montpellier, France
- * E-mail: (SES); (TB)
| | - Danna R. Gifford
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada
| | - Rees Kassen
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
17
|
Kassen R. Toward a general theory of adaptive radiation: insights from microbial experimental evolution. Ann N Y Acad Sci 2009; 1168:3-22. [PMID: 19566701 DOI: 10.1111/j.1749-6632.2009.04574.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The history of life has been punctuated by unusually spectacular periods of evolutionary diversification called adaptive radiation. Darwin's finches in the Galapagos, cichlid fishes in African Rift and Nicaraguan crater lakes, and the emergence of mammals at the end of the Cretaceous are hallmark examples. Although we have learned much from these and other case studies about the mechanisms thought to drive adaptive radiations, convincing experimental tests of theory are often lacking for the simple reason that it is usually impossible to "rewind the tape of life," as Stephen Jay Gould was fond of saying, and run it again. This situation has changed dramatically in recent years with the increasing emphasis on the use of microbial populations which, because of their small size and rapid generation times, make possible the construction of replicated, manipulative experiments to study evolution in the laboratory. Here I review the contributions that microbial experimental evolution has made to our understanding of the ecological and genetic mechanisms underlying adaptive radiation. I focus on three major gaps in the theory of adaptive radiation--the paucity of direct tests of mechanism, the genetics of diversification, and the limits and constraints on the progress of radiations--with the aim of pointing the way toward the development of a more general theory of adaptive radiation.
Collapse
Affiliation(s)
- Rees Kassen
- Department of Biology and Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
18
|
Aguilera J, Andreu P, Randez-Gil F, Prieto JA. Adaptive evolution of baker's yeast in a dough-like environment enhances freeze and salinity tolerance. Microb Biotechnol 2009; 3:210-21. [PMID: 21255321 PMCID: PMC3836578 DOI: 10.1111/j.1751-7915.2009.00136.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We used adaptive evolution to improve freeze tolerance of industrial baker's yeast. Our hypothesis was that adaptation to low temperature is accompanied by enhanced resistance of yeast to freezing. Based on this hypothesis, yeast was propagated in a flour‐free liquid dough model system, which contained sorbitol and NaCl, by successive batch refreshments maintained constantly at 12°C over at least 200 generations. Relative to the parental population, the maximal growth rate (µmax) under the restrictive conditions, increased gradually over the time course of the experiment. This increase was accompanied by enhanced freeze tolerance. However, these changes were not the consequence of genetic adaptation to low temperature, a fact that was confirmed by prolonged selection of yeast cells in YPD at 12°C. Instead, the experimental populations showed a progressive increase in NaCl tolerance. This phenotype was likely achieved at the expense of others traits, since evolved cells showed a ploidy reduction, a defect in the glucose derepression mechanism and a loss in their ability to utilize gluconeogenic carbon sources. We discuss the genetic flexibility of S. cerevisiae in terms of adaptation to the multiple constraints of the experimental design applied to drive adaptive evolution and the technologically advantageous phenotype of the evolved population.
Collapse
Affiliation(s)
- Jaime Aguilera
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Poligono de la Coma, s/n, PO Box 73. 46100-Burjassot, Valencia, Spain
| | | | | | | |
Collapse
|
19
|
Stinchcombe JR, Weinig C, Heath KD, Brock MT, Schmitt J. Polymorphic genes of major effect: consequences for variation, selection and evolution in Arabidopsis thaliana. Genetics 2009; 182:911-22. [PMID: 19416942 PMCID: PMC2710169 DOI: 10.1534/genetics.108.097030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 04/24/2009] [Indexed: 11/18/2022] Open
Abstract
The importance of genes of major effect for evolutionary trajectories within and among natural populations has long been the subject of intense debate. For example, if allelic variation at a major-effect locus fundamentally alters the structure of quantitative trait variation, then fixation of a single locus can have rapid and profound effects on the rate or direction of subsequent evolutionary change. Using an Arabidopsis thaliana RIL mapping population, we compare G-matrix structure between lines possessing different alleles at ERECTA, a locus known to affect ecologically relevant variation in plant architecture. We find that the allele present at ERECTA significantly alters G-matrix structure-in particular the genetic correlations between branch number and flowering time traits-and may also modulate the strength of natural selection on these traits. Despite these differences, however, when we extend our analysis to determine how evolution might differ depending on the ERECTA allele, we find that predicted responses to selection are similar. To compare responses to selection between allele classes, we developed a resampling strategy that incorporates uncertainty in estimates of selection that can also be used for statistical comparisons of G matrices.
Collapse
Affiliation(s)
- John R Stinchcombe
- Department of Ecology and Evolutionary Biology, Unversity of Toronto, Toronto, Ontario
| | | | | | | | | |
Collapse
|
20
|
|
21
|
Fox JE, Bridgham JT, Bovee TFH, Thornton JW. An evolvable oestrogen receptor activity sensor: development of a modular system for integrating multiple genes into the yeast genome. Yeast 2007; 24:379-90. [PMID: 17345582 DOI: 10.1002/yea.1466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
To study a gene interaction network, we developed a gene-targeting strategy that allows efficient and stable genomic integration of multiple genetic constructs at distinct target loci in the yeast genome. This gene-targeting strategy uses a modular plasmid with a recyclable selectable marker and a multiple cloning site into which the gene of interest is cloned, flanked by two long regions of homology to the target genomic locus that are generated using adaptamer primers. We used this strategy to integrate into a single yeast strain components of the oestrogen receptor (ER) signalling network, comprising the human ERalpha and three reporter genes driven by oestrogen response elements (EREs). The engineered strain contains multiple reporters of ligand-dependent receptor signalling, providing sensitive, reproducible, rapid, low-cost quantitative assays of ERalpha activity in order to screen potential receptor agonists. Further, because two of the ERE-driven reporter genes are required for growth in deficient media, the strain's growth rate-and therefore its fitness-depends on ligand-induced ERalpha activity. This evolvable oestrogen receptor activity sensor (EERAS) can therefore provide the foundation of a long-term experimental evolution strategy to elucidate ER structure-function relations and ligand-receptor evolution.
Collapse
Affiliation(s)
- Jennifer E Fox
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, OR 97403, USA
| | | | | | | |
Collapse
|
22
|
Abstract
Evolution by natural selection is driven by the continuous generation of adaptive mutations. We measured the genomic mutation rate that generates beneficial mutations and their effects on fitness in Escherichia coli under conditions in which the effect of competition between lineages carrying different beneficial mutations is minimized. We found a rate on the order of 10(-5) per genome per generation, which is 1000 times as high as previous estimates, and a mean selective advantage of 1%. Such a high rate of adaptive evolution has implications for the evolution of antibiotic resistance and pathogenicity.
Collapse
Affiliation(s)
- Lília Perfeito
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, number 6, 2780-156 Oeiras, Portugal
| | | | | | | |
Collapse
|
23
|
de Visser JAGM, Elena SF. The evolution of sex: empirical insights into the roles of epistasis and drift. Nat Rev Genet 2007; 8:139-49. [PMID: 17230200 DOI: 10.1038/nrg1985] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Despite many years of theoretical and experimental work, the explanation for why sex is so common as a reproductive strategy continues to resist understanding. Recent empirical work has addressed key questions in this field, especially regarding rates of mutation accumulation in sexual and asexual organisms, and the roles of negative epistasis and drift as sources of adaptive constraint in asexually reproducing organisms. At the same time, new ideas about the evolution of sexual recombination are being tested, including intriguing suggestions of an important interplay between sex and genetic architecture, which indicate that sex and recombination could have affected their own evolution.
Collapse
|
24
|
Abstract
In facultatively sexual species, lineages that reproduce asexually for a period of time can accumulate mutations that reduce their ability to undergo sexual reproduction when sex is favorable. We propagated Saccharomyces cerevisiae asexually for approximately 800 generations, after which we measured the change in sexual fitness, measured as the proportion of asci observed in sporulation medium. The sporulation rate in cultures propagated asexually at small population size declined by 8%, on average, over this time period, indicating that the majority of mutations that affect sporulation rate are deleterious. Interestingly, the sporulation rate in cultures propagated asexually at large population size improved by 11%, on average, indicating that selection on asexual function effectively eliminated most of the mutations deleterious to sporulation ability. These results suggest that pleiotropy between mutations' effects on asexual fitness and sexual fitness was predominantly positive, at least for the mutations accumulated in this experimental evolution study. A positive correlation between growth rate and sporulation rate among lines also provided evidence for positive pleiotropy. These results demonstrate that, at least under certain circumstances, selection acting on asexual fitness can help to maintain sexual function.
Collapse
Affiliation(s)
- Jessica A Hill
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | | |
Collapse
|
25
|
Herring CD, Raghunathan A, Honisch C, Patel T, Applebee MK, Joyce AR, Albert TJ, Blattner FR, van den Boom D, Cantor CR, Palsson BØ. Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale. Nat Genet 2006; 38:1406-12. [PMID: 17086184 DOI: 10.1038/ng1906] [Citation(s) in RCA: 278] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 09/21/2006] [Indexed: 11/09/2022]
Abstract
We applied whole-genome resequencing of Escherichia coli to monitor the acquisition and fixation of mutations that conveyed a selective growth advantage during adaptation to a glycerol-based growth medium. We identified 13 different de novo mutations in five different E. coli strains and monitored their fixation over a 44-d period of adaptation. We obtained proof that the observed spontaneous mutations were responsible for improved fitness by creating single, double and triple site-directed mutants that had growth rates matching those of the evolved strains. The success of this new genome-scale approach indicates that real-time evolution studies will now be practical in a wide variety of contexts.
Collapse
Affiliation(s)
- Christopher D Herring
- Department of Bioengineering, University of California, San Diego, California 92093, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Current awareness on yeast. Yeast 2005; 22:1249-56. [PMID: 16320446 DOI: 10.1002/yea.1170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
27
|
Abstract
A substantial share of genes identified in yeast can be deleted without visible phenotypic effects. Current debate concentrates on the possible roles of seemingly dispensable genes. The costs of maintaining unnecessary functions has attracted little attention. The hypothesis of antagonistic pleiotropy postulates that adaptations to different constituents of the environment are likely to interfere with each other, and therefore loss of unnecessary functions is potentially advantageous. We tested an entire collection of nonessential yeast gene deletions in a benign and nutritionally rich environment in which the number of dispensable genes was particularly high. We applied a series of competition experiments that could detect differences in relative fitness of approximately 0.005. No beneficial deletions were found, except perhaps for the deletion of about a dozen genes that slightly improved competitive ability; however, a functional explanation of the fitness advantage is lacking. The paucity of beneficial gene deletions is striking because genetic adaptations to laboratory conditions are regularly observed in yeast. However, it accords with the finding that the gene contents of four species of Saccharomyces are nearly identical, despite up to 20 million years of independent evolution and extensive DNA sequence divergence. Such extreme conservation of functions would be improbable if there were periods of selection promoting the loss of temporarily dispensable genes. The evident cohesion of the yeast genomes may be their evolved feature or an intrinsic property of complex genetic systems.
Collapse
Affiliation(s)
- Piotr Sliwa
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | | |
Collapse
|
28
|
Zeyl C, Curtin C, Karnap K, Beauchamp E. ANTAGONISM BETWEEN SEXUAL AND NATURAL SELECTION IN EXPERIMENTAL POPULATIONS OF SACCHAROMYCES CERVISIAE. Evolution 2005. [DOI: 10.1111/j.0014-3820.2005.tb00921.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Grimberg B, Zeyl C. THE EFFECTS OF SEX AND MUTATION RATE ON ADAPTATION IN TEST TUBES AND TO MOUSE HOSTS BY SACCHAROMYCES CEREVISIAE. Evolution 2005. [DOI: 10.1111/j.0014-3820.2005.tb01001.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Zeyl C, Curtin C, Karnap K, Beauchamp E. ANTAGONISM BETWEEN SEXUAL AND NATURAL SELECTION IN EXPERIMENTAL POPULATIONS OF SACCHAROMYCES CEREVISIAE. Evolution 2005. [DOI: 10.1554/05-140.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|