1
|
Ahmed SM, Hordofa B, Meressa BH, Tamiru M. Population structure and genetic diversity of Nile tilapia (Oreochromis niloticus) using microsatellite markers from selected water bodies in southwest Ethiopia. Vet Med Sci 2023; 9:2095-2106. [PMID: 37483169 PMCID: PMC10508511 DOI: 10.1002/vms3.1212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND The Ethiopian southwest drainage has been designated a huge potential for fishery and aquaculture development. However, the genetic diversity of Nile tilapia along the main water bodies has yet to be uncovered. Therefore, this study used microsatellite markers to assess the genetic structure and diversity of Nile cichlid (Oreochromis niloticus) populations. METHODS One hundred and sixty-seven fish were collected from Alwero Dam, Baro River, Gilgel Gibe I Dam and Gojeb River southwest of Ethiopia. Genomic DNA was extracted from 40 tissue samples using a Qiagen DNA tissue extraction kit and genetic polymorphism was estimated using GenAlEx6.502 software. RESULTS The result showed that four loci were polymorphic and produced 3-6 alleles per locus, while the number of effective alleles (Ne) and the number of distinct alleles (Na) were 1.370 and 2.063, respectively. Observed heterozygosity (Ho) and expected heterozygosity (He) were expanded between 0.100.50 and 0.115-0.265, respectively. Baro River population revealed the highest mean expected heterozygosity of 0.265, whereas the lowest expected mean heterozygosity of 0.115 was from the Alwero Dam. The genetic differentiation between populations (FST) resulted in a moderate to a very high degree of divergence between the populations. The Alwero Dam and Gojeb River populations were the most divergent populations (FST = 0.524), unlike those from the Alwero Dam and Baro River. The genetic variation among individuals within populations was 69%, whereas 31% appeared among populations and no variation within individuals to the overall variance. CONCLUSION This study confirmed the presence of significant genetic variations and differentiation among populations except between Gilgel Gibe I Dam and Gojeb River. This study highlights the genetic structure and differentiation amongst wild Nile tilapia (O. niloticus) populations in south-western Ethiopia and paves the way for selective aquaculture breeding programs in the study area.
Collapse
Affiliation(s)
| | - Bikila Hordofa
- College of Agriculture and Veterinary MedicineJimma UniversityJimmaEthiopia
| | | | - Metekia Tamiru
- College of Agriculture and Veterinary MedicineJimma UniversityJimmaEthiopia
| |
Collapse
|
2
|
Kayansamruaj P, Dinh-Hung N, Srisapoome P, Na-Nakorn U, Chatchaiphan S. Genomics-driven prophylactic measures to increase streptococcosis resistance in tilapia. JOURNAL OF FISH DISEASES 2023; 46:597-610. [PMID: 36708284 DOI: 10.1111/jfd.13763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 05/07/2023]
Abstract
Streptococcosis caused by Streptococcus agalactiae and S. iniae is a significant problem that affects the success of tilapia aquaculture industries worldwide. In this critical review, we summarize the applicable practical strategies which may effectively enhance the world tilapia aquaculture development. Recently, the effect of vaccination and selective breeding programmes has been recognized as valuable tools to control the target disease and other consequent negative impacts caused by chemical and drug application. Advances in sequencing and molecular technologies are vital helpful factors with which to develop robust vaccines and increase the selective breeding programme's precision against streptococcosis. The genomic selection for streptococcosis-resistant tilapia strains and crucial genomic application for genomics' contribution to the development of novel Streptococcus vaccine, comparative genomics approach identifying vaccine candidates by reverse vaccinology, and next-generation vaccine design were described. Information from our review is encouraging for practical implementation of the development of vaccination and genomic selection in tilapia for streptococcosis resistance, which may be vital factors to sustain the world tilapia aquaculture industry effectively.
Collapse
Affiliation(s)
- Pattanapon Kayansamruaj
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Nguyen Dinh-Hung
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Prapansak Srisapoome
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Uthairat Na-Nakorn
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Satid Chatchaiphan
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
3
|
Curzon AY, Shirak A, Benet-Perlberg A, Naor A, Low-Tanne SI, Sharkawi H, Ron M, Seroussi E. Absence of Figla-like Gene Is Concordant with Femaleness in Cichlids Harboring the LG1 Sex-Determination System. Int J Mol Sci 2022; 23:ijms23147636. [PMID: 35886982 PMCID: PMC9316214 DOI: 10.3390/ijms23147636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
Oreochromis niloticus has been used as a reference genome for studies of tilapia sex determination (SD) revealing segregating genetic loci on linkage groups (LGs) 1, 3, and 23. The master key regulator genes (MKR) underlying the SD regions on LGs 3 and 23 have been already found. To identify the MKR in fish that segregate for the LG1 XX/XY SD-system, we applied short variant discovery within the sequence reads of the genomic libraries of the Amherst hybrid stock, Coptodon zillii and Sarotherodon galilaeus, which were aligned to a 3-Mbp-region of the O. aureus genome. We obtained 66,372 variants of which six were concordant with the XX/XY model of SD and were conserved across these species, disclosing the male specific figla-like gene. We further validated this observation in O. mossambicus and in the Chitralada hybrid stock. Genome alignment of the 1252-bp transcript showed that the figla-like gene’s size was 2664 bp, and that its three exons were capable of encoding 99 amino acids including a 45-amino-acid basic helix–loop–helix domain that is typical of the ovary development regulator—factor-in-the-germline-alpha (FIGLA). In Amherst gonads, the figla-like gene was exclusively expressed in testes. Thus, the figla-like genomic presence determines male fate by interrupting the female developmental program. This indicates that the figla-like gene is the long-sought SD MKR on LG1.
Collapse
Affiliation(s)
- Arie Yehuda Curzon
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 75288, Israel; (A.Y.C.); (A.S.); (M.R.)
- Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Andrey Shirak
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 75288, Israel; (A.Y.C.); (A.S.); (M.R.)
| | - Ayana Benet-Perlberg
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Alon Naor
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Shay Israel Low-Tanne
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Haled Sharkawi
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Micha Ron
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 75288, Israel; (A.Y.C.); (A.S.); (M.R.)
| | - Eyal Seroussi
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 75288, Israel; (A.Y.C.); (A.S.); (M.R.)
- Correspondence:
| |
Collapse
|
4
|
Bose APH, Koch L, Dabernig-Heinz J, Grimm J, Sefc KM, Jordan A. Patterns of sex-biased dispersal are consistent with social and ecological constraints in a group-living cichlid fish. BMC Ecol Evol 2022; 22:21. [PMID: 35236283 PMCID: PMC8889715 DOI: 10.1186/s12862-022-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/21/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Sex-biased dispersal is a common and widespread phenomenon that can fundamentally shape the genetic structure of the social environments in which animals live. For animals that live in and move between social groups, sex-biased dispersal can result in an asymmetry in the degree of relatedness among cohabiting males and females, which can have strong implications for their social evolution. In this study, we measured the relatedness structure within and across groups of a wild population of Neolamprologus multifasciatus, a highly-social, shell-dwelling cichlid fish endemic to Lake Tanganyika, East Africa. In total, we genotyped 812 fish from 128 social groups at 20 microsatellite loci. Neolamprologus multifasciatus live at high densities, and also experience strong ecological constraints on free movement throughout their habitat. At the same time, they exhibit sex differences in the degree of reproductive competition within their groups and this makes them an excellent model system for studying the factors associated with sex-biased dispersal. RESULTS Social groups of N. multifasciatus consist of multiple males and females living together. We found that cohabiting females were unrelated to one another (Lynch-Ritland estimates of relatedness = 0.045 ± 0.15, average ± SD), while males shared much higher, albeit variable, levels of relatedness to other males in their groups (0.23 ± 0.27). We uncovered a pronounced decline in relatedness between males living in separate groups as the spatial separation between them increased, a pattern that was not evident in females. Female dispersal was also markedly constrained by the distribution and availability of nearby territories to which they could emigrate. CONCLUSIONS Our results indicate female-biased dispersal in N. multifasciatus. Our study also highlights how the spatial distribution of suitable dispersal destinations can influence the movement decisions of animals. We also emphasize how sex-biased dispersal can influence the relatedness structure of the social environment in which individuals interact and compete with one another.
Collapse
Affiliation(s)
- Aneesh P H Bose
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany.
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.
- Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Lukas Koch
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | | | | | - Alex Jordan
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
5
|
Bose APH, Dabernig-Heinz J, Koch L, Grimm J, Lang S, Hegedűs B, Banda T, Makasa L, Jordan A, Sefc KM. Parentage analysis across age cohorts reveals sex differences in reproductive skew in a group-living cichlid fish, Neolamprologus multifasciatus. Mol Ecol 2022; 31:2418-2434. [PMID: 35170123 DOI: 10.1111/mec.16401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/30/2022]
Abstract
Group-living animals are often faced with complex reproductive decisions, namely how to partition within-group reproduction, how to obtain extra-group reproduction, and how these two means of reproduction should be balanced. The solutions to these questions can be difficult to predict because ecological conditions can affect the scopes for within-group and extra-group reproduction in complex ways. For example, individuals that are restricted from moving freely around their habitats may have limited extra-group reproductive opportunities, but at the same time, groups may live in close proximities to one another, which could potentially have the opposite effect. The group-living cichlid fish, Neolamprologus multifasciatus, experiences such ecological conditions, and we conducted an intensive genetic parentage analysis to investigate how reproduction is distributed within and among groups for both males and females. We found that cohabiting males live in 'high-skew' societies, where dominant males monopolize the majority of within-group reproduction, while females live in 'low-skew' societies, where multiple females can produce offspring concurrently. Despite extremely short distances separating groups, we inferred only very low levels of extra-group reproduction suggesting that subordinate males have very limited reproductive opportunities. A strength of our parentage analysis lies in its inclusion of individuals that spanned a wide age range, from young fry to adults. We outline the logistical circumstances when very young offspring may not always be accessible to parentage researchers, and present strategies to overcome the challenges of inferring mating patterns from a wide age range of offspring.
Collapse
Affiliation(s)
- Aneesh P H Bose
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Lukas Koch
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| | | | | | | | - Taylor Banda
- Lake Tanganyika Research Unit, Department of Fisheries, Ministry of Fisheries and Livestock, Mpulungu, Zambia
| | - Lawrence Makasa
- Lake Tanganyika Research Unit, Department of Fisheries, Ministry of Fisheries and Livestock, Mpulungu, Zambia
| | - Alex Jordan
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| | | |
Collapse
|
6
|
Curzon AY, Shirak A, Benet-Perlberg A, Naor A, Low-Tanne SI, Sharkawi H, Ron M, Seroussi E. Gene Variant of Barrier to Autointegration Factor 2 ( Banf2w) Is Concordant with Female Determination in Cichlids. Int J Mol Sci 2021; 22:7073. [PMID: 34209244 PMCID: PMC8268354 DOI: 10.3390/ijms22137073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 11/15/2022] Open
Abstract
Oreochromis fishes exhibit variability of sex-determination (SD) genes whose characterization contributes to understanding of the sex differentiation network, and to effective tilapia farming, which requires all-male culture. However, O. niloticus (On) amh is the only master-key regulator (MKR) of SD that has been mapped (XY/XX SD-system on LG23). In O. aureus (Oa), LG3 controls a WZ/ZZ SD-system that has recently been delimited to 9.2 Mbp, with an embedded interval rich with female-specific variation, harboring two paics genes and banf2. Developing genetic markers within this interval and using a hybrid Oa stock that demonstrates no recombination repression in LG3, we mapped the critical SD region to 235 Kbp on the orthologous On physical map (p < 1.5 × 10-26). DNA-seq assembly and peak-proportion analysis of variation based on Sanger chromatograms allowed the characterization of copy-number variation (CNV) of banf2. Oa males had three exons capable of encoding 90-amino-acid polypeptides, yet in Oa females, we found an extra copy with an 89-amino-acid polypeptide and three non-conservative amino acid substitutions, designated as banf2w. CNV analysis suggested the existence of two to five copies of banf2 in diploidic Cichlidae. Disrupting the Hardy-Weinberg equilibrium (p < 4.2 × 10-3), banf2w was concordant with female determination in Oa and in three cichlids with LG3 WZ/ZZ SD-systems (O. tanganicae, O. hornorum and Pelmatolapia mariae). Furthermore, exclusive RNA-seq expression in Oa females strengthened the candidacy of banf2w as the long-sought LG3 SD MKR. As banf genes mediate nuclear assembly, chromatin organization, gene expression and gonad development, banf2w may play a fundamental role inducing female nucleus formation that is essential for WZ/ZZ SD.
Collapse
Affiliation(s)
- Arie Yehuda Curzon
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
- Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Andrey Shirak
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
| | - Ayana Benet-Perlberg
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Alon Naor
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Shai Israel Low-Tanne
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Haled Sharkawi
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Micha Ron
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
| | - Eyal Seroussi
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
| |
Collapse
|
7
|
Wang C, Lu B, Li T, Liang G, Xu M, Liu X, Tao W, Zhou L, Kocher TD, Wang D. Nile Tilapia: A Model for Studying Teleost Color Patterns. J Hered 2021; 112:469-484. [PMID: 34027978 DOI: 10.1093/jhered/esab018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/08/2021] [Indexed: 11/12/2022] Open
Abstract
The diverse color patterns of cichlid fishes play an important role in mate choice and speciation. Here we develop the Nile tilapia (Oreochromis niloticus) as a model system for studying the developmental genetics of cichlid color patterns. We identified 4 types of pigment cells: melanophores, xanthophores, iridophores and erythrophores, and characterized their first appearance in wild-type fish. We mutated 25 genes involved in melanogenesis, pteridine metabolism, and the carotenoid absorption and cleavage pathways. Among the 25 mutated genes, 13 genes had a phenotype in both the F0 and F2 generations. None of F1 heterozygotes had phenotype. By comparing the color pattern of our mutants with that of red tilapia (Oreochromis spp), a natural mutant produced during hybridization of tilapia species, we found that the pigmentation of the body and eye is controlled by different genes. Previously studied genes like mitf, kita/kitlga, pmel, tyrb, hps4, gch2, csf1ra, pax7b, and bco2b were proved to be of great significance for color patterning in tilapia. Our results suggested that tilapia, a fish with 4 types of pigment cells and a vertically barred wild-type color pattern, together with various natural and artificially induced color gene mutants, can serve as an excellent model system for study color patterning in vertebrates.
Collapse
Affiliation(s)
- Chenxu Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Baoyue Lu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Tao Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Guangyuan Liang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Mengmeng Xu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Xingyong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Thomas D Kocher
- the Department of Biology, University of Maryland, College Park, MD
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Jia R, Du J, Cao L, Feng W, Xu P, Yin G. Effects of dietary baicalin supplementation on growth performance, antioxidative status and protection against oxidative stress-induced liver injury in GIFT tilapia (Oreochromis niloticus). Comp Biochem Physiol C Toxicol Pharmacol 2021; 240:108914. [PMID: 33141079 DOI: 10.1016/j.cbpc.2020.108914] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 12/19/2022]
Abstract
Baicalin, a main bioactive compound of Scutellaria baicalensis, has a variety of pharmacological activities including antioxidation, anti-inflammation and hepatoprotection. However, there are few reports on these biological activities in fish. Therefore, the aim of this study was to assess the effects of baicalin on growth performance, antioxidative status and hepatoprotection in tilapia. The fish were fed on different doses of baicalin (0, 0.4, 0.8 and 1.6 g/kg diet). After feeding 60 days, parts of fishes were netted, and the blood, liver, gills and muscle tissues were collected to analyze the antioxidative effect. The remaining fishes were injected with saline or hydrogen peroxide (H2O2) for challenge test. The results showed that the specific growth rate of fish was slightly increased in three baicalin treatments, and the feed efficiency was clearly improved in 0.4 g/kg baicalin treatment. Meanwhile, the antioxidative capacity in blood, liver and/or gill was enhanced in treatments with 0.4, 0.8 and/or 1.6 g/kg baicalin. After challenge test, the pre-treatments with baicalin effectively alleviated H2O2-induced liver injury. In serum and liver, pre-treatments with 0.8 and/or 1.6 g/kg baicalin suppressed the oxidative damage induced by H2O2, as evidenced by improvement of the levels of SOD, T-AOC and GSH and the decline of MDA level. More important, pre-treatments with 0.4, 0.8 and/or 1.6 g/kg baicalin blocked the upregulation of mRNA levels of tlr1, myd88, irak4, rela, tnf-α and il-1β in H2O2-induced liver injury. In summary, dietary baicalin supplementation could improve feed efficiency, enhance antioxidative ability and alleviate oxidative stress-induced hepatotoxicity in tilapia.
Collapse
Affiliation(s)
- Rui Jia
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jinliang Du
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Liping Cao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Wengrong Feng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Guojun Yin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
9
|
Yáñez JM, Joshi R, Yoshida GM. Genomics to accelerate genetic improvement in tilapia. Anim Genet 2020; 51:658-674. [PMID: 32761644 DOI: 10.1111/age.12989] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022]
Abstract
Selective breeding of tilapia populations started in the early 1990s and over the past three decades tilapia has become one of the most important farmed freshwater species, being produced in more than 125 countries around the globe. Although genome assemblies have been available since 2011, most of the tilapia industry still depends on classical selection techniques using mass spawning or pedigree information to select for growth traits with reported genetic gains of up to 20% per generation. The involvement of international breeding companies and research institutions has resulted in the rapid development and application of genomic resources in the last few years. GWAS and genomic selection are expected to contribute to uncovering the genetic variants involved in economically relevant traits and increasing the genetic gain in selective breeding programs, respectively. Developments over the next few years will probably focus on achieving a deep understanding of genetic architecture of complex traits, as well as accelerating genetic progress in the selection for growth-, quality- and robustness-related traits. Novel phenotyping technologies (i.e. phenomics), lower-cost whole-genome sequencing approaches, functional genomics and gene editing tools will be crucial in future developments for the improvement of tilapia aquaculture.
Collapse
Affiliation(s)
- J M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av Santa Rosa 11735, La Pintana, Santiago, 8820808, Chile.,Núcleo Milenio INVASAL, Casilla 160-C, Concepción, Chile
| | - R Joshi
- GenoMar Genetics AS, Bolette Brygge 1, Oslo, 0252, Norway
| | - G M Yoshida
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av Santa Rosa 11735, La Pintana, Santiago, 8820808, Chile
| |
Collapse
|
10
|
Abstract
Sex differences in overall recombination rates are well known, but little theoretical or empirical attention has been given to how and why sexes differ in their recombination landscapes: the patterns of recombination along chromosomes. In the first scientific review of this phenomenon, we find that recombination is biased toward telomeres in males and more uniformly distributed in females in most vertebrates and many other eukaryotes. Notable exceptions to this pattern exist, however. Fine-scale recombination patterns also frequently differ between males and females. The molecular mechanisms responsible for sex differences remain unclear, but chromatin landscapes play a role. Why these sex differences evolve also is unclear. Hypotheses suggest that they may result from sexually antagonistic selection acting on coding genes and their regulatory elements, meiotic drive in females, selection during the haploid phase of the life cycle, selection against aneuploidy, or mechanistic constraints. No single hypothesis, however, can adequately explain the evolution of sex differences in all cases. Sex-specific recombination landscapes have important consequences for population differentiation and sex chromosome evolution.
Collapse
Affiliation(s)
- Jason M. Sardell
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712
| | - Mark Kirkpatrick
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
11
|
Construction of High-Resolution RAD-Seq Based Linkage Map, Anchoring Reference Genome, and QTL Mapping of the Sex Chromosome in the Marine Medaka Oryzias melastigma. G3-GENES GENOMES GENETICS 2019; 9:3537-3545. [PMID: 31530635 PMCID: PMC6829124 DOI: 10.1534/g3.119.400708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Medaka (Oryzias sp.) is an important fish species in ecotoxicology and considered as a model species due to its biological features including small body size and short generation time. Since Japanese medaka Oryzias latipes is a freshwater species with access to an excellent genome resource, the marine medaka Oryzias melastigma is also applicable for the marine ecotoxicology. In genome era, a high-density genetic linkage map is a very useful resource in genomic research, providing a means for comparative genomic analysis and verification of de novo genome assembly. In this study, we developed a high-density genetic linkage map for O. melastigma using restriction-site associated DNA sequencing (RAD-seq). The genetic map consisted of 24 linkage groups with 2,481 single nucleotide polymorphism (SNP) markers. The total map length was 1,784 cM with an average marker space of 0.72 cM. The genetic map was integrated with the reference-assisted chromosome assembly (RACA) of O. melastigma, which anchored 90.7% of the assembled sequence onto the linkage map. The values of complete Benchmarking Universal Single-Copy Orthologs were similar to RACA assembly but N50 (23.74 Mb; total genome length 779.4 Mb; gap 5.29%) increased to 29.99 Mb (total genome length 778.7 Mb; gap 5.2%). Using MapQTL analysis with SNP markers, we identified a major quantitative trait locus for sex traits on the Om10. The integration of the genetic map with the reference genome of marine medaka will serve as a good resource for studies in molecular toxicology, genomics, CRISPR/Cas9, and epigenetics.
Collapse
|
12
|
Cáceres G, López ME, Cádiz MI, Yoshida GM, Jedlicki A, Palma-Véjares R, Travisany D, Díaz-Domínguez D, Maass A, Lhorente JP, Soto J, Salas D, Yáñez JM. Fine Mapping Using Whole-Genome Sequencing Confirms Anti-Müllerian Hormone as a Major Gene for Sex Determination in Farmed Nile Tilapia ( Oreochromis niloticus L.). G3 (BETHESDA, MD.) 2019; 9:3213-3223. [PMID: 31416805 PMCID: PMC6778786 DOI: 10.1534/g3.119.400297] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023]
Abstract
Nile tilapia (Oreochromis niloticus) is one of the most cultivated and economically important species in world aquaculture. Intensive production promotes the use of monosex animals, due to an important dimorphism that favors male growth. Currently, the main mechanism to obtain all-male populations is the use of hormones in feeding during larval and fry phases. Identifying genomic regions associated with sex determination in Nile tilapia is a research topic of great interest. The objective of this study was to identify genomic variants associated with sex determination in three commercial populations of Nile tilapia. Whole-genome sequencing of 326 individuals was performed, and a total of 2.4 million high-quality bi-allelic single nucleotide polymorphisms (SNPs) were identified after quality control. A genome-wide association study (GWAS) was conducted to identify markers associated with the binary sex trait (males = 1; females = 0). A mixed logistic regression GWAS model was fitted and a genome-wide significant signal comprising 36 SNPs, spanning a genomic region of 536 kb in chromosome 23 was identified. Ten out of these 36 genetic variants intercept the anti-Müllerian (Amh) hormone gene. Other significant SNPs were located in the neighboring Amh gene region. This gene has been strongly associated with sex determination in several vertebrate species, playing an essential role in the differentiation of male and female reproductive tissue in early stages of development. This finding provides useful information to better understand the genetic mechanisms underlying sex determination in Nile tilapia.
Collapse
Affiliation(s)
- Giovanna Cáceres
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur, Universidad de Chile, Santa Rosa 11315, La Pintana, Santiago, Chile
| | - María E López
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - María I Cádiz
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur, Universidad de Chile, Santa Rosa 11315, La Pintana, Santiago, Chile
| | - Grazyella M Yoshida
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Benchmark Genetics Chile, Puerto Montt, Chile
| | - Ana Jedlicki
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Ricardo Palma-Véjares
- Centro para la Regulación del Genoma, and
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| | - Dante Travisany
- Centro para la Regulación del Genoma, and
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| | - Diego Díaz-Domínguez
- Centro para la Regulación del Genoma, and
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| | - Alejandro Maass
- Centro para la Regulación del Genoma, and
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| | | | - Jose Soto
- Grupo Acuacorporación Internacional (GACI), Cañas, Costa Rica, and
| | - Diego Salas
- Grupo Acuacorporación Internacional (GACI), Cañas, Costa Rica, and
| | - José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile,
- Núcleo Milenio INVASAL, Concepción, Chile
| |
Collapse
|
13
|
Li BJ, Zhu ZX, Gu XH, Lin HR, Xia JH. QTL Mapping for Red Blotches in Malaysia Red Tilapia (Oreochromis spp.). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:384-395. [PMID: 30863905 DOI: 10.1007/s10126-019-09888-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
Body color is an interesting economic trait in fish. Red tilapia with red blotches may decrease its commercial values. Conventional selection of pure red color lines is a time-consuming and labor-intensive process. To accelerate selection of pure lines through marker-assisted selection, in this study, double-digest restriction site-associated DNA sequencing (ddRAD-seq) technology was applied to genotype a full-sib mapping family of Malaysia red tilapia (Oreochromis spp.) (N = 192). Genome-wide significant quantitative trait locus (QTL)-controlling red blotches were mapped onto two chromosomes (chrLG5 and chrLG15) explaining 9.7% and 8.2% of phenotypic variances by a genome-wide association study (GWAS) and linkage-based QTL mapping. Six SNPs from the chromosome chrLG5 (four), chrLG15 (one), and unplaced supercontig GL831288-1 (one) were significantly associated to the red blotch trait in GWAS analysis. We developed nine microsatellite markers and validated significant correlations between genotypes and blotch data (p < 0.05). Our study laid a foundation for exploring a genetic mechanism of body colors and carrying out genetic improvement for color quality in tilapia.
Collapse
Affiliation(s)
- Bi Jun Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Zong Xian Zhu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Xiao Hui Gu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Ran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Jun Hong Xia
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
14
|
Wang L, Xie N, Shen Y, Ye B, Yue GH, Feng X. Constructing High-Density Genetic Maps and Developing Sexing Markers in Northern Snakehead (Channa argus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:348-358. [PMID: 30888532 DOI: 10.1007/s10126-019-09884-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
High-density genetic maps are essential for mapping QTL, improving genome assembly, comparative genomics, and studying sex chromosome evolution. The northern snakehead (Channa argus) is an economically important foodfish species with significant sexual dimorphism, where the males grow much faster and bigger than the females. However, to date, the sex determination pattern is still not clear, limiting identification of sex chromosomes, even sex determination genes and development of monosex populations that are valuable for both sex evolution of vertebrates and aquaculture practices. Here, a sex-averaged map and two sex-specific genetic maps were constructed with 2974, 2323, and 2338 SNPs, respectively. Little difference was observed in the pattern of sex-specific recombination between female- and male-specific genetic maps. Genome scan identified a major locus for sex determination at LG16. Females and males are, respectively, homogametic and heterogametic, suggesting an XY sex determination system for this species. By resequencing genomes, InDels in the sex-associated QTL region were discovered and used for developing sex-specific PCR assays for fast sexing of snakehead. These high-density genetic maps provide useful resources for future genomic studies in snakehead and its related species. The PCR assays for sexing are of importance in developing all male populations for aquaculture.
Collapse
Affiliation(s)
- Le Wang
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Republic of Singapore
| | - Nan Xie
- Institute of Fishery Science, Hangzhou Academy of Agriculture Sciences, 228 East Yuanpu Road, Hangzhou, 310024, China
| | - Yubang Shen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Baoqing Ye
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Republic of Singapore
| | - Gen Hua Yue
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Republic of Singapore.
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Republic of Singapore.
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore.
| | - Xiaoyu Feng
- Institute of Fishery Science, Hangzhou Academy of Agriculture Sciences, 228 East Yuanpu Road, Hangzhou, 310024, China.
| |
Collapse
|
15
|
Conte MA, Joshi R, Moore EC, Nandamuri SP, Gammerdinger WJ, Roberts RB, Carleton KL, Lien S, Kocher TD. Chromosome-scale assemblies reveal the structural evolution of African cichlid genomes. Gigascience 2019; 8:giz030. [PMID: 30942871 PMCID: PMC6447674 DOI: 10.1093/gigascience/giz030] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/11/2019] [Accepted: 03/07/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND African cichlid fishes are well known for their rapid radiations and are a model system for studying evolutionary processes. Here we compare multiple, high-quality, chromosome-scale genome assemblies to elucidate the genetic mechanisms underlying cichlid diversification and study how genome structure evolves in rapidly radiating lineages. RESULTS We re-anchored our recent assembly of the Nile tilapia (Oreochromis niloticus) genome using a new high-density genetic map. We also developed a new de novo genome assembly of the Lake Malawi cichlid, Metriaclima zebra, using high-coverage Pacific Biosciences sequencing, and anchored contigs to linkage groups (LGs) using 4 different genetic maps. These new anchored assemblies allow the first chromosome-scale comparisons of African cichlid genomes. Large intra-chromosomal structural differences (∼2-28 megabase pairs) among species are common, while inter-chromosomal differences are rare (<10 megabase pairs total). Placement of the centromeres within the chromosome-scale assemblies identifies large structural differences that explain many of the karyotype differences among species. Structural differences are also associated with unique patterns of recombination on sex chromosomes. Structural differences on LG9, LG11, and LG20 are associated with reduced recombination, indicative of inversions between the rock- and sand-dwelling clades of Lake Malawi cichlids. M. zebra has a larger number of recent transposable element insertions compared with O. niloticus, suggesting that several transposable element families have a higher rate of insertion in the haplochromine cichlid lineage. CONCLUSION This study identifies novel structural variation among East African cichlid genomes and provides a new set of genomic resources to support research on the mechanisms driving cichlid adaptation and speciation.
Collapse
Affiliation(s)
- Matthew A Conte
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Rajesh Joshi
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, PO Box 5003, Ås, Norway
| | - Emily C Moore
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | - Reade B Roberts
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, PO Box 5003, Ås, Norway
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
16
|
Chen CH, Li BJ, Gu XH, Lin HR, Xia JH. Marker-assisted selection of YY supermales from a genetically improved farmed tilapia-derived strain. Zool Res 2019; 40:108-112. [PMID: 30213922 PMCID: PMC6378562 DOI: 10.24272/j.issn.2095-8137.2018.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/30/2018] [Indexed: 11/29/2022] Open
Abstract
Genetically improved farmed tilapia (GIFT) and GIFT-derived strains account for the majority of farmed tilapia worldwide. As male tilapias grow much faster than females, they are often considered more desirable in the aquacultural industry. Sex reversal of females to males using the male sex hormone 17-α-methyltestosterone (MT) is generally used to induce phenotypic males during large-scale production of all male fingerlings. However, the widespread use of large quantities of sex reversal hormone in hatcheries may pose a health risk to workers and ecological threats to surrounding environments. Breeding procedures to produce genetically all-male tilapia with limited or no use of sex hormones are therefore urgently needed. In this study, by applying marker-assisted selection (MAS) for the selection of YY supermales from a GIFT-derived strain, we identified 24 XY pseudofemale and 431 YY supermale tilapias. Further performance evaluation on the progenies of the YY supermales resulted in male rates of 94.1%, 99.5% and 99.6%, respectively, in three populations, and a daily increase in body weight of 1.4 g at 3 months (n=997). Our study established a highly effective MAS procedure in the selection of YY supermales from a GIFT-derived strain. Furthermore, the development of MAS-selected YY supermales will help reduce the utilization of hormones for controlling sex in the tilapia aquaculture.
Collapse
Affiliation(s)
- Chao-Hao Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou Guangdong 510275, China
| | - Bi-Jun Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou Guangdong 510275, China
| | - Xiao-Hui Gu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou Guangdong 510275, China
| | - Hao-Ran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou Guangdong 510275, China
| | - Jun-Hong Xia
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou Guangdong 510275, China; E-mail:
| |
Collapse
|
17
|
Abstract
The tremendous diversity of animal behaviors has inspired generations of scientists from an array of biological disciplines. To complement investigations of ecological and evolutionary factors contributing to behavioral evolution, modern sequencing, gene editing, computational and neuroscience tools now provide a means to discover the proximate mechanisms upon which natural selection acts to generate behavioral diversity. Social behaviors are motivated behaviors that can differ tremendously between closely related species, suggesting phylogenetic plasticity in their underlying biological mechanisms. In addition, convergent evolution has repeatedly given rise to similar forms of social behavior and mating systems in distantly related species. Social behavioral divergence and convergence provides an entry point for understanding the neurogenetic mechanisms contributing to behavioral diversity. We argue that the greatest strides in discovering mechanisms contributing to social behavioral diversity will be achieved through integration of interdisciplinary comparative approaches with modern tools in diverse species systems. We review recent advances and future potential for discovering mechanisms underlying social behavioral variation; highlighting patterns of social behavioral evolution, oxytocin and vasopressin neuropeptide systems, genetic/transcriptional "toolkits," modern experimental tools, and alternative species systems, with particular emphasis on Microtine rodents and Lake Malawi cichlid fishes.
Collapse
Affiliation(s)
- Zachary V Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Larry J Young
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
18
|
Nandamuri SP, Conte MA, Carleton KL. Multiple trans QTL and one cis-regulatory deletion are associated with the differential expression of cone opsins in African cichlids. BMC Genomics 2018; 19:945. [PMID: 30563463 PMCID: PMC6299527 DOI: 10.1186/s12864-018-5328-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 11/28/2018] [Indexed: 01/22/2023] Open
Abstract
Background Dissecting the genetic basis of phenotypic diversity is one of the fundamental goals in evolutionary biology. Despite growing evidence for gene expression divergence being responsible for the evolution of complex traits, knowledge about the proximate genetic causes underlying these traits is still limited. African cichlids have diverse visual systems, with different species expressing different combinations of seven cone opsin genes. Using opsin expression variation in African cichlids as a model for gene expression evolution, this study aims to investigate the genetic architecture of opsin expression divergence in this group. Results Results from a genome-wide linkage mapping on the F2 progeny of an intergeneric cross, between two species with differential opsin expression show that opsins in Lake Malawi cichlids are controlled by multiple quantitative trait loci (QTLs). Most of these QTLs are located in trans to the opsins except for one cis-QTL for SWS1 on LG17. A closer look at this major QTL revealed the presence of a 691 bp deletion in the promoter of the SWS1 opsin (located 751 bp upstream of the start site) that is associated with a decrease in its expression. Phylogenetic footprinting indicates that the region spanning the deletion harbors a microRNA miR-729 and a conserved non-coding element (CNE) that also occurs in zebrafish and other teleosts. This suggests that the deletion might contain ancestrally preserved regulators that have been tuned for SWS1 gene expression in Lake Malawi. While this deletion is not common, it does occur in several other species within the lake. Conclusions Differential expression of cichlid opsins is associated with multiple overlapping QTL, with all but one in trans to the opsins they regulate. The one cis-acting factor is a deletion in the promoter of the SWS1 opsin, suggesting that ancestral polymorphic deletions may contribute to cichlid’s visual diversity. In addition to expanding our understanding of the molecular landscape of opsin expression in African cichlids, this study sheds light on the molecular mechanisms underlying phenotypic variation in natural populations. Electronic supplementary material The online version of this article (10.1186/s12864-018-5328-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sri Pratima Nandamuri
- Department of Biology, University of Maryland, 1210 Biology / Psychology Bldg #144, College Park, MD, 20742, USA
| | - Matthew A Conte
- Department of Biology, University of Maryland, 1210 Biology / Psychology Bldg #144, College Park, MD, 20742, USA
| | - Karen L Carleton
- Department of Biology, University of Maryland, 1210 Biology / Psychology Bldg #144, College Park, MD, 20742, USA.
| |
Collapse
|
19
|
Joshi R, Árnyasi M, Lien S, Gjøen HM, Alvarez AT, Kent M. Development and Validation of 58K SNP-Array and High-Density Linkage Map in Nile Tilapia ( O. niloticus). Front Genet 2018; 9:472. [PMID: 30374365 PMCID: PMC6196754 DOI: 10.3389/fgene.2018.00472] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/24/2018] [Indexed: 11/22/2022] Open
Abstract
Despite being the second most important aquaculture species in the world accounting for 7.4% of global production in 2015, tilapia aquaculture has lacked genomic tools like SNP-arrays and high-density linkage maps to improve selection accuracy and accelerate genetic progress. In this paper, we describe the development of a genotyping array containing more than 58,000 SNPs for Nile tilapia (Oreochromis niloticus). SNPs were identified from whole genome resequencing of 32 individuals from the commercial population of the Genomar strain, and were selected for the SNP-array based on polymorphic information content and physical distribution across the genome using the Orenil1.1 genome assembly as reference sequence. SNP-performance was evaluated by genotyping 4991 individuals, including 689 offspring belonging to 41 full-sib families, which revealed high-quality genotype data for 43,588 SNPs. A preliminary genetic linkage map was constructed using Lepmap2 which in turn was integrated with information from the O_niloticus_UMD1 genome assembly to produce an integrated physical and genetic linkage map comprising 40,186 SNPs distributed across 22 linkage groups (LGs). Around one-third of the LGs showed a different recombination rate between sexes, with the female being greater than the male map by a factor of 1.2 (1632.9 to 1359.6 cM, respectively), with most LGs displaying a sigmoid recombination profile. Finally, the sex-determining locus was mapped to position 40.53 cM on LG23, in the vicinity of the anti-Müllerian hormone (amh) gene. These new resources has the potential to greatly influence and improve the genetic gain when applying genomic selection and surpass the difficulties of efficient selection for invasively measured traits in Nile tilapia.
Collapse
Affiliation(s)
- Rajesh Joshi
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Mariann Árnyasi
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Sigbjørn Lien
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Hans Magnus Gjøen
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | | | - Matthew Kent
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
20
|
Borovski T, Tadmor-Levi R, Shapiro J, Rubinstein G, Agyakwah SK, Hulata G, David L. Historical and recent reductions in genetic variation of the Sarotherodon galilaeus population in the Sea of Galilee. CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1102-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
Quantitative trait loci on LGs 9 and 14 affect the reproductive interaction between two Oreochromis species, O. niloticus and O. aureus. Heredity (Edinb) 2018; 122:341-353. [PMID: 30082919 DOI: 10.1038/s41437-018-0131-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/11/2018] [Accepted: 07/17/2018] [Indexed: 11/08/2022] Open
Abstract
Effective farming of tilapia requires all-male culture, characterized by uniformity and high growth rate. Males of O. aureus (Oa) and females of O. niloticus (On) produce all-male offspring, but there is a behavioral reproductive barrier between the two species that prevents mass production. In crosses between Oa and On broodstocks, few hybrid females are attracted to the Oa male nests (denoted responders), and if they harbor the On alleles for the sex determination (SD) sites on linkage groups (LGs) 1, 3, and 23, all-male progeny are produced. Yet, without controlling for the alleles underlying SD, the parental stocks gradually lose their capability for all-male production. Hypothesizing that marker-assisted selection for female responders would allow production of sustainable broodstocks, we applied genotyping-by-sequencing to generate 4983 informative SNPs from 13 responding and 28 non-responding females from two full-sib families. Accounting for multiple comparisons in a genome-wide association study, seven SNPs met a false discovery rate of 0.061. Lowest nominal probabilities were on LGs 9 and 14, for which microsatellite DNA markers were designed within the candidate genes PTGDSL and CASRL, respectively. By increasing the sample size to 22 responders and 47 non-responders and by genotyping additional established microsatellites, we confirmed the association of these LGs with female responsiveness. The combined effects of microsatellites GM171 and CARSL-LOC100690618 on LGs 9 and 14 explained 37% of the phenotypic variance of reproductive interaction (p < 0.0001). Based on these findings, we propose a strategy for mass production of all-male tilapia hybrids through selection for genomic loci affecting SD and female responsiveness.
Collapse
|
22
|
Albertson RC, Kawasaki KC, Tetrault ER, Powder KE. Genetic analyses in Lake Malawi cichlids identify new roles for Fgf signaling in scale shape variation. Commun Biol 2018; 1:55. [PMID: 30271938 PMCID: PMC6123627 DOI: 10.1038/s42003-018-0060-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/30/2018] [Indexed: 01/30/2023] Open
Abstract
Elasmoid scales are the most common epithelial appendage among vertebrates, however an understanding of the genetic mechanisms that underlie variation in scale shape is lacking. Using an F2 mapping cross between morphologically distinct cichlid species, we identified >40 QTL for scale shape at different body positions. We show that while certain regions of the genome regulate variation in multiple scales, most are specific to scales at distinct positions. This suggests a degree of regional modularity in scale development. We also identified a single QTL for variation in scale shape disparity across the body. Finally, we screened a QTL hotspot for candidate loci, and identified the Fgf receptor fgfr1b as a prime target. Quantitative rtPCR and small molecule manipulation support a role for Fgf signaling in shaping cichlid scales. While Fgfs have previously been implicated in scale loss, these data reveal new roles for the pathway in scale shape variation.
Collapse
Affiliation(s)
- R Craig Albertson
- Department of Biology, University of Massachusetts, 611 North Pleasant Street, Amherst, MA, 01003, USA.
| | - Kenta C Kawasaki
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts, 611 North Pleasant Street, Amherst, MA, 01003, USA
| | - Emily R Tetrault
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts, 611 North Pleasant Street, Amherst, MA, 01003, USA
| | - Kara E Powder
- Department of Biological Sciences, Clemson University, 190 Collings Street, Clemson, SC, 29634, USA
| |
Collapse
|
23
|
Maternal, dominance and additive genetic effects in Nile tilapia; influence on growth, fillet yield and body size traits. Heredity (Edinb) 2018; 120:452-462. [PMID: 29335620 PMCID: PMC5889400 DOI: 10.1038/s41437-017-0046-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/25/2017] [Accepted: 12/11/2017] [Indexed: 12/27/2022] Open
Abstract
There are only few studies of dominance effects in non-inbred aquaculture species, since commonly used mating designs often have low power to separate dominance, maternal and common environmental effects. Here, a factorial design with reciprocal cross, common rearing of eggs and subsequent lifecycle stages and pedigree assignment using DNA microsatellites was used to separate these effects and estimate dominance (d2) and maternal (m2) ratios in Nile tilapia for six commercial traits. The study included observations on 2524 offspring from 155 full-sib families. Substantial contributions of dominance were observed (P < 0.05) for body depth (BD) and body weight at harvest (BWH) with estimates of d2 = 0.27 (s.e. 0.09) and 0.23 (s.e. 0.09), respectively in the current breeding population. In addition the study found maternal variance (P < 0.05) for BD, BWH, body thickness and fillet weight explaining ~10% of the observed phenotypic variance. For fillet yield (FY) and body length (BL), no evidence was found for either maternal or dominance variance. For traits exhibiting maternal variance, including this effect in evaluations caused substantial re-ranking of selection candidates, but the impact of including dominance effects was notably less. Breeding schemes may benefit from utilising maternal variance in increasing accuracy of evaluations, reducing bias, and developing new lines, but the utilisation of the dominance variance may require further refinement of parameter estimates.
Collapse
|
24
|
MapToGenome: A Comparative Genomic Tool that Aligns Transcript Maps to Sequenced Genomes. Evol Bioinform Online 2017. [DOI: 10.1177/117693430700300023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Efforts to generate whole genome assemblies and dense genetic maps have provided a wealth of gene positional information for several vertebrate species. Comparing the relative location of orthologous genes among these genomes provides perspective on genome evolution and can aid in translating genetic information between distantly related organisms. However, large-scale comparisons between genetic maps and genome assemblies can prove challenging because genetic markers are commonly derived from transcribed sequences that are incompletely and variably annotated. We developed the program MapToGenome as a tool for comparing transcript maps and genome assemblies. MapToGenome processes sequence alignments between mapped transcripts and whole genome sequence while accounting for the presence of intronic sequences, and assigns orthology based on user-defined parameters. To illustrate the utility of this program, we used MapToGenome to process alignments between vertebrate genetic maps and genome assemblies 1) self/self alignments for maps and assemblies of the rat and zebrafish genome; 2) alignments between vertebrate transcript maps (rat, salamander, zebrafish, and medaka) and the chicken genome; and 3) alignments of the medaka and zebrafish maps to the pufferfish ( Tetraodon nigroviridis) genome. Our results show that map-genome alignments can be improved by combining alignments across presumptive intron breaks and ignoring alignments for simple sequence length polymorphism (SSLP) marker sequences. Comparisons between vertebrate maps and genomes reveal broad patterns of conservation among vertebrate genomes and the differential effects of genome rearrangement over time and across lineages.
Collapse
|
25
|
Nandamuri SP, Dalton BE, Carleton KL. Determination of the Genetic Architecture Underlying Short Wavelength Sensitivity in Lake Malawi Cichlids. J Hered 2017; 108:379-390. [PMID: 28498989 DOI: 10.1093/jhered/esx020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 02/27/2017] [Indexed: 11/13/2022] Open
Abstract
African cichlids are an exemplary system to study organismal diversity and rapid speciation. Species differ in external morphology including jaw shape and body coloration, but also differ in sensory systems including vision. All cichlids have 7 cone opsin genes with species differing broadly in which opsins are expressed. The differential opsin expression results in closely related species with substantial differences in spectral sensitivity of their photoreceptors. In this work, we take a first step in determining the genetic basis of opsin expression in cichlids. Using a second generation cross between 2 species with different opsin expression patterns, we make a conservative estimate that short wavelength opsin expression is regulated by a few loci. Genetic mapping in 96 F2 hybrids provides clear evidence of a cis-regulatory region for SWS1 opsin that explains 34% of the variation in expression between the 2 species. Additionally, in situ hybridization has shown that SWS1 and SWS2B opsins are coexpressed in individual single cones in the retinas of F2 progeny. Results from this work will contribute to a better understanding of the genetic architecture underlying opsin expression. This knowledge will help answer long-standing questions about the evolutionary processes fundamental to opsin expression variation and how this contributes to adaptive cichlid divergence.
Collapse
Affiliation(s)
| | - Brian E Dalton
- National & Environmental Sciences Department, Western State Colorado University, Gunnison, CO 81231
| | - Karen L Carleton
- From the Department of Biology, University of Maryland, College Park, MD 20742
| |
Collapse
|
26
|
Zhao J, Han D, Shi K, Wang L, Gao J, Yang R. Influence of epistatic segregation distortion loci on genetic marker linkages in Japanese flounder. Genomics 2017; 110:59-66. [PMID: 28830780 DOI: 10.1016/j.ygeno.2017.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 08/11/2017] [Accepted: 08/18/2017] [Indexed: 11/28/2022]
Abstract
For genetic linkage analysis of Japanese flounder, 160 doubled haploids (DH) were artificially produced using mitotic gynogenesis and were genotyped for 458 simple sequence repeat (SSR) markers, 101 of which show distortional segregation. The genetic linkage map was constructed by modifying recombination fractions between the distorted markers. Between the corrected and uncorrected genetic maps, there were considerable differences in genetic distance, but not in relative locations among markers. Using a liability model, a segregation distortion locus (SDL), with an additive genetic effect of 1.772, was mapped between markers BDHYP387 and Poli56TUF of chromosome 24 in the corrected genetic map. Additionally, six pairs of epistatic SDLs were identified on chromosomes 1, 5, 8, 9, 23, and 24. Changes in genetic distances between markers did not occur on chromosome regions with main effect SDLs. However, most chromosome regions where genetic distances changed covered the detected epistatic SDLs. This study concluded that epistatic SDLs decrease linkages between markers and lengthen genetic distances in Japanese flounder. This finding has been partially validated in other DH populations derived from three female Japanese flounders.
Collapse
Affiliation(s)
- Jingli Zhao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Research Centre for Aquatic Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Dandan Han
- Department of Biological Science and Technology, Heilongjiang Vocational College for Nationalities, Harbin 150066, China
| | - Kuntao Shi
- Division of Comprehensive Aquaculture, Shandong Weihai Institute of Ocean and Aquaculture, Weihai 264200, China
| | - Li Wang
- Division of Comprehensive Aquaculture, Shandong Weihai Institute of Ocean and Aquaculture, Weihai 264200, China
| | - Jin Gao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Research Centre for Aquatic Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Runqing Yang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Research Centre for Aquatic Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China.
| |
Collapse
|
27
|
Conte MA, Gammerdinger WJ, Bartie KL, Penman DJ, Kocher TD. A high quality assembly of the Nile Tilapia (Oreochromis niloticus) genome reveals the structure of two sex determination regions. BMC Genomics 2017; 18:341. [PMID: 28464822 PMCID: PMC5414186 DOI: 10.1186/s12864-017-3723-5] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/25/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Tilapias are the second most farmed fishes in the world and a sustainable source of food. Like many other fish, tilapias are sexually dimorphic and sex is a commercially important trait in these fish. In this study, we developed a significantly improved assembly of the tilapia genome using the latest genome sequencing methods and show how it improves the characterization of two sex determination regions in two tilapia species. RESULTS A homozygous clonal XX female Nile tilapia (Oreochromis niloticus) was sequenced to 44X coverage using Pacific Biosciences (PacBio) SMRT sequencing. Dozens of candidate de novo assemblies were generated and an optimal assembly (contig NG50 of 3.3Mbp) was selected using principal component analysis of likelihood scores calculated from several paired-end sequencing libraries. Comparison of the new assembly to the previous O. niloticus genome assembly reveals that recently duplicated portions of the genome are now well represented. The overall number of genes in the new assembly increased by 27.3%, including a 67% increase in pseudogenes. The new tilapia genome assembly correctly represents two recent vasa gene duplication events that have been verified with BAC sequencing. At total of 146Mbp of additional transposable element sequence are now assembled, a large proportion of which are recent insertions. Large centromeric satellite repeats are assembled and annotated in cichlid fish for the first time. Finally, the new assembly identifies the long-range structure of both a ~9Mbp XY sex determination region on LG1 in O. niloticus, and a ~50Mbp WZ sex determination region on LG3 in the related species O. aureus. CONCLUSIONS This study highlights the use of long read sequencing to correctly assemble recent duplications and to characterize repeat-filled regions of the genome. The study serves as an example of the need for high quality genome assemblies and provides a framework for identifying sex determining genes in tilapia and related fish species.
Collapse
Affiliation(s)
- Matthew A. Conte
- Department of Biology, University of Maryland, 20742 College Park, MD USA
| | | | - Kerry L. Bartie
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA Scotland UK
| | - David J. Penman
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA Scotland UK
| | - Thomas D. Kocher
- Department of Biology, University of Maryland, 20742 College Park, MD USA
| |
Collapse
|
28
|
Wan SM, Liu H, Zhao BW, Nie CH, Wang WM, Gao ZX. Construction of a high-density linkage map and fine mapping of QTLs for growth and gonad related traits in blunt snout bream. Sci Rep 2017; 7:46509. [PMID: 28422147 PMCID: PMC5395971 DOI: 10.1038/srep46509] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/17/2017] [Indexed: 01/16/2023] Open
Abstract
High-density genetic maps based on SNPs are essential for fine mapping loci controlling specific traits for fish species. Using restriction-site associated DNA tag sequencing (RAD-Seq) technology, we identified 42,784 SNPs evenly distributed across the Megalobrama amblycephala genome. Based on 2 parents and 187 intra-specific hybridization progenies, a total of 14,648 high-confidence SNPs were assigned to 24 consensus linkage groups (LGs) of maternal and paternal map. The total length of the integrated map was 3,258.38 cM with an average distance of 0.57 cM among 5676 effective loci, thereby representing the first high-density genetic map reported for M. amblycephala. A total of eight positive quantitative trait loci (QTLs) were detected in QTL analysis. Of that, five QTL explained ≥35% of phenotypic variation for growth traits and three QTL explained ≥16% phenotypic variation for gonad related traits. A total of 176 mapped markers had significant hits in the zebrafish genome and almost all of the 24 putative-chromosomes of M. amblycephala were in relatively conserved synteny with chromosomes of zebrafish. Almost all M. amblycephala and zebrafish chromosomes had a 1:1 correspondence except for putative-chromosome 4, which mapped to two chromosomes of zebrafish caused by the difference in chromosome numbers between two species.
Collapse
Affiliation(s)
- Shi-Ming Wan
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Hong Liu
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Bo-Wen Zhao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Chun-Hong Nie
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Wei-Min Wang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ze-Xia Gao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| |
Collapse
|
29
|
Zhu H, Liu Z, Lu M, Gao F, Ke X, Ma D, Huang Z, Cao J, Wang M. Screening and identification of a microsatellite marker associated with sex in Wami tilapia, Oreochromis urolepis hornorum. J Genet 2017; 95:283-9. [PMID: 27350670 DOI: 10.1007/s12041-016-0653-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this study, primer pairs of 15 microsatellite markers associated with sex determination of tilapia were selected and amplified in Wami tilapia, Oreochromis urolepis hornorum. While one marker, UNH168, on linkage group 3 (LG3) was associated (P <0.001) with the phenotypic sex in the experimental population, nine genotypes were detected in both sexes. Only 99-bp allele was detected in the female samples, while 141, 149 and 157-bp alleles were present in both male and female samples. UNH168 was localized by fluorescence in situ hybridization (FISH) on the long arm of the largest tilapia chromosome pair (chromosome 1, equivalent to LG3). This sex-linked microsatellite marker could potentially be used for marker-assisted selection in tilapia breeding programmes to produce monosex male tilapia.
Collapse
Affiliation(s)
- Huaping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, People's Republic of
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abdelrahman H, ElHady M, Alcivar-Warren A, Allen S, Al-Tobasei R, Bao L, Beck B, Blackburn H, Bosworth B, Buchanan J, Chappell J, Daniels W, Dong S, Dunham R, Durland E, Elaswad A, Gomez-Chiarri M, Gosh K, Guo X, Hackett P, Hanson T, Hedgecock D, Howard T, Holland L, Jackson M, Jin Y, Khalil K, Kocher T, Leeds T, Li N, Lindsey L, Liu S, Liu Z, Martin K, Novriadi R, Odin R, Palti Y, Peatman E, Proestou D, Qin G, Reading B, Rexroad C, Roberts S, Salem M, Severin A, Shi H, Shoemaker C, Stiles S, Tan S, Tang KFJ, Thongda W, Tiersch T, Tomasso J, Prabowo WT, Vallejo R, van der Steen H, Vo K, Waldbieser G, Wang H, Wang X, Xiang J, Yang Y, Yant R, Yuan Z, Zeng Q, Zhou T. Aquaculture genomics, genetics and breeding in the United States: current status, challenges, and priorities for future research. BMC Genomics 2017; 18:191. [PMID: 28219347 PMCID: PMC5319170 DOI: 10.1186/s12864-017-3557-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/06/2017] [Indexed: 12/31/2022] Open
Abstract
Advancing the production efficiency and profitability of aquaculture is dependent upon the ability to utilize a diverse array of genetic resources. The ultimate goals of aquaculture genomics, genetics and breeding research are to enhance aquaculture production efficiency, sustainability, product quality, and profitability in support of the commercial sector and for the benefit of consumers. In order to achieve these goals, it is important to understand the genomic structure and organization of aquaculture species, and their genomic and phenomic variations, as well as the genetic basis of traits and their interrelationships. In addition, it is also important to understand the mechanisms of regulation and evolutionary conservation at the levels of genome, transcriptome, proteome, epigenome, and systems biology. With genomic information and information between the genomes and phenomes, technologies for marker/causal mutation-assisted selection, genome selection, and genome editing can be developed for applications in aquaculture. A set of genomic tools and resources must be made available including reference genome sequences and their annotations (including coding and non-coding regulatory elements), genome-wide polymorphic markers, efficient genotyping platforms, high-density and high-resolution linkage maps, and transcriptome resources including non-coding transcripts. Genomic and genetic control of important performance and production traits, such as disease resistance, feed conversion efficiency, growth rate, processing yield, behaviour, reproductive characteristics, and tolerance to environmental stressors like low dissolved oxygen, high or low water temperature and salinity, must be understood. QTL need to be identified, validated across strains, lines and populations, and their mechanisms of control understood. Causal gene(s) need to be identified. Genetic and epigenetic regulation of important aquaculture traits need to be determined, and technologies for marker-assisted selection, causal gene/mutation-assisted selection, genome selection, and genome editing using CRISPR and other technologies must be developed, demonstrated with applicability, and application to aquaculture industries.Major progress has been made in aquaculture genomics for dozens of fish and shellfish species including the development of genetic linkage maps, physical maps, microarrays, single nucleotide polymorphism (SNP) arrays, transcriptome databases and various stages of genome reference sequences. This paper provides a general review of the current status, challenges and future research needs of aquaculture genomics, genetics, and breeding, with a focus on major aquaculture species in the United States: catfish, rainbow trout, Atlantic salmon, tilapia, striped bass, oysters, and shrimp. While the overall research priorities and the practical goals are similar across various aquaculture species, the current status in each species should dictate the next priority areas within the species. This paper is an output of the USDA Workshop for Aquaculture Genomics, Genetics, and Breeding held in late March 2016 in Auburn, Alabama, with participants from all parts of the United States.
Collapse
Affiliation(s)
- Hisham Abdelrahman
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Mohamed ElHady
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | | | - Standish Allen
- Aquaculture Genetics & Breeding Technology Center, Virginia Institute of Marine Science, Gloucester Point, VA, 23062, USA
| | - Rafet Al-Tobasei
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Lisui Bao
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ben Beck
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL, 36832, USA
| | - Harvey Blackburn
- USDA-ARS-NL Wheat & Corn Collections at a Glance GRP, National Animal Germplasm Program, 1111 S. Mason St., Fort Collins, CO, 80521-4500, USA
| | - Brian Bosworth
- USDA-ARS/CGRU, 141 Experimental Station Road, Stoneville, MS, 38701, USA
| | - John Buchanan
- Center for Aquaculture Technologies, 8395 Camino Santa Fe, Suite E, San Diego, CA, 92121, USA
| | - Jesse Chappell
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - William Daniels
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Sheng Dong
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Rex Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Evan Durland
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, 97331, USA
| | - Ahmed Elaswad
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Marta Gomez-Chiarri
- Department of Fisheries, Animal & Veterinary Science, 134 Woodward Hall, 9 East Alumni Avenue, Kingston, RI, 02881, USA
| | - Kamal Gosh
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, 6959 Miller Avenue, Port Norris, NJ, 08349, USA
| | - Perry Hackett
- Department of Genetics, Cell Biology and Development, 5-108 MCB, 420 Washington Avenue SE, Minneapolis, MN, 55455, USA
| | - Terry Hanson
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dennis Hedgecock
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-0371, USA
| | - Tiffany Howard
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Leigh Holland
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Molly Jackson
- Taylor Shellfish Farms, 130 SE Lynch RD, Shelton, WA, 98584, USA
| | - Yulin Jin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Karim Khalil
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Thomas Kocher
- Department of Biology, University of Maryland, 2132 Biosciences Research Building, College Park, MD, 20742, USA
| | - Tim Leeds
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, 25430, USA
| | - Ning Li
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Lauren Lindsey
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Shikai Liu
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhanjiang Liu
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| | - Kyle Martin
- Troutlodge, 27090 Us Highway 12, Naches, WA, 98937, USA
| | - Romi Novriadi
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ramjie Odin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yniv Palti
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, 25430, USA
| | - Eric Peatman
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dina Proestou
- USDA ARS NEA NCWMAC Shellfish Genetics at the University Rhode Island, 469 CBLS, 120 Flagg Road, Kingston, RI, 02881, USA
| | - Guyu Qin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Benjamin Reading
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695-7617, USA
| | - Caird Rexroad
- USDA ARS Office of National Programs, George Washington Carver Center Room 4-2106, 5601 Sunnyside Avenue, Beltsville, MD, 20705, USA
| | - Steven Roberts
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98105, USA
| | - Mohamed Salem
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Andrew Severin
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, Ames, IA, 50011, USA
| | - Huitong Shi
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Craig Shoemaker
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL, 36832, USA
| | - Sheila Stiles
- USDOC/NOAA, National Marine Fisheries Service, NEFSC, Milford Laboratory, Milford, Connectcut, 06460, USA
| | - Suxu Tan
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Kathy F J Tang
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Wilawan Thongda
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Terrence Tiersch
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, 70820, USA
| | - Joseph Tomasso
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Wendy Tri Prabowo
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Roger Vallejo
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, 25430, USA
| | | | - Khoi Vo
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Geoff Waldbieser
- USDA-ARS/CGRU, 141 Experimental Station Road, Stoneville, MS, 38701, USA
| | - Hanping Wang
- Aquaculture Genetics and Breeding Laboratory, The Ohio State University South Centers, Piketon, OH, 45661, USA
| | - Xiaozhu Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yujia Yang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Roger Yant
- Hybrid Catfish Company, 1233 Montgomery Drive, Inverness, MS, 38753, USA
| | - Zihao Yuan
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Qifan Zeng
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Tao Zhou
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
31
|
Navon D, Olearczyk N, Albertson RC. Genetic and developmental basis for fin shape variation in African cichlid fishes. Mol Ecol 2016; 26:291-303. [DOI: 10.1111/mec.13905] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Dina Navon
- Graduate Program in Organismic and Evolutionary Biology University of Massachusetts Amherst MA 01003 USA
| | - Nathan Olearczyk
- Department of Biology University of Massachusetts 611 North Pleasant Street Room 221 Morrill Science Center Amherst MA 01003 USA
| | - R. Craig Albertson
- Department of Biology University of Massachusetts 611 North Pleasant Street Room 221 Morrill Science Center Amherst MA 01003 USA
| |
Collapse
|
32
|
Lin G, Chua E, Orban L, Yue GH. Mapping QTL for Sex and Growth Traits in Salt-Tolerant Tilapia (Oreochromis spp. X O. mossambicus). PLoS One 2016; 11:e0166723. [PMID: 27870905 PMCID: PMC5117716 DOI: 10.1371/journal.pone.0166723] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 11/02/2016] [Indexed: 11/18/2022] Open
Abstract
In aquaculture, growth and sex are economically important traits. To accelerate genetic improvement in increasing growth in salt-tolerant tilapia, we conducted QTL mapping for growth traits and sex with an F2 family, including 522 offspring and two parents. We used 144 polymorphic microsatellites evenly covering the genome of tilapia to genotype the family. QTL analyses were carried out using interval mapping for all individuals, males and females in the family, respectively. Using all individuals, three suggestive QTL for body weight, body length and body thickness respectively were detected in LG20, LG22 and LG12 and explained 2.4% to 3.1% of phenotypic variance (PV). When considering only males, five QTL for body weight were detected on five LGs, and explained 4.1 to 6.3% of PV. Using only females from the F2 family, three QTL for body weight were detected on LG1, LG6 and LG8, and explained 7.9-14.3% of PV. The QTL for body weight in males and females were located in different LGs, suggesting that in salt-tolerant tilapia, different set of genes 'switches' control the growth in males and females. QTL for sex were mapped on LG1 and LG22, indicating multigene sex determination in the salt-tolerant tilapia. This study provides new insights on the locations and effects of QTL for growth traits and sex, and sets the foundation for fine mapping for future marker-assisted selection for growth and sex in salt-tolerant tilapia aquaculture.
Collapse
Affiliation(s)
- Grace Lin
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Elaine Chua
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Laszlo Orban
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
- Department of Animal Sciences and Breeding, Georgikon Faculty, University of Pannonia, Deák Ferenc utca 16, H-8230 Keszthely, Hungary
- Centre for Comparative Genomics, Murdoch University, Murdoch, 6150 Australia
| | - Gen Hua Yue
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
- * E-mail:
| |
Collapse
|
33
|
Roberts NB, Juntti SA, Coyle KP, Dumont BL, Stanley MK, Ryan AQ, Fernald RD, Roberts RB. Polygenic sex determination in the cichlid fish Astatotilapia burtoni. BMC Genomics 2016; 17:835. [PMID: 27784286 PMCID: PMC5080751 DOI: 10.1186/s12864-016-3177-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/18/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The East African riverine cichlid species Astatotilapia burtoni serves as an important laboratory model for sexually dimorphic physiology and behavior, and also serves as an outgroup species for the explosive adaptive radiations of cichlid species in Lake Malawi and Lake Victoria. An astounding diversity of genetic sex determination systems have been revealed within the adaptive radiation of East African cichlids thus far, including polygenic sex determination systems involving the epistatic interaction of multiple, independently segregating sex determination alleles. However, sex determination has remained unmapped in A. burtoni. Here we present mapping results supporting the presence of multiple, novel sex determination alleles, and thus the presence of polygenic sex determination in A. burtoni. RESULTS Using mapping in small families in conjunction with restriction-site associated DNA sequencing strategies, we identify associations with sex at loci on linkage group 13 and linkage group 5-14. Inheritance patterns support an XY sex determination system on linkage group 5-14 (a chromosome fusion relative to other cichlids studied), and an XYW system on linkage group 13, and these associations are replicated in multiple families. Additionally, combining our genetic data with comparative genomic analysis identifies another fusion that is unassociated with sex, with linkage group 8-24 and linkage group 16-21 fused in A. burtoni relative to other East African cichlid species. CONCLUSIONS We identify genetic signals supporting the presence of three previously unidentified sex determination alleles at two loci in the species A. burtoni, strongly supporting the presence of polygenic sex determination system in the species. These results provide a foundation for future mapping of multiple sex determination genes and their interactions. A better understanding of sex determination in A. burtoni provides important context for their use in behavioral studies, as well as studies of the evolution of genetic sex determination and sexual conflicts in East African cichlids.
Collapse
Affiliation(s)
- Natalie B. Roberts
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC USA
| | - Scott A. Juntti
- Department of Biology, Stanford University, Stanford, CA USA
| | - Kaitlin P. Coyle
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC USA
| | - Bethany L. Dumont
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC USA
| | - M. Kaitlyn Stanley
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC USA
| | - Allyson Q. Ryan
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC USA
| | | | - Reade B. Roberts
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC USA
| |
Collapse
|
34
|
Wan ZY, Xia JH, Lin G, Wang L, Lin VCL, Yue GH. Genome-wide methylation analysis identified sexually dimorphic methylated regions in hybrid tilapia. Sci Rep 2016; 6:35903. [PMID: 27782217 PMCID: PMC5080608 DOI: 10.1038/srep35903] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 10/07/2016] [Indexed: 12/19/2022] Open
Abstract
Sexual dimorphism is an interesting biological phenomenon. Previous studies showed that DNA methylation might play a role in sexual dimorphism. However, the overall picture of the genome-wide methylation landscape in sexually dimorphic species remains unclear. We analyzed the DNA methylation landscape and transcriptome in hybrid tilapia (Oreochromis spp.) using whole genome bisulfite sequencing (WGBS) and RNA-sequencing (RNA-seq). We found 4,757 sexually dimorphic differentially methylated regions (DMRs), with significant clusters of DMRs located on chromosomal regions associated with sex determination. CpG methylation in promoter regions was negatively correlated with the gene expression level. MAPK/ERK pathway was upregulated in male tilapia. We also inferred active cis-regulatory regions (ACRs) in skeletal muscle tissues from WGBS datasets, revealing sexually dimorphic cis-regulatory regions. These results suggest that DNA methylation contribute to sex-specific phenotypes and serve as resources for further investigation to analyze the functions of these regions and their contributions towards sexual dimorphisms.
Collapse
Affiliation(s)
- Zi Yi Wan
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604 Singapore.,School of Biological Sciences, Nanyang Technological University, 6 Nanyang Drive, 637551 Singapore
| | - Jun Hong Xia
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604 Singapore.,State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Grace Lin
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604 Singapore.,School of Biological Sciences, Nanyang Technological University, 6 Nanyang Drive, 637551 Singapore
| | - Le Wang
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604 Singapore
| | - Valerie C L Lin
- School of Biological Sciences, Nanyang Technological University, 6 Nanyang Drive, 637551 Singapore
| | - Gen Hua Yue
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604 Singapore.,School of Biological Sciences, Nanyang Technological University, 6 Nanyang Drive, 637551 Singapore.,Department of Biological Sciences, National University of Singapore, 14 Science Drive, 117543 Singapore
| |
Collapse
|
35
|
Dor L, Shirak A, Rosenfeld H, Ashkenazi IM, Band MR, Korol A, Ronin Y, Seroussi E, Weller JI, Ron M. Identification of the sex-determining region in flathead grey mullet (Mugil cephalus). Anim Genet 2016; 47:698-707. [PMID: 27611243 DOI: 10.1111/age.12486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2016] [Indexed: 11/29/2022]
Abstract
Elucidation of the sex-determination mechanism in flathead grey mullet (Mugil cephalus) is required to exploit its economic potential by production of genetically determined monosex populations and application of hormonal treatment to parents rather than to the marketed progeny. Our objective was to construct a first-generation linkage map of the M. cephalus in order to identify the sex-determining region and sex-determination system. Deep-sequencing data of a single male was assembled and aligned to the genome of Nile tilapia (Oreochromis niloticus). A total 245 M. cephalus microsatellite markers were designed, spanning the syntenic tilapia genome assembly at intervals of 10 Mb. In the mapping family of full-sib progeny, 156 segregating markers were used to construct a first-generation linkage map of 24 linkage groups (LGs), corresponding to the number of chromosomes. The linkage map spanned approximately 1200 cM with an average inter-marker distance of 10.6 cM. Markers segregating on LG9 in two independent mapping families showed nearly complete concordance with gender (R2 = 0.95). The sex determining locus was fine mapped within an interval of 8.6 cM on LG9. The sex of offspring was determined only by the alleles transmitted from the father, thus indicating an XY sex-determination system.
Collapse
Affiliation(s)
- L Dor
- Institute of Animal Science, Agricultural Research Organization, Bet Dagan, 50250, Israel.,Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - A Shirak
- Institute of Animal Science, Agricultural Research Organization, Bet Dagan, 50250, Israel
| | - H Rosenfeld
- National Center for Mariculture, Israel Oceanographic and Limnological Research, Eilat, 88112, Israel
| | - I M Ashkenazi
- National Center for Mariculture, Israel Oceanographic and Limnological Research, Eilat, 88112, Israel
| | - M R Band
- The Carver Biotechnology Center, University of Illinois, Urbana, IL, 61801, USA
| | - A Korol
- Faculty of Science, Institute of Evolution, University Haifa, Haifa, 31905, Israel
| | - Y Ronin
- Faculty of Science, Institute of Evolution, University Haifa, Haifa, 31905, Israel
| | - E Seroussi
- Institute of Animal Science, Agricultural Research Organization, Bet Dagan, 50250, Israel
| | - J I Weller
- Institute of Animal Science, Agricultural Research Organization, Bet Dagan, 50250, Israel
| | - M Ron
- Institute of Animal Science, Agricultural Research Organization, Bet Dagan, 50250, Israel.
| |
Collapse
|
36
|
Ma K, Liao M, Liu F, Ye B, Sun F, Yue GH. Charactering the ZFAND3 gene mapped in the sex-determining locus in hybrid tilapia (Oreochromis spp.). Sci Rep 2016; 6:25471. [PMID: 27137111 PMCID: PMC4853787 DOI: 10.1038/srep25471] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/18/2016] [Indexed: 01/01/2023] Open
Abstract
Zinc finger AN1-type domain 3 (ZFAND3) is essential for spermatogenesis in mice. However, its function in teleosts remains unclear. In this study, we characterized the ZFAND3 gene (termed as OsZFAND3) in an important food fish, tilapia. The OsZFAND3 cDNA sequence is 1,050 bp in length, containing an ORF of 615 bp, which encodes a putative peptide of 204 amino acid residues. Quantitative real-time PCR revealed that the OsZFAND3 transcripts were exclusively expressed in the testis and ovary. In situ hybridization showed that the high expression of OsZFAND3 transcripts was predominantly localized in the spermatocyte and spermatid. These results suggest that OsZFAND3 is involved in male germ cell maturation. Three single nucleotide polymorphisms (SNPs) were detected in the introns of OsZFAND3. The OsZFAND3 gene was mapped in the sex-determining locus on linkage group 1 (LG1). The three SNPs in the OsZFAND3 gene were strictly associated with sex phenotype, suggesting that the OsZFAND3 gene is tightly linked to the sex-determining locus. Our study provides new insights into the functions of the OsZFAND3 gene in tilapia and a foundation for further detailed analysis of the OsZFAND3 gene in sex determination and differentiation.
Collapse
Affiliation(s)
- Keyi Ma
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Minghui Liao
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Feng Liu
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Baoqing Ye
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Fei Sun
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Gen Hua Yue
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Republic of Singapore.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| |
Collapse
|
37
|
Lo Presti R, Lisa C, Di Stasio L. Molecular genetics in aquaculture. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2009.299] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Bloomquist RF, Parnell NF, Phillips KA, Fowler TE, Yu TY, Sharpe PT, Streelman JT. Coevolutionary patterning of teeth and taste buds. Proc Natl Acad Sci U S A 2015; 112:E5954-62. [PMID: 26483492 PMCID: PMC4640805 DOI: 10.1073/pnas.1514298112] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Teeth and taste buds are iteratively patterned structures that line the oro-pharynx of vertebrates. Biologists do not fully understand how teeth and taste buds develop from undifferentiated epithelium or how variation in organ density is regulated. These organs are typically studied independently because of their separate anatomical location in mammals: teeth on the jaw margin and taste buds on the tongue. However, in many aquatic animals like bony fishes, teeth and taste buds are colocalized one next to the other. Using genetic mapping in cichlid fishes, we identified shared loci controlling a positive correlation between tooth and taste bud densities. Genome intervals contained candidate genes expressed in tooth and taste bud fields. sfrp5 and bmper, notable for roles in Wingless (Wnt) and bone morphogenetic protein (BMP) signaling, were differentially expressed across cichlid species with divergent tooth and taste bud density, and were expressed in the development of both organs in mice. Synexpression analysis and chemical manipulation of Wnt, BMP, and Hedgehog (Hh) pathways suggest that a common cichlid oral lamina is competent to form teeth or taste buds. Wnt signaling couples tooth and taste bud density and BMP and Hh mediate distinct organ identity. Synthesizing data from fish and mouse, we suggest that the Wnt-BMP-Hh regulatory hierarchy that configures teeth and taste buds on mammalian jaws and tongues may be an evolutionary remnant inherited from ancestors wherein these organs were copatterned from common epithelium.
Collapse
Affiliation(s)
- Ryan F Bloomquist
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332; College of Dental Medicine, Georgia Regents University, Augusta, GA 30912;
| | - Nicholas F Parnell
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Kristine A Phillips
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Teresa E Fowler
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Tian Y Yu
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, London WC2R 2LS, United Kingdom
| | - Paul T Sharpe
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, London WC2R 2LS, United Kingdom
| | - J Todd Streelman
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332;
| |
Collapse
|
39
|
Weigele J, Franz‐Odendaal TA, Hilbig R. Expression of SPARC and the osteopontin‐like protein during skeletal development in the cichlid fish
Oreochromis mossambicus. Dev Dyn 2015; 244:955-72. [DOI: 10.1002/dvdy.24293] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/13/2015] [Accepted: 05/16/2015] [Indexed: 12/29/2022] Open
Affiliation(s)
- Jochen Weigele
- Zoological InstituteUniversity of Stuttgart‐HohenheimStuttgart Germany
- Department of BiologyMount Saint Vincent UniversityHalifax Nova Scotia Canada
| | | | - Reinhard Hilbig
- Zoological InstituteUniversity of Stuttgart‐HohenheimStuttgart Germany
| |
Collapse
|
40
|
Nested Levels of Adaptive Divergence: The Genetic Basis of Craniofacial Divergence and Ecological Sexual Dimorphism. G3-GENES GENOMES GENETICS 2015; 5:1613-24. [PMID: 26038365 PMCID: PMC4528318 DOI: 10.1534/g3.115.018226] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Exemplary systems for adaptive divergence are often characterized by their large degrees of phenotypic variation. This variation represents the outcome of generations of diversifying selection. However, adaptive radiations can also contain a hierarchy of differentiation nested within them where species display only subtle phenotypic differences that still have substantial effects on ecology, function, and ultimately fitness. Sexual dimorphisms are also common in species displaying adaptive divergence and can be the result of differential selection between sexes that produce ecological differences between sexes. Understanding the genetic basis of subtle variation (between certain species or sexes) is therefore important for understanding the process of adaptive divergence. Using cichlids from the dramatic adaptive radiation of Lake Malawi, we focus on understanding the genetic basis of two aspects of relatively subtle phenotypic variation. This included a morphometric comparison of the patterns of craniofacial divergence between two ecologically similar species in relation to the larger adaptive radiation of Malawi, and male-female morphological divergence between their F2 hybrids. We then genetically map craniofacial traits within the context of sex and locate several regions of the genome that contribute to variation in craniofacial shape that is relevant to sexual dimorphism within species and subtle divergence between closely related species, and possibly to craniofacial divergence in the Malawi radiation as a whole. To enhance our search for candidate genes we take advantage of population genomic data and a genetic map that is anchored to the cichlid genome to determine which genes within our QTL regions are associated with SNPs that are alternatively fixed between species. This study provides a holistic understanding of the genetic underpinnings of adaptive divergence in craniofacial shape.
Collapse
|
41
|
Molina-Luzón MJ, Hermida M, Navajas-Pérez R, Robles F, Navas JI, Ruiz-Rejón C, Bouza C, Martínez P, de la Herrán R. First haploid genetic map based on microsatellite markers in Senegalese sole (Solea senegalensis, Kaup 1858). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:8-22. [PMID: 25107689 DOI: 10.1007/s10126-014-9589-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/12/2014] [Indexed: 06/03/2023]
Abstract
The Senegalese sole (Solea senegalensis, Kaup 1858) is a flatfish species of great value for aquaculture. In this study, we develop the first linkage map in this species based on microsatellite markers characterized from genomic DNA libraries and EST databases of Senegalese sole and from other flatfish species. Three reference gynogenetic families were obtained by chromosome-manipulation techniques: two haploid gynogenetics, used to assign and order microsatellites to linkage groups and another diploid gynogenetic family, used for estimating marker-centromere distances. The consensus map consists of 129 microsatellites distributed in 27 linkage groups (LG), with an average density of 4.7 markers per LG and comprising 1,004 centimorgans (cM). Additionally, 15 markers remained unlinked. Through half-tetrad analysis, we were able to estimate the centromere distance for 81 markers belonging to 24 LG, representing an average of 3 markers per LG. Comparative mapping was performed between flatfish species LG and model fish species chromosomes (stickleback, Tetraodon, medaka, fugu and zebrafish). The usefulness of microsatellite markers and the genetic map as tools for comparative mapping and evolution studies is discussed.
Collapse
Affiliation(s)
- Ma Jesús Molina-Luzón
- Facultad de Ciencias, Departamento de Genética, Universidad de Granada, 18071, Granada, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
A microsatellite-based genetic linkage map and putative sex-determining genomic regions in Lake Victoria cichlids. Gene 2015; 560:156-64. [PMID: 25639358 DOI: 10.1016/j.gene.2015.01.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/26/2015] [Accepted: 01/28/2015] [Indexed: 01/06/2023]
Abstract
Cichlid fishes in East Africa have undergone extensive adaptive radiation, which has led to spectacular diversity in their morphology and ecology. To date, genetic linkage maps have been constructed for several tilapias (riverine), Astatotilapia burtoni (Lake Tanganyika), and hybrid lines of Lake Malawi cichlids to facilitate genome-wide comparative analyses. In the present study, we constructed a genetic linkage map of the hybrid line of Lake Victoria cichlids, so that maps of cichlids from all the major areas of East Africa will be available. The genetic linkage map shown here is derived from the F2 progeny of an interspecific cross between Haplochromis chilotes and Haplochromis sauvagei and is based on 184 microsatellite and two single-nucleotide polymorphism (SNP) markers. Most of the microsatellite markers used in the present study were originally designed for other genetic linkage maps, allowing us to directly compare each linkage group (LG) among different cichlid groups. We found 25 LGs, the total length of which was 1133.2cM with an average marker spacing of about 6.09cM. Our subsequent linkage mapping analysis identified two putative sex-determining loci in cichlids. Interestingly, one of these two loci is located on cichlid LG5, on which the female heterogametic ZW locus and several quantitative trait loci (QTLs) related to adaptive evolution have been reported in Lake Malawi cichlids. We also found that V1R1 and V1R2, candidate genes for the fish pheromone receptor, are located very close to the recently detected sex-determining locus on cichlid LG5. The genetic linkage map study presented here may provide a valuable foundation for studying the chromosomal evolution of East African cichlids and the possible role of sex chromosomes in generating their genomic diversity.
Collapse
|
43
|
Xu K, Duan W, Xiao J, Tao M, Zhang C, Liu Y, Liu S. Development and application of biological technologies in fish genetic breeding. SCIENCE CHINA-LIFE SCIENCES 2015; 58:187-201. [PMID: 25595050 DOI: 10.1007/s11427-015-4798-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/06/2014] [Indexed: 11/24/2022]
Abstract
Fish genetic breeding is a process that remolds heritable traits to obtain neotype and improved varieties. For the purpose of genetic improvement, researchers can select for desirable genetic traits, integrate a suite of traits from different donors, or alter the innate genetic traits of a species. These improved varieties have, in many cases, facilitated the development of the aquaculture industry by lowering costs and increasing both quality and yield. In this review, we present the pertinent literatures and summarize the biological bases and application of selection breeding technologies (containing traditional selective breeding, molecular marker-assisted breeding, genome-wide selective breeding and breeding by controlling single-sex groups), integration breeding technologies (containing cross breeding, nuclear transplantation, germline stem cells and germ cells transplantation, artificial gynogenesis, artificial androgenesis and polyploid breeding) and modification breeding technologies (represented by transgenic breeding) in fish genetic breeding. Additionally, we discuss the progress our laboratory has made in the field of chromosomal ploidy breeding of fish, including distant hybridization, gynogenesis, and androgenesis. Finally, we systematically summarize the research status and known problems associated with each technology.
Collapse
Affiliation(s)
- Kang Xu
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Ministry of Education of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | | | | | | | | | | | | |
Collapse
|
44
|
A syntenic region conserved from fish to Mammalian x chromosome. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2014; 2014:873935. [PMID: 25506037 PMCID: PMC4254068 DOI: 10.1155/2014/873935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/30/2014] [Accepted: 11/02/2014] [Indexed: 11/29/2022]
Abstract
Sex chromosomes bearing the sex-determining gene initiate development along the male or female pathway, no matter which sex is determined by XY male or ZW female heterogamety. Sex chromosomes originate from ancient autosomes but evolved rapidly after the acquisition of sex-determining factors which are highly divergent between species. In the heterogametic male system (XY system), the X chromosome is relatively evolutionary silent and maintains most of its ancestral genes, in contrast to its Y counterpart that has evolved rapidly and degenerated. Sex in a teleost fish, the Nile tilapia (Oreochromis niloticus), is determined genetically via an XY system, in which an unpaired region is present in the largest chromosome pair. We defined the differences in DNA contents present in this chromosome with a two-color comparative genomic hybridization (CGH) and the random amplified polymorphic DNA (RAPD) approach in XY males. We further identified a syntenic segment within this region that is well conserved in several teleosts. Through comparative genome analysis, this syntenic segment was also shown to be present in mammalian X chromosomes, suggesting a common ancestral origin of vertebrate sex chromosomes.
Collapse
|
45
|
Ye H, Liu Y, Liu X, Wang X, Wang Z. Genetic mapping and QTL analysis of growth traits in the large yellow croaker Larimichthys crocea. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:729-738. [PMID: 25070688 DOI: 10.1007/s10126-014-9590-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 07/06/2014] [Indexed: 06/03/2023]
Abstract
Large yellow croaker (Larimichthys crocea) is an important maricultured species in China. A genetic linkage map of the large yellow croaker was constructed using type II microsatellites and expressed sequence tag (EST)-derived microsatellites in two half-sib families (two females and one male). A total of 289 microsatellite markers (contained 93 EST-SSRs) were integrated into 24 linkage groups, which agreed with the haploid chromosome number. The map spanned a length of 1,430.8 cm with an average interval of 5.4 cm, covering 83.9 % of the estimated genome size (1,704.8 cm). A total of seven quantitative trait locis (QTLs) were detected for growth traits on five linkage groups, including two 1 % and five 5 % chromosome-wide significant QTLs, and explained from 2.33 to 5.31 % of the trait variation. The identified QTLs can be applied in marker-assisted selection programs to improve the growth traits.
Collapse
Affiliation(s)
- Hua Ye
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture of the People's Republic of China, Jimei University, Xiamen, 361021, China
| | | | | | | | | |
Collapse
|
46
|
Structure and decay of a proto-Y region in Tilapia, Oreochromis niloticus. BMC Genomics 2014; 15:975. [PMID: 25404257 PMCID: PMC4251933 DOI: 10.1186/1471-2164-15-975] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/29/2014] [Indexed: 12/30/2022] Open
Abstract
Background Sex-determination genes drive the evolution of adjacent chromosomal regions. Sexually antagonistic selection favors the accumulation of inversions that reduce recombination in regions adjacent to the sex-determination gene. Once established, the clonal inheritance of sex-linked inversions leads to the accumulation of deleterious alleles, repetitive elements and a gradual decay of sex-linked genes. This in turn creates selective pressures for the evolution of mechanisms that compensate for the unequal dosage of gene expression. Here we use whole genome sequencing to characterize the structure of a young sex chromosome and quantify sex-specific gene expression in the developing gonad. Results We found an 8.8 Mb block of strong differentiation between males and females that corresponds to the location of a previously mapped sex-determiner on linkage group 1 of Oreochromis niloticus. Putatively disruptive mutations are found in many of the genes within this region. We also found a significant female-bias in the expression of genes within the block of differentiation compared to those outside the block of differentiation. Eight candidate sex-determination genes were identified within this region. Conclusions This study demonstrates a block of differentiation on linkage group 1, suggestive of an 8.8 Mb inversion encompassing the sex-determining locus. The enrichment of female-biased gene expression inside the proposed inversion suggests incomplete dosage compensation. This study helps establish a model for studying the early-to-intermediate stages of sex chromosome evolution. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-975) contains supplementary material, which is available to authorized users.
Collapse
|
47
|
Albertson RC, Powder KE, Hu Y, Coyle KP, Roberts RB, Parsons KJ. Genetic basis of continuous variation in the levels and modular inheritance of pigmentation in cichlid fishes. Mol Ecol 2014; 23:5135-50. [PMID: 25156298 DOI: 10.1111/mec.12900] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/11/2014] [Accepted: 08/15/2014] [Indexed: 12/26/2022]
Abstract
Variation in pigmentation type and levels is a hallmark of myriad evolutionary radiations, and biologists have long been fascinated by the factors that promote and maintain variation in coloration across populations. Here, we provide insights into the genetic basis of complex and continuous patterns of colour variation in cichlid fishes, which offer a vast diversity of pigmentation patterns that have evolved in response to both natural and sexual selection. Specifically, we crossed two divergent cichlid species to generate an F2 mapping population that exhibited extensive variation in pigmentation levels and patterns. Our experimental design is robust in that it combines traditional quantitative trait locus (QTL) analysis with population genomics, which has allowed us to move efficiently from QTL interval to candidate gene. In total, we detected 41 QTL and 13 epistatic interactions that underlie melanocyte- and xanthophore-based coloration across the fins and flanks of these fishes. We also identified 2 QTL and 1 interaction for variation in the magnitude of integration among these colour traits. This finding in particular is notable as there are marked differences both within and between species with respect to the complexity of pigmentation patterns. While certain individuals are characterized by more uniform 'integrated' colour patterns, others exhibit many more degrees of freedom with respect to the distribution of colour 'modules' across the fins and flank. Our data reveal, for the first time, a genetic basis for this difference. Finally, we implicate pax3a as a mediator of continuous variation in the levels of xanthophore-based colour along the cichlid flank.
Collapse
Affiliation(s)
- R Craig Albertson
- Department of Biology, University of Massachusetts, 221 Morrill Science Center, Amherst, MA, 01003, USA
| | | | | | | | | | | |
Collapse
|
48
|
Eshel O, Shirak A, Dor L, Band M, Zak T, Markovich-Gordon M, Chalifa-Caspi V, Feldmesser E, Weller JI, Seroussi E, Hulata G, Ron M. Identification of male-specific amh duplication, sexually differentially expressed genes and microRNAs at early embryonic development of Nile tilapia (Oreochromis niloticus). BMC Genomics 2014; 15:774. [PMID: 25199625 PMCID: PMC4176596 DOI: 10.1186/1471-2164-15-774] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 08/18/2014] [Indexed: 12/17/2022] Open
Abstract
Background The probable influence of genes and the environment on sex determination in Nile tilapia suggests that it should be regarded as a complex trait. Detection of sex determination genes in tilapia has both scientific and commercial importance. The main objective was to detect genes and microRNAs that were differentially expressed by gender in early embryonic development. Results Artificial fertilization of Oreochromis niloticus XX females with either sex-reversed ΔXX males or genetically-modified YY ‘supermales’ resulted in all-female and all-male embryos, respectively. RNA of pools of all-female and all-male embryos at 2, 5 and 9 dpf were used as template for a custom Agilent eArray hybridization and next generation sequencing. Fifty-nine genes differentially expressed between genders were identified by a false discovery rate of p < 0.05. The most overexpressed genes were amh and tspan8 in males, and cr/20β-hsd, gpa33, rtn4ipl and zp3 in females (p < 1 × 10−9). Validation of gene expression using qPCR in embryos and gonads indicated copy number variation in tspan8, gpa33, cr/20β-hsd and amh. Sequencing of amh identified a male-specific duplication of this gene, denoted amhy, differing from the sequence of amh by a 233 bp deletion on exonVII, hence lacking the capability to encode the protein motif that binds to the transforming growth factor beta receptor (TGF-β domain). amh and amhy segregated in the mapping family in full concordance with SD-linked marker on LG23 signifying the QTL for SD. We discovered 831 microRNAs in tilapia embryos of which nine had sexually dimorphic expression patterns by a false discovery rate of p < 0.05. An up-regulated microRNA in males, pma-mir-4585, was characterized with all six predicted target genes including cr/20β-hsd, down-regulated in males. Conclusions This study reports the first discovery of sexually differentially expressed genes and microRNAs at a very early stage of tilapia embryonic development, i.e. from 2 dpf. Genes with sexually differential expression patterns are enriched for copy number variation. A novel male-specific duplication of amh, denoted amhy, lacking the TGF-β domain was identified and mapped to the QTL region on LG23 for SD, thus indicating its potential role in SD. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-774) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Micha Ron
- Institute of Animal Science, ARO, The Volcani Center, Bet Dagan 50250, Israel.
| |
Collapse
|
49
|
Wessels S, Sharifi RA, Luehmann LM, Rueangsri S, Krause I, Pach S, Hoerstgen-Schwark G, Knorr C. Allelic variant in the anti-Müllerian hormone gene leads to autosomal and temperature-dependent sex reversal in a selected Nile tilapia line. PLoS One 2014; 9:e104795. [PMID: 25157978 PMCID: PMC4144872 DOI: 10.1371/journal.pone.0104795] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 07/18/2014] [Indexed: 11/18/2022] Open
Abstract
Owing to the demand for sustainable sex-control protocols in aquaculture, research in tilapia sex determination is gaining momentum. The mutual influence of environmental and genetic factors hampers disentangling the complex sex determination mechanism in Nile tilapia (Oreochromis niloticus). Previous linkage analyses have demonstrated quantitative trait loci for the phenotypic sex on linkage groups 1, 3, and 23. Quantitative trait loci for temperature-dependent sex reversal similarly reside on linkage group 23. The anti-Müllerian hormone gene (amh), located in this genomic region, is important for sexual fate in higher vertebrates, and shows sexually dimorphic expression in Nile tilapia. Therefore this study aimed at detecting allelic variants and marker-sex associations in the amh gene. Sequencing identified six allelic variants. A significant effect on the phenotypic sex for SNP ss831884014 (p<0.0017) was found by stepwise logistic regression. The remaining variants were not significantly associated. Functional annotation of SNP ss831884014 revealed a non-synonymous amino acid substitution in the amh protein. Consequently, a fluorescence resonance energy transfer (FRET) based genotyping assay was developed and validated with a representative sample of fish. A logistic linear model confirmed a highly significant effect of the treatment and genotype on the phenotypic sex, but not for the interaction term (treatment: p<0.0001; genotype: p<0.0025). An additive genetic model proved a linear allele substitution effect of 12% in individuals from controls and groups treated at high temperature, respectively. Moreover, the effect of the genotype on the male proportion was significantly higher in groups treated at high temperature, giving 31% more males on average of the three genotypes. In addition, the groups treated at high temperature showed a positive dominance deviation (+11.4% males). In summary, marker-assisted selection for amh variant ss831884014 seems to be highly beneficial to increase the male proportion in Nile tilapia, especially when applying temperature-induced sex reversal.
Collapse
Affiliation(s)
- Stephan Wessels
- Department of Animal Sciences - Aquaculture and Water Ecology, Goettingen University, Goettingen, Germany
- * E-mail:
| | - Reza Ahmad Sharifi
- Department of Animal Sciences - Animal Breeding and Genetics, Goettingen University, Goettingen, Germany
| | - Liane Magdalena Luehmann
- Department of Animal Sciences - Aquaculture and Water Ecology, Goettingen University, Goettingen, Germany
| | - Sawichaya Rueangsri
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Ina Krause
- Department of Animal Sciences - Aquaculture and Water Ecology, Goettingen University, Goettingen, Germany
| | - Sabrina Pach
- Department of Animal Sciences - Molecular Biology and Molecular Diagnostics of Livestock, Goettingen University, Goettingen, Germany
| | - Gabriele Hoerstgen-Schwark
- Department of Animal Sciences - Aquaculture and Water Ecology, Goettingen University, Goettingen, Germany
| | - Christoph Knorr
- Department of Animal Sciences - Livestock Biotechnology and Reproduction, Goettingen University, Goettingen, Germany
| |
Collapse
|
50
|
Henning F, Lee HJ, Franchini P, Meyer A. Genetic mapping of horizontal stripes in Lake Victoria cichlid fishes: benefits and pitfalls of using RAD markers for dense linkage mapping. Mol Ecol 2014; 23:5224-40. [PMID: 25039588 DOI: 10.1111/mec.12860] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/02/2014] [Accepted: 07/12/2014] [Indexed: 01/25/2023]
Abstract
The genetic dissection of naturally occurring phenotypes sheds light on many fundamental and longstanding questions in speciation and adaptation and is a central research topic in evolutionary biology. Until recently, forward-genetic approaches were virtually impossible to apply to nonmodel organisms, but the development of next-generation sequencing techniques eases this difficulty. Here, we use the ddRAD-seq method to map a colour trait with a known adaptive function in cichlid fishes, well-known textbook examples for rapid rates of speciation and astonishing phenotypic diversification. A suite of phenotypic key innovations is related to speciation and adaptation in cichlids, among which body coloration features prominently. The focal trait of this study, horizontal stripes, evolved in parallel in several cichlid radiations and is associated with piscivorous foraging behaviour. We conducted interspecific crosses between Haplochromis sauvagei and H. nyererei and constructed a linkage map with 867 SNP markers distributed on 22 linkage groups and total size of 1130.63 cM. Lateral stripes are inherited as a Mendelian trait and map to a single genomic interval that harbours a paralog of a gene with known function in stripe patterning. Dorsolateral and mid-lateral stripes were always coinherited and are thus under the same genetic control. Additionally, we directly quantify the genotyping error rates in RAD markers and offer guidelines for identifying and dealing with errors. Uncritical marker selection was found to severely impact linkage map construction. Fortunately, by applying appropriate quality control steps, a genotyping accuracy of >99.9% can be reached, thus allowing for efficient linkage mapping of evolutionarily relevant traits.
Collapse
Affiliation(s)
- Frederico Henning
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstraße 10, Konstanz, 78457, Germany
| | | | | | | |
Collapse
|