1
|
Amaral L, Mendes F, Côrte-Real M, Rego A, Outeiro TF, Chaves SR. A versatile yeast model identifies the pesticides cymoxanil and metalaxyl as risk factors for synucleinopathies. CHEMOSPHERE 2024; 364:143039. [PMID: 39117080 DOI: 10.1016/j.chemosphere.2024.143039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons and the presence of Lewy bodies, which predominantly consist of aggregated forms of the protein alpha-synuclein (aSyn). While these aggregates are a pathological hallmark of PD, the etiology of most cases remains elusive. Although environmental risk factors have been identified, such as the pesticides dieldrin and MTPT, many others remain to be assessed and their molecular impacts are underexplored. This study aimed to identify pesticides that could enhance aSyn aggregation using a humanized yeast model expressing aSyn fused to GFP as a primary screening platform, which we validated using dieldrin. We found that the pesticides cymoxanil and metalaxyl induce aggregation of aSyn in yeast, which we confirmed also occurs in a model of aSyn inclusion formation using human H4 cells. In conclusion, our approach generated invaluable molecular data on the effect of pesticides, therefore providing insights into mechanisms associated with the onset and progression of PD and other synucleinopathies.
Collapse
Affiliation(s)
- Leslie Amaral
- CBMA - Centre of Molecular and Environmental Biology, ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal; University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Filipa Mendes
- CBMA - Centre of Molecular and Environmental Biology, ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal
| | - Manuela Côrte-Real
- CBMA - Centre of Molecular and Environmental Biology, ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal
| | - António Rego
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Braga, Portugal
| | - Tiago F Outeiro
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK; Max Planck Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany; Scientific Employee With an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany.
| | - Susana R Chaves
- CBMA - Centre of Molecular and Environmental Biology, ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
2
|
Makasewicz K, Linse S, Sparr E. Interplay of α-synuclein with Lipid Membranes: Cooperative Adsorption, Membrane Remodeling and Coaggregation. JACS AU 2024; 4:1250-1262. [PMID: 38665673 PMCID: PMC11040681 DOI: 10.1021/jacsau.3c00579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 04/28/2024]
Abstract
α-Synuclein is a small neuronal protein enriched at presynaptic termini. It is hypothesized to play a role in neurotransmitter release and synaptic vesicle cycling, while the formation of α-synuclein amyloid fibrils is associated with several neurodegenerative diseases, most notably Parkinson's Disease. The molecular mechanisms of both the physiological and pathological functions of α-synuclein remain to be fully understood, but in both cases, interactions with membranes play an important role. In this Perspective, we discuss several aspects of α-synuclein interactions with lipid membranes including cooperative adsorption, membrane remodeling and α-synuclein amyloid fibril formation in the presence of lipid membranes. We highlight the coupling between the different phenomena and their interplay in the context of physiological and pathological functions of α-synuclein.
Collapse
Affiliation(s)
- Katarzyna Makasewicz
- Division
of Physical Chemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Sara Linse
- Biochemistry
and Structural Biology, Lund University, SE-22100 Lund, Sweden
| | - Emma Sparr
- Department
of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
3
|
Prymaczok NC, De Francesco PN, Mazzetti S, Humbert-Claude M, Tenenbaum L, Cappelletti G, Masliah E, Perello M, Riek R, Gerez JA. Cell-to-cell transmitted alpha-synuclein recapitulates experimental Parkinson's disease. NPJ Parkinsons Dis 2024; 10:10. [PMID: 38184623 PMCID: PMC10771530 DOI: 10.1038/s41531-023-00618-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/08/2023] [Indexed: 01/08/2024] Open
Abstract
Parkinson's disease is characterized by a progressive accumulation of alpha-Synuclein (αSyn) neuronal inclusions called Lewy bodies in the nervous system. Lewy bodies can arise from the cell-to-cell propagation of αSyn, which can occur via sequential steps of secretion and uptake. Here, by fusing a removable short signal peptide to the N-terminus of αSyn, we developed a novel mouse model with enhanced αSyn secretion and cell-to-cell transmission. Expression of the secreted αSyn in the mouse brain was under the control of a novel hybrid promoter in combination with adeno-associated virus serotype 9 (AAV9). This combination of promoter and viral vector induced a robust expression in neurons but not in the glia of injected mice. Biochemical characterization of the secreted αSyn revealed that, in cultured cells, this protein is released to the extracellular milieu via conventional secretion. The released αSyn is then internalized and processed by acceptor cells via the endosome-lysosome pathway indicating that the secreted αSyn is cell-to-cell transmitted. The secreted αSyn is aggregation-prone and amyloidogenic, and when expressed in the brain of wild-type non-transgenic mice, it induces a Parkinson's disease-like phenotype that includes a robust αSyn pathology in the substantia nigra, neuronal loss, neuroinflammation, and motor deficits, all the key features of experimental animal models of Parkinson's disease. In summary, a novel animal model of Parkinson's disease based on enhanced cell-to-cell transmission of αSyn was developed. The neuron-produced cell-to-cell transmitted αSyn triggers all phenotypic features of experimental Parkinson's disease in mice.
Collapse
Affiliation(s)
- Natalia Cecilia Prymaczok
- Institute of Molecular Physical Science, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Pablo Nicolas De Francesco
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology (IMBICE), dependent of the Argentine Research Council (CONICET), Scientific Research Commission and University of La Plata Buenos Aires, La Plata, Argentina
| | - Samanta Mazzetti
- Department of Biosciences, Università degli Studi di Milano, Milano, Italy
- Fondazione Grigioni per il Morbo di Parkinson, Milano, Italy
| | - Marie Humbert-Claude
- Laboratory of Neurotherapies and NeuroModulation, Clinical Neuroscience Department, Center for Neuroscience Research, Lausanne University Hospital, Lausanne, Switzerland
| | - Liliane Tenenbaum
- Laboratory of Neurotherapies and NeuroModulation, Clinical Neuroscience Department, Center for Neuroscience Research, Lausanne University Hospital, Lausanne, Switzerland
| | - Graziella Cappelletti
- Department of Biosciences, Università degli Studi di Milano, Milano, Italy
- Fondazione Grigioni per il Morbo di Parkinson, Milano, Italy
| | - Eliezer Masliah
- Division of Neurosciences, National Institute on Aging/NIH, 7201, Wisconsin Ave, Bethesda, MD, USA
| | - Mario Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology (IMBICE), dependent of the Argentine Research Council (CONICET), Scientific Research Commission and University of La Plata Buenos Aires, La Plata, Argentina
| | - Roland Riek
- Institute of Molecular Physical Science, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Juan Atilio Gerez
- Institute of Molecular Physical Science, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Bayandina SV, Mukha DV. Saccharomyces cerevisiae as a Model for Studying Human Neurodegenerative Disorders: Viral Capsid Protein Expression. Int J Mol Sci 2023; 24:17213. [PMID: 38139041 PMCID: PMC10743263 DOI: 10.3390/ijms242417213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
In this article, we briefly describe human neurodegenerative diseases (NDs) and the experimental models used to study them. The main focus is the yeast Saccharomyces cerevisiae as an experimental model used to study neurodegenerative processes. We review recent experimental data on the aggregation of human neurodegenerative disease-related proteins in yeast cells. In addition, we describe the results of studies that were designed to investigate the molecular mechanisms that underlie the aggregation of reporter proteins. The advantages and disadvantages of the experimental approaches that are currently used to study the formation of protein aggregates are described. Special attention is given to the similarity between aggregates that form as a result of protein misfolding and viral factories-special structural formations in which viral particles are formed inside virus-infected cells. A separate part of the review is devoted to our previously published study on the formation of aggregates upon expression of the insect densovirus capsid protein in yeast cells. Based on the reviewed results of studies on NDs and related protein aggregation, as well as viral protein aggregation, a new experimental model system for the study of human NDs is proposed. The core of the proposed system is a comparative transcriptomic analysis of changes in signaling pathways during the expression of viral capsid proteins in yeast cells.
Collapse
Affiliation(s)
| | - Dmitry V. Mukha
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
5
|
Chawla S, Ahmadpour D, Schneider KL, Kumar N, Fischbach A, Molin M, Nystrom T. Calcineurin stimulation by Cnb1p overproduction mitigates protein aggregation and α-synuclein toxicity in a yeast model of synucleinopathy. Cell Commun Signal 2023; 21:220. [PMID: 37620860 PMCID: PMC10464345 DOI: 10.1186/s12964-023-01242-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023] Open
Abstract
The calcium-responsive phosphatase, calcineurin, senses changes in Ca2+ concentrations in a calmodulin-dependent manner. Here we report that under non-stress conditions, inactivation of calcineurin signaling or deleting the calcineurin-dependent transcription factor CRZ1 triggered the formation of chaperone Hsp100p (Hsp104p)-associated protein aggregates in Saccharomyces cerevisiae. Furthermore, calcineurin inactivation aggravated α-Synuclein-related cytotoxicity. Conversely, elevated production of the calcineurin activator, Cnb1p, suppressed protein aggregation and cytotoxicity associated with the familial Parkinson's disease-related mutant α-Synuclein A53T in a partly CRZ1-dependent manner. Activation of calcineurin boosted normal localization of both wild type and mutant α-synuclein to the plasma membrane, an intervention previously shown to mitigate α-synuclein toxicity in Parkinson's disease models. The findings demonstrate that calcineurin signaling, and Ca2+ influx to the vacuole, limit protein quality control in non-stressed cells and may have implications for elucidating to which extent aberrant calcineurin signaling contributes to the progression of Parkinson's disease(s) and other synucleinopathies. Video Abstract.
Collapse
Affiliation(s)
- Srishti Chawla
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, 405 30, Sweden.
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden.
| | - Doryaneh Ahmadpour
- Center for Bionics and Pain Research, Sahlgrenska University Hospital, Mölndal, 431 30, Sweden
| | - Kara L Schneider
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, 405 30, Sweden
| | - Navinder Kumar
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, 405 30, Sweden
| | - Arthur Fischbach
- Max Planck Institute for Biology of Ageing, Cologne, 50931, Germany
| | - Mikael Molin
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Thomas Nystrom
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, 405 30, Sweden.
| |
Collapse
|
6
|
Yang Z, Yao Y, Zhou Y, Li X, Tang Y, Wei G. EGCG attenuates α-synuclein protofibril-membrane interactions and disrupts the protofibril. Int J Biol Macromol 2023; 230:123194. [PMID: 36623616 DOI: 10.1016/j.ijbiomac.2023.123194] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/15/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
The fibrillary aggregates of α-synuclein (α-syn) are closely associated with the etiology of Parkinson's disease (PD). Mounting evidence shows that the interaction of α-syn with biological membranes is a culprit for its aggregation and cytotoxicity. While some small molecules can effectively inhibit α-syn fibrillization in solution, their potential roles in the presence of membrane are rarely studied. Among them, green tea extract epigallocatechin gallate (EGCG) is currently under active investigation. Herein, we investigated the effects of EGCG on α-syn protofibril (an intermediate of α-syn fibril formation) in the presence of a model membrane and on the interactions between α-syn protofibril and the membrane, as well as the underlying mechanisms, by performing microsecond all-atom molecular dynamics simulations. The results show that EGCG has destabilization effects on α-syn protofibril, albeit to a lesser extent than that in solution. Intriguingly, we find that EGCG forms overwhelming H-bonding and cation-π interactions with membrane and thus attenuates protofibril-membrane interactions. Moreover, the decreased protofibril-membrane interactions impede the membrane damage by α-syn protofibril and enable the membrane integrity. These findings provide atomistic understanding towards the attenuation of α-syn protofibril-induced cytotoxicity by EGCG in cellular environment, which is helpful for the development of EGCG-based therapeutic strategies against PD.
Collapse
Affiliation(s)
- Zhongyuan Yang
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, Shanghai 200438, People's Republic of China
| | - Yifei Yao
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, Shanghai 200438, People's Republic of China
| | - Yun Zhou
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, Shanghai 200438, People's Republic of China
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yiming Tang
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, Shanghai 200438, People's Republic of China.
| | - Guanghong Wei
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, Shanghai 200438, People's Republic of China.
| |
Collapse
|
7
|
Brendza R, Gao X, Stark KL, Lin H, Lee SH, Hu C, Cai H, DiCara D, Hsiao YC, Ngu H, Foreman O, Baca M, Dohse M, Fortin JP, Corpuz R, Seshasayee D, Easton A, Ayalon G, Hötzel I, Chih B. Anti-α-synuclein c-terminal antibodies block PFF uptake and accumulation of phospho-synuclein in preclinical models of Parkinson's disease. Neurobiol Dis 2023; 177:105969. [PMID: 36535551 DOI: 10.1016/j.nbd.2022.105969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/11/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Parkinson's disease (PD), a neurodegenerative disease affecting dopaminergic (DA) neurons, is characterized by decline of motor function and cognition. Dopaminergic cell loss is associated with accumulation of toxic alpha synuclein aggregates. As DA neuron death occurs late in the disease, therapeutics that block the spread of alpha synuclein may offer functional benefit and delay disease progression. To test this hypothesis, we generated antibodies to the C terminal region of synuclein with high nanomolar affinity and characterized them in in vitro and in vivo models of spread. Interestingly, we found that only antibodies with high affinity to the distal most portion of the C-terminus robustly reduced uptake of alpha synuclein preformed fibrils (PFF) and accumulation of phospho (S129) alpha synuclein in cell culture. Additionally, the antibody treatment blocked the spread of phospho (S129) alpha synuclein associated-pathology in a mouse model of synucleinopathy. Blockade of neuronal PFF uptake by different antibodies was more predictive of in vivo activity than their binding potency to monomeric or oligomeric forms of alpha synuclein. These data demonstrate that antibodies directed to the C-terminus of the alpha synuclein have differential effects on target engagement and efficacy. Furthermore, our data provides additional support for the development of alpha synuclein antibodies as a therapeutic strategy for PD patients.
Collapse
Affiliation(s)
| | - Xiaoying Gao
- Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA, USA
| | | | - Han Lin
- Neuroscience, Genentech, South San Francisco, CA, USA
| | - Seung-Hye Lee
- Neuroscience, Genentech, South San Francisco, CA, USA
| | - Changyun Hu
- Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Hao Cai
- Preclinical and Translational Pharmacokinetics, Genentech, South San Francisco, CA, USA
| | - Danielle DiCara
- Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Yi-Chun Hsiao
- Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Hai Ngu
- Pathology, Genentech, South San Francisco, CA, USA
| | - Oded Foreman
- Pathology, Genentech, South San Francisco, CA, USA
| | - Miriam Baca
- Pathology, Genentech, South San Francisco, CA, USA
| | - Monika Dohse
- Pathology, Genentech, South San Francisco, CA, USA
| | | | - Racquel Corpuz
- Antibody Engineering, Genentech, South San Francisco, CA, USA
| | | | - Amy Easton
- Neuroscience, Genentech, South San Francisco, CA, USA.
| | - Gai Ayalon
- Neuroscience, Genentech, South San Francisco, CA, USA
| | - Isidro Hötzel
- Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Ben Chih
- Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
8
|
Park GH, Park JH, Chung KC. Precise control of mitophagy through ubiquitin proteasome system and deubiquitin proteases and their dysfunction in Parkinson's disease. BMB Rep 2021. [PMID: 34674795 PMCID: PMC8728543 DOI: 10.5483/bmbrep.2021.54.12.107] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative diseases in the elderly population and is caused by the loss of dopaminergic neurons. PD has been predominantly attributed to mitochondrial dysfunction. The structural alteration of α-synuclein triggers toxic oligomer formation in the neurons, which greatly contributes to PD. In this article, we discuss the role of several familial PD-related proteins, such as α-synuclein, DJ-1, LRRK2, PINK1, and parkin in mitophagy, which entails a selective degradation of mitochondria via autophagy. Defective changes in mitochondrial dynamics and their biochemical and functional interaction induce the formation of toxic α-synuclein-containing protein aggregates in PD. In addition, these gene products play an essential role in ubiquitin proteasome system (UPS)-mediated proteolysis as well as mitophagy. Interestingly, a few deubiquitinating enzymes (DUBs) additionally modulate these two pathways negatively or positively. Based on these findings, we summarize the close relationship between several DUBs and the precise modulation of mitophagy. For example, the USP8, USP10, and USP15, among many DUBs are reported to specifically regulate the K48- or K63-linked de-ubiquitination reactions of several target proteins associated with the mitophagic process, in turn upregulating the mitophagy and protecting neuronal cells from α-synuclein-derived toxicity. In contrast, USP30 inhibits mitophagy by opposing parkin-mediated ubiquitination of target proteins. Furthermore, the association between these changes and PD pathogenesis will be discussed. Taken together, although the functional roles of several PD-related genes have yet to be fully understood, they are substantially associated with mitochondrial quality control as well as UPS. Therefore, a better understanding of their relationship provides valuable therapeutic clues for appropriate management strategies.
Collapse
Affiliation(s)
- Ga Hyun Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Joon Hyung Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
9
|
Park GH, Park JH, Chung KC. Precise control of mitophagy through ubiquitin proteasome system and deubiquitin proteases and their dysfunction in Parkinson's disease. BMB Rep 2021; 54:592-600. [PMID: 34674795 PMCID: PMC8728543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/02/2021] [Accepted: 10/06/2021] [Indexed: 08/21/2024] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases in the elderly population and is caused by the loss of dopaminergic neurons. PD has been predominantly attributed to mitochondrial dysfunction. The structural alteration of α-synuclein triggers toxic oligomer formation in the neurons, which greatly contributes to PD. In this article, we discuss the role of several familial PD-related proteins, such as α-synuclein, DJ-1, LRRK2, PINK1, and parkin in mitophagy, which entails a selective degradation of mitochondria via autophagy. Defective changes in mitochondrial dynamics and their biochemical and functional interaction induce the formation of toxic α-synucleincontaining protein aggregates in PD. In addition, these gene products play an essential role in ubiquitin proteasome system (UPS)-mediated proteolysis as well as mitophagy. Interestingly, a few deubiquitinating enzymes (DUBs) additionally modulate these two pathways negatively or positively. Based on these findings, we summarize the close relationship between several DUBs and the precise modulation of mitophagy. For example, the USP8, USP10, and USP15, among many DUBs are reported to specifically regulate the K48- or K63-linked de-ubiquitination reactions of several target proteins associated with the mitophagic process, in turn upregulating the mitophagy and protecting neuronal cells from α-synuclein-derived toxicity. In contrast, USP30 inhibits mitophagy by opposing parkin-mediated ubiquitination of target proteins. Furthermore, the association between these changes and PD pathogenesis will be discussed. Taken together, although the functional roles of several PD-related genes have yet to be fully understood, they are substantially associated with mitochondrial quality control as well as UPS. Therefore, a better understanding of their relationship provides valuable therapeutic clues for appropriate management strategies. [BMB Reports 2021; 54(12): 592-600].
Collapse
Affiliation(s)
- Ga Hyun Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Joon Hyung Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
10
|
Chen ZJ, Liang CY, Yang LQ, Ren SM, Xia YM, Cui L, Li XF, Gao BL. Association of Parkinson's Disease With Microbes and Microbiological Therapy. Front Cell Infect Microbiol 2021; 11:619354. [PMID: 33763383 PMCID: PMC7982661 DOI: 10.3389/fcimb.2021.619354] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is the most common movement disorder in the world, affecting 1-2 per 1,000 of the population. The main pathological changes of PD are damage of dopaminergic neurons in substantia nigra of the central nervous system and formation of Lewy bodies. These pathological changes also occur in the intestinal tract and are strongly associated with changes in intestinal flora. By reviewing the research progress in PD and its association with intestinal flora in recent years, this review expounded the mechanism of action between intestinal flora and PD as well as the transmission mode of α - synuclein in neurons. In clinical studies, β diversity of intestinal flora in PD patients was found to change significantly, with Lactobacillusaceae and Verrucomicrobiaceae being significantly increased and Lachnospiraceae and Prevotellaceae being significantly decreased. In addition, a longer PD course was associated with fewer bacteria and probiotics producing short chain fatty acids, but more pathogenic bacteria. Moreover, the motor symptoms of PD patients may be related to Enterobacteriaceae and bacteria. Most importantly, catechol-O-methyltransferase inhibitors and anticholinergic drugs could change the intestinal flora of PD patients and increase the harmful flora, whereas other anti-PD drugs such as levodopa, dopamine agonist, monoamine oxidase inhibitors, and amantadine did not have these effects. Probiotics, prebiotics, and synbiotics treatment had some potential values in improving the constipation of PD patients, promoting the growth of probiotics, and improving the level of intestinal inflammation. At present, there were only a few case studies and small sample studies which have found certain clinical efficacy of fecal microbiome transplants. Further studies are necessary to elaborate the relationship of PD with microbes.
Collapse
Affiliation(s)
- Zhao-Ji Chen
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Cheng-Yu Liang
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Li-Qing Yang
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Si-Min Ren
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yan-Min Xia
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Lei Cui
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Xiao-Fang Li
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Bu-Lang Gao
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
11
|
Popova B, Wang D, Pätz C, Akkermann D, Lázaro DF, Galka D, Kolog Gulko M, Bohnsack MT, Möbius W, Bohnsack KE, Outeiro TF, Braus GH. DEAD-box RNA helicase Dbp4/DDX10 is an enhancer of α-synuclein toxicity and oligomerization. PLoS Genet 2021; 17:e1009407. [PMID: 33657088 PMCID: PMC7928443 DOI: 10.1371/journal.pgen.1009407] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 02/09/2021] [Indexed: 01/01/2023] Open
Abstract
Parkinson’s disease is a neurodegenerative disorder associated with misfolding and aggregation of α-synuclein as a hallmark protein. Two yeast strain collections comprising conditional alleles of essential genes were screened for the ability of each allele to reduce or improve yeast growth upon α-synuclein expression. The resulting 98 novel modulators of α-synuclein toxicity clustered in several major categories including transcription, rRNA processing and ribosome biogenesis, RNA metabolism and protein degradation. Furthermore, expression of α-synuclein caused alterations in pre-rRNA transcript levels in yeast and in human cells. We identified the nucleolar DEAD-box helicase Dbp4 as a prominent modulator of α-synuclein toxicity. Downregulation of DBP4 rescued cells from α-synuclein toxicity, whereas overexpression led to a synthetic lethal phenotype. We discovered that α-synuclein interacts with Dbp4 or its human ortholog DDX10, sequesters the protein outside the nucleolus in yeast and in human cells, and stabilizes a fraction of α-synuclein oligomeric species. These findings provide a novel link between nucleolar processes and α-synuclein mediated toxicity with DDX10 emerging as a promising drug target. Neurodegenerative Parkinson’s disease affects about 2% of the over 65 years old human population. It is characterized by loss of dopaminergic neurons in midbrain and the presence of Lewy inclusion bodies that are predominantly composed of the α-synuclein protein. Expression of human α-synuclein in yeast cells results in dosage-dependent toxicity monitored as growth reduction and the formation of inclusions similar to mammalian neurons. Systematic analysis of yeast genes, which are essential for growth, revealed that reduced expression of central cellular proteostasis pathways, such as protein synthesis and ubiquitin-dependent protein degradation can enhance or reduce toxic effects of α-synuclein on yeast growth. Expression of α-synuclein affects not only early steps of ribosome biogenesis in yeast but also in human cells. We discovered the nucleolar DEAD-box RNA helicase Dbp4 as a novel strong enhancer of α-synuclein toxicity. The interaction of α-synuclein in yeast with Dbp4 as well as in human cells with its ortholog DDX10 results in sub-cellular exclusion from the nucleolus and promotes the accumulation of toxic oligomeric α-synuclein species. This molecular interaction of α-synuclein with DDX10 and its consequences for human cells provide a novel view in understanding the complexity of Parkinson’s disease.
Collapse
Affiliation(s)
- Blagovesta Popova
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, Germany
| | - Dan Wang
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, Germany
| | - Christina Pätz
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, Germany
| | - Dagmar Akkermann
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, Germany
| | - Diana F. Lázaro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Göttingen, Germany
| | - Dajana Galka
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, Germany
| | - Miriam Kolog Gulko
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, Germany
| | - Markus T. Bohnsack
- Department of Molecular Biology, University Medical Center Goettingen, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Electron Microscopy Core Unit, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Katherine E. Bohnsack
- Department of Molecular Biology, University Medical Center Goettingen, Göttingen, Germany
| | - Tiago F. Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Göttingen, Germany
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
12
|
Fernando S, Allan CY, Mroczek K, Pearce X, Sanislav O, Fisher PR, Annesley SJ. Cytotoxicity and Mitochondrial Dysregulation Caused by α-Synuclein in Dictyostelium discoideum. Cells 2020; 9:E2289. [PMID: 33066427 PMCID: PMC7602147 DOI: 10.3390/cells9102289] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
Alpha synuclein has been linked to both sporadic and familial forms of Parkinson's disease (PD) and is the most abundant protein in Lewy bodies a hallmark of Parkinson's disease. The function of this protein and the molecular mechanisms underlying its toxicity are still unclear, but many studies have suggested that the mechanism of α-synuclein toxicity involves alterations to mitochondrial function. Here we expressed human α-synuclein and two PD-causing α-synuclein mutant proteins (with a point mutation, A53T, and a C-terminal 20 amino acid truncation) in the eukaryotic model Dictyostelium discoideum. Mitochondrial disease has been well studied in D. discoideum and, unlike in mammals, mitochondrial dysfunction results in a clear set of defective phenotypes. These defective phenotypes are caused by the chronic hyperactivation of the cellular energy sensor, AMP-activated protein kinase (AMPK). Expression of α-synuclein wild type and mutant forms was toxic to the cells and mitochondrial function was dysregulated. Some but not all of the defective phenotypes could be rescued by down regulation of AMPK revealing both AMPK-dependent and -independent mechanisms. Importantly, we also show that the C-terminus of α-synuclein is required and sufficient for the localisation of the protein to the cell cortex in D. discoideum.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sarah J. Annesley
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora 3086, Melbourne, Australia; (S.F.); (C.Y.A.); (K.M.); (X.P.); (O.S.); (P.R.F.)
| |
Collapse
|
13
|
Biophysical studies of protein misfolding and aggregation in in vivo models of Alzheimer's and Parkinson's diseases. Q Rev Biophys 2020; 49:e22. [PMID: 32493529 DOI: 10.1017/s0033583520000025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurodegenerative disorders, including Alzheimer's (AD) and Parkinson's diseases (PD), are characterised by the formation of aberrant assemblies of misfolded proteins. The discovery of disease-modifying drugs for these disorders is challenging, in part because we still have a limited understanding of their molecular origins. In this review, we discuss how biophysical approaches can help explain the formation of the aberrant conformational states of proteins whose neurotoxic effects underlie these diseases. We discuss in particular models based on the transgenic expression of amyloid-β (Aβ) and tau in AD, and α-synuclein in PD. Because biophysical methods have enabled an accurate quantification and a detailed understanding of the molecular mechanisms underlying protein misfolding and aggregation in vitro, we expect that the further development of these methods to probe directly the corresponding mechanisms in vivo will open effective routes for diagnostic and therapeutic interventions.
Collapse
|
14
|
Chernoff YO, Grizel AV, Rubel AA, Zelinsky AA, Chandramowlishwaran P, Chernova TA. Application of yeast to studying amyloid and prion diseases. ADVANCES IN GENETICS 2020; 105:293-380. [PMID: 32560789 PMCID: PMC7527210 DOI: 10.1016/bs.adgen.2020.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyloids are fibrous cross-β protein aggregates that are capable of proliferation via nucleated polymerization. Amyloid conformation likely represents an ancient protein fold and is linked to various biological or pathological manifestations. Self-perpetuating amyloid-based protein conformers provide a molecular basis for transmissible (infectious or heritable) protein isoforms, termed prions. Amyloids and prions, as well as other types of misfolded aggregated proteins are associated with a variety of devastating mammalian and human diseases, such as Alzheimer's, Parkinson's and Huntington's diseases, transmissible spongiform encephalopathies (TSEs), amyotrophic lateral sclerosis (ALS) and transthyretinopathies. In yeast and fungi, amyloid-based prions control phenotypically detectable heritable traits. Simplicity of cultivation requirements and availability of powerful genetic approaches makes yeast Saccharomyces cerevisiae an excellent model system for studying molecular and cellular mechanisms governing amyloid formation and propagation. Genetic techniques allowing for the expression of mammalian or human amyloidogenic and prionogenic proteins in yeast enable researchers to capitalize on yeast advantages for characterization of the properties of disease-related proteins. Chimeric constructs employing mammalian and human aggregation-prone proteins or domains, fused to fluorophores or to endogenous yeast proteins allow for cytological or phenotypic detection of disease-related protein aggregation in yeast cells. Yeast systems are amenable to high-throughput screening for antagonists of amyloid formation, propagation and/or toxicity. This review summarizes up to date achievements of yeast assays in application to studying mammalian and human disease-related aggregating proteins, and discusses both limitations and further perspectives of yeast-based strategies.
Collapse
Affiliation(s)
- Yury O Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States; Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia.
| | - Anastasia V Grizel
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Aleksandr A Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia; Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia; Sirius University of Science and Technology, Sochi, Russia
| | - Andrew A Zelinsky
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | | | - Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
15
|
Sachsenhauser V, Deng X, Kim HH, Jankovic M, Bardwell JC. Yeast Tripartite Biosensors Sensitive to Protein Stability and Aggregation Propensity. ACS Chem Biol 2020; 15:1078-1088. [PMID: 32105441 DOI: 10.1021/acschembio.0c00083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In contrast to the myriad approaches available to study protein misfolding and aggregation in vitro, relatively few tools are available for the study of these processes in the cellular context. This is in part due to the complexity of the cellular environment which, for instance, interferes with many spectroscopic approaches. Here, we describe a tripartite fusion approach that can be used to assess in vivo protein stability and solubility in the cytosol of Saccharomyces cerevisiae. Our biosensors contain tripartite fusions in which a protein of interest is inserted into antibiotic resistance markers. These fusions act to directly link the aggregation susceptibility and stability of the inserted protein to antibiotic resistance. We demonstrate a linear relationship between the thermodynamic stabilities of variants of the model folding protein immunity protein 7 (Im7) fused into the resistance markers and their antibiotic resistance readouts. We also use this system to investigate the in vivo properties of the yeast prion proteins Sup35 and Rnq1 and proteins whose aggregation is associated with some of the most prevalent neurodegenerative misfolding disorders, including peptide amyloid beta 1-42 (Aβ42), which is involved in Alzheimer's disease, and protein α-synuclein, which is linked to Parkinson's disease.
Collapse
Affiliation(s)
- Veronika Sachsenhauser
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109-1085, United States
- Department of Chemistry, Technical University Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Xiexiong Deng
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109-1085, United States
| | - Hyun-hee Kim
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109-1085, United States
| | - Maja Jankovic
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109-1085, United States
| | - James C.A. Bardwell
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109-1085, United States
| |
Collapse
|
16
|
Lam I, Hallacli E, Khurana V. Proteome-Scale Mapping of Perturbed Proteostasis in Living Cells. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a034124. [PMID: 30910772 DOI: 10.1101/cshperspect.a034124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteinopathies are degenerative diseases in which specific proteins adopt deleterious conformations, leading to the dysfunction and demise of distinct cell types. They comprise some of the most significant diseases of aging-from Alzheimer's disease to Parkinson's disease to type 2 diabetes-for which not a single disease-modifying or preventative strategy exists. Here, we survey approaches in tractable cellular and organismal models that bring us toward a more complete understanding of the molecular consequences of protein misfolding. These include proteome-scale profiling of genetic modifiers, as well as transcriptional and proteome changes. We describe assays that can capture protein interactomes in situ and distinct protein conformational states. A picture of cellular drivers and responders to proteotoxicity emerges from this work, distinguishing general alterations of proteostasis from cellular events that are deeply tied to the intrinsic function of the misfolding protein. These distinctions have consequences for the understanding and treatment of proteinopathies.
Collapse
Affiliation(s)
- Isabel Lam
- Ann Romney Center for Neurologic Disease, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Erinc Hallacli
- Ann Romney Center for Neurologic Disease, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Vikram Khurana
- Ann Romney Center for Neurologic Disease, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138.,New York Stem Cell Foundation - Robertson Investigator
| |
Collapse
|
17
|
Ugalde CL, Lawson VA, Finkelstein DI, Hill AF. The role of lipids in α-synuclein misfolding and neurotoxicity. J Biol Chem 2019; 294:9016-9028. [PMID: 31064841 DOI: 10.1074/jbc.rev119.007500] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The misfolding and aggregation of α-synuclein (αsyn) in the central nervous system is associated with a group of neurodegenerative disorders referred to as the synucleinopathies. In addition to being a pathological hallmark of disease, it is now well-established that upon misfolding, αsyn acquires pathogenic properties, such as neurotoxicity, that can contribute to disease development. The mechanisms that produce αsyn misfolding and the molecular events underlying the neuronal damage caused by these misfolded species are not well-defined. A consistent observation that may be relevant to αsyn's pathogenicity is its ability to associate with lipids. This appears important not only to how αsyn aggregates, but also to the mechanism by which the misfolded protein causes intracellular damage. This review discusses the current literature reporting a role of lipids in αsyn misfolding and neurotoxicity in various synucleinopathy disorders and provides an overview of current methods to assess protein misfolding and pathogenicity both in vitro and in vivo.
Collapse
Affiliation(s)
- Cathryn L Ugalde
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia, .,the Departments of Microbiology and Immunology and.,the Howard Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia.,Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3052, Australia, and
| | | | - David I Finkelstein
- the Howard Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia
| | - Andrew F Hill
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia, .,Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3052, Australia, and
| |
Collapse
|
18
|
Abstract
The budding yeast Saccharomyces cerevisiae (S. cerevisiae) has been a remarkable experimental model for the discovery of fundamental biological processes. The high degree of conservation of cellular and molecular processes between the budding yeast and higher eukaryotes has made it a valuable system for the investigation of the molecular mechanisms behind various types of devastating human pathologies. Genetic screens in yeast provided important insight into the toxic mechanisms associated with the accumulation of misfolded proteins. Thus, using yeast genetics and high-throughput screens, novel molecular targets with therapeutic potential have been identified. Here, we describe a yeast screen protocol for the identification of genetic modifiers of alpha-synuclein (aSyn) toxicity, thereby accelerating the identification of novel potential targets for intervention in Parkinson's disease (PD) and other synucleinopathies.
Collapse
Affiliation(s)
- Inês Caldeira Brás
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
| | - Blagovesta Popova
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Goettingen, Germany
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Goettingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany.
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Goettingen, Germany.
- Max Planck Institute for Experimental Medicine, Goettingen, Germany.
| |
Collapse
|
19
|
From Yeast to Humans: Leveraging New Approaches in Yeast to Accelerate Discovery of Therapeutic Targets for Synucleinopathies. Methods Mol Biol 2019; 2049:419-444. [PMID: 31602625 DOI: 10.1007/978-1-4939-9736-7_24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Neurodegenerative diseases (ND) represent a growing, global health crisis, one that lacks any disease-modifying therapeutic strategy. This critical need for new therapies must be met with an exhaustive approach to exploit all tools available. A yeast (Saccharomyces cerevisiae) model of α-synuclein toxicity-the protein causally linked to Parkinson's disease and other synucleinopathies-offers a powerful approach that takes advantage of the unique offerings of this system: tractable genetics, robust high-throughput screening strategies, unparalleled data repositories, powerful computational tools, and extensive evolutionary conservation of fundamental biological pathways. These attributes have enabled genetic and small molecule screens that have revealed toxic phenotypes and drug targets that translate directly to patient-derived iPSC neurons. Extending these insights, recent advances in genetic network analyses have generated the first "humanized" α-synuclein network, which has identified druggable proteins and led to validation of the toxic phenotypes in patient-derived cells. Unbiased phenotypic small molecule screens can identify compounds targeting critical proteins within α-synuclein networks. While identification of direct drug targets for phenotypic screen hits represents a bottleneck, high-throughput chemical genetic methods provide a means to uncover cellular targets and pathways for large numbers of compounds in parallel. Taken together, the yeast α-synuclein model and associated tools can reveal insights into underlying cellular pathologies, lead molecules and their cognate targets, and strategies to translate mechanisms of toxicity and cytoprotection into complex neuronal systems.
Collapse
|
20
|
Di Gregorio SE, Duennwald ML. Yeast as a model to study protein misfolding in aged cells. FEMS Yeast Res 2018; 18:4996350. [DOI: 10.1093/femsyr/foy054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/13/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Sonja E Di Gregorio
- Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Martin L Duennwald
- Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
21
|
Rapid Nuclear Exclusion of Hcm1 in Aging Saccharomyces cerevisiae Leads to Vacuolar Alkalization and Replicative Senescence. G3-GENES GENOMES GENETICS 2018. [PMID: 29519938 PMCID: PMC5940150 DOI: 10.1534/g3.118.200161] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The yeast, Saccharomyces cerevisiae, like other higher eukaryotes, undergo a finite number of cell divisions before exiting the cell cycle due to the effects of aging. Here, we show that yeast aging begins with the nuclear exclusion of Hcm1 in young cells, resulting in loss of acidic vacuoles. Autophagy is required for healthy aging in yeast, with proteins targeted for turnover by autophagy directed to the vacuole. Consistent with this, vacuolar acidity is necessary for vacuolar function and yeast longevity. Using yeast genetics and immunofluorescence microscopy, we confirm that vacuolar acidity plays a critical role in cell health and lifespan, and is potentially maintained by a series of Forkhead Box (Fox) transcription factors. An interconnected transcriptional network involving the Fox proteins (Fkh1, Fkh2 and Hcm1) are required for transcription of v-ATPase subunits and vacuolar acidity. As cells age, Hcm1 is rapidly excluded from the nucleus in young cells, blocking the expression of Hcm1 targets (Fkh1 and Fkh2), leading to loss of v-ATPase gene expression, reduced vacuolar acidification, increased α-syn-GFP vacuolar accumulation, and finally, diminished replicative lifespan (RLS). Loss of vacuolar acidity occurs about the same time as Hcm1 nuclear exclusion and is conserved; we have recently demonstrated that lysosomal alkalization similarly contributes to aging in C. elegans following a transition from progeny producing to post-reproductive life. Our data points to a molecular mechanism regulating vacuolar acidity that signals the end of RLS when acidification is lost.
Collapse
|
22
|
Dong C, Hoffmann M, Li X, Wang M, Garen CR, Petersen NO, Woodside MT. Structural characteristics and membrane interactions of tandem α-synuclein oligomers. Sci Rep 2018; 8:6755. [PMID: 29712958 PMCID: PMC5928076 DOI: 10.1038/s41598-018-25133-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/16/2018] [Indexed: 01/04/2023] Open
Abstract
Pre-fibrillar oligomers of α-synuclein are thought to be pathogenic molecules leading to neurotoxicity associated with Parkinson’s disease and other neurodegenerative disorders. However, small oligomers are difficult to isolate for study. To gain better insight into the properties of small α-synuclein oligomers, we investigated engineered oligomers of specific size (dimers, tetramers, and octamers) linked head-to-tail in tandem, comparing the behavior of the oligomers to monomeric α-synuclein. All oligomeric constructs remained largely disordered in solution, as determined from dynamic light scattering and size-exclusion chromatography. Electron microscopy revealed that each construct could aggregate to form fibrils similar to those formed by monomeric α-synuclein. The interactions with large unilamellar vesicles (LUVs) composed of negatively-charged lipids differed depending on size, with smaller oligomers forming more extensive helical structure as determined by CD spectroscopy. Monitoring the influx of a fluorescence bleaching agent into vesicles showed that larger oligomers were somewhat more effective at degrading vesicular integrity and inducing membrane permeabilization.
Collapse
Affiliation(s)
- Chunhua Dong
- Department of Physics, University of Alberta, Edmonton, AB, Canada.,Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Marion Hoffmann
- Department of Physics, University of Alberta, Edmonton, AB, Canada
| | - Xi Li
- Department of Physics, University of Alberta, Edmonton, AB, Canada.,Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Meijing Wang
- Department of Physics, University of Alberta, Edmonton, AB, Canada.,National Research Council, National Institute of Nanotechnology, University of Alberta, Edmonton, AB, Canada
| | - Craig R Garen
- Department of Physics, University of Alberta, Edmonton, AB, Canada
| | - Nils O Petersen
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, AB, Canada. .,National Research Council, National Institute of Nanotechnology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
23
|
Peelaerts W, Bousset L, Baekelandt V, Melki R. ɑ-Synuclein strains and seeding in Parkinson's disease, incidental Lewy body disease, dementia with Lewy bodies and multiple system atrophy: similarities and differences. Cell Tissue Res 2018; 373:195-212. [PMID: 29704213 DOI: 10.1007/s00441-018-2839-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/28/2018] [Indexed: 12/20/2022]
Abstract
Several age-related neurodegenerative disorders are characterized by the deposition of aberrantly folded endogenous proteins. These proteins have prion-like propagation and amplification properties but so far appear nontransmissible between individuals. Because of the features they share with the prion protein, PrP, the characteristics of pathogenic protein aggregates in several progressive brain disorders, including different types of Lewy body diseases (LBDs), such as Parkinson's disease (PD), multiple system atrophy (MSA) and dementia with Lewy bodies (DLB), have been actively investigated. Even though the pleomorphic nature of these syndromes might suggest different underlying causes, ɑ-synuclein (ɑSyn) appears to play an important role in this heterogeneous group of diseases (the synucleinopathies). An attractive hypothesis is that different types of ɑSyn protein assemblies have a unique and causative role in distinct synucleinopathies. We will discuss the recent research progress on ɑSyn assemblies involved in PD, MSA and DLB; their behavior as strains; current spreading hypotheses; their ability to seed centrally and peripherally; and their implication for disease pathogenesis.
Collapse
Affiliation(s)
- W Peelaerts
- Laboratory for Neurobiology and Gene Therapy, KU Leuven, 3000, Leuven, Belgium.,Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - L Bousset
- Paris-Saclay Institute of Neuroscience, CNRS, 91190, Gif-sur-Yvette, France
| | - V Baekelandt
- Laboratory for Neurobiology and Gene Therapy, KU Leuven, 3000, Leuven, Belgium.
| | - R Melki
- Paris-Saclay Institute of Neuroscience, CNRS, 91190, Gif-sur-Yvette, France
| |
Collapse
|
24
|
Emmanouilidou E, Vekrellis K. Exocytosis and Spreading of Normal and Aberrant α-Synuclein. Brain Pathol 2018; 26:398-403. [PMID: 26940375 DOI: 10.1111/bpa.12373] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/20/2016] [Accepted: 02/02/2016] [Indexed: 01/06/2023] Open
Abstract
It is now established that α-synuclein can be physiologically secreted to the extracellular space. In this sense, mechanisms that govern the secretion of the protein may be of importance in the initiation and progress of synucleinopathies. It is possible that increased secretion may aid the formation of toxic seeds extracellularly. Alternatively, reduced presence of extracellular α-synuclein due to impaired secretion may increase the intracellular load and trigger intracellular seeding. Once outside, α-synuclein can exert various paracrine actions on neighboring cells again by mechanisms that have not been fully elucidated. It has been demonstrated that, when applied extracellularly, α-synuclein species can induce multiple neurotoxic and inflammatory responses, and aid the transmission of pathology between neurons. Still, the exact mechanism(s) by which secreted α-synuclein affects the homeostasis of other neurons is still not well understood. A portion of α-synuclein has been shown to be associated with the surface and lumen of exosomes which can transfer it to the surrounding cells, and potentially trigger seeding. Interestingly, increased exosome release has been linked to pathological situations of lysosomal dysfunction as observed in Parkinson's disease (PD). However, the possibility that the observed α-synuclein pathology spread is attributable to the passive diffusion of the initial injected α-synuclein strains cannot be excluded. Importantly, most of the studies that have so far addressed the role of extracellular α-synuclein have not employed naturally secreted forms of the protein. It is plausible that deregulation in the normal processing of secreted α-synuclein may aid the formation of "toxic" species and as such it may also be a causative risk factor for PD. In this capacity, elucidation of the underlying mechanisms that regulate the protein-levels of extracellular α-synuclein becomes essential. Such mechanisms could involve its proteolytic clearance from the extracellular milieu.
Collapse
Affiliation(s)
- Evangelia Emmanouilidou
- Department of Neuroscience, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Kostas Vekrellis
- Department of Neuroscience, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
25
|
Zampol MA, Barros MH. Melatonin improves survival and respiratory activity of yeast cells challenged by alpha-synuclein and menadione. Yeast 2017; 35:281-290. [PMID: 29143358 DOI: 10.1002/yea.3296] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/20/2017] [Accepted: 11/04/2017] [Indexed: 11/10/2022] Open
Abstract
One of the hallmarks of Parkinson disease is α-synuclein aggregate deposition that leads to endoplasmic reticulum stress, Golgi fragmentation and impaired energy metabolism with consequent redox imbalance. In the last decade, many studies have used Saccharomyces cerevisiae as a model in order to explore the intracellular consequences of α-synuclein overexpression. In this study we propose to evaluate the respiratory outcome of yeast cells expressing α-synuclein. Cell viability or growth on selective media for respiratory activity was mainly affected in the α-synuclein-expressing cells if they were also treated with menadione, which stimulates reactive oxygen species production. We also tested whether melatonin, a natural antioxidant, would counteract the deleterious effects of α-synuclein and menadione. In fact, melatonin addition improved the respiratory growth of α-synuclein/menadione-challenged cells, presented a general improvement in the enzymatic activity of the respiratory complexes and finally elevated the rate of mitophagy, an important cellular process necessary for the clearance of damaged mitochondria. Altogether, our data confirms that α-synuclein impairs respiration in yeast, which can be rescued by melatonin addition.
Collapse
Affiliation(s)
- Mariana A Zampol
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Mario H Barros
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
26
|
The Contribution of α-Synuclein Spreading to Parkinson's Disease Synaptopathy. Neural Plast 2017; 2017:5012129. [PMID: 28133550 PMCID: PMC5241463 DOI: 10.1155/2017/5012129] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/11/2016] [Accepted: 11/22/2016] [Indexed: 12/11/2022] Open
Abstract
Synaptopathies are diseases with synapse defects as shared pathogenic features, encompassing neurodegenerative disorders such as Parkinson's disease (PD). In sporadic PD, the most common age-related neurodegenerative movement disorder, nigrostriatal dopaminergic deficits are responsible for the onset of motor symptoms that have been related to α-synuclein deposition at synaptic sites. Indeed, α-synuclein accumulation can impair synaptic dopamine release and induces the death of nigrostriatal neurons. While in physiological conditions the protein can interact with and modulate synaptic vesicle proteins and membranes, numerous experimental evidences have confirmed that its pathological aggregation can compromise correct neuronal functioning. In addition, recent findings indicate that α-synuclein pathology spreads into the brain and can affect the peripheral autonomic and somatic nervous system. Indeed, monomeric, oligomeric, and fibrillary α-synuclein can move from cell to cell and can trigger the aggregation of the endogenous protein in recipient neurons. This novel “prion-like” behavior could further contribute to synaptic failure in PD and other synucleinopathies. This review describes the major findings supporting the occurrence of α-synuclein pathology propagation in PD and discusses how this phenomenon could induce or contribute to synaptic injury and degeneration.
Collapse
|
27
|
Fruhmann G, Seynnaeve D, Zheng J, Ven K, Molenberghs S, Wilms T, Liu B, Winderickx J, Franssens V. Yeast buddies helping to unravel the complexity of neurodegenerative disorders. Mech Ageing Dev 2017; 161:288-305. [DOI: 10.1016/j.mad.2016.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/22/2016] [Accepted: 05/02/2016] [Indexed: 12/31/2022]
|
28
|
Kleinknecht A, Popova B, Lázaro DF, Pinho R, Valerius O, Outeiro TF, Braus GH. C-Terminal Tyrosine Residue Modifications Modulate the Protective Phosphorylation of Serine 129 of α-Synuclein in a Yeast Model of Parkinson's Disease. PLoS Genet 2016; 12:e1006098. [PMID: 27341336 PMCID: PMC4920419 DOI: 10.1371/journal.pgen.1006098] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/10/2016] [Indexed: 12/15/2022] Open
Abstract
Parkinson´s disease (PD) is characterized by the presence of proteinaceous inclusions called Lewy bodies that are mainly composed of α-synuclein (αSyn). Elevated levels of oxidative or nitrative stresses have been implicated in αSyn related toxicity. Phosphorylation of αSyn on serine 129 (S129) modulates autophagic clearance of inclusions and is prominently found in Lewy bodies. The neighboring tyrosine residues Y125, Y133 and Y136 are phosphorylation and nitration sites. Using a yeast model of PD, we found that Y133 is required for protective S129 phosphorylation and for S129-independent proteasome clearance. αSyn can be nitrated and form stable covalent dimers originating from covalent crosslinking of two tyrosine residues. Nitrated tyrosine residues, but not di-tyrosine-crosslinked dimers, contributed to αSyn cytotoxicity and aggregation. Analysis of tyrosine residues involved in nitration and crosslinking revealed that the C-terminus, rather than the N-terminus of αSyn, is modified by nitration and di-tyrosine formation. The nitration level of wild-type αSyn was higher compared to that of A30P mutant that is non-toxic in yeast. A30P formed more dimers than wild-type αSyn, suggesting that dimer formation represents a cellular detoxification pathway in yeast. Deletion of the yeast flavohemoglobin gene YHB1 resulted in an increase of cellular nitrative stress and cytotoxicity leading to enhanced aggregation of A30P αSyn. Yhb1 protected yeast from A30P-induced mitochondrial fragmentation and peroxynitrite-induced nitrative stress. Strikingly, overexpression of neuroglobin, the human homolog of YHB1, protected against αSyn inclusion formation in mammalian cells. In total, our data suggest that C-terminal Y133 plays a major role in αSyn aggregate clearance by supporting the protective S129 phosphorylation for autophagy and by promoting proteasome clearance. C-terminal tyrosine nitration increases pathogenicity and can only be partially detoxified by αSyn di-tyrosine dimers. Our findings uncover a complex interplay between S129 phosphorylation and C-terminal tyrosine modifications of αSyn that likely participates in PD pathology. Parkinson’s disease is characterized by loss of dopaminergic neurons in midbrain and the presence of αSyn protein inclusions. Human αSyn mimics the disease pathology in yeast resulting in cytotoxicity and aggregate formation. αSyn is abundantly phosphorylated at serine S129 and possesses four tyrosines (Y39, Y125, Y133, and Y136) that can be posttranslationally modified by nitration or phosphorylation. The consequence of each of these possible modifications is still unclear. Nitration as consequence of oxidative stress is a hallmark for neurodegenerative diseases. Here, we addressed the molecular mechanism, how tyrosine posttranslational modifications affect αSyn cytotoxicity. Tyrosine nitration can contribute to αSyn toxicity or can be part of a cellular salvage pathway when di-tyrosine-crosslinked dimers are formed. The Y133 residue, which can be either phosphorylated or nitrated, determines whether S129 is protectively phosphorylated and αSyn inclusions are cleared. This interplay with S129 phosphorylation demonstrates a dual role for C-terminal tyrosine residues. Yeast flavohemoglobin Yhb1 and its human counterpart neuroglobin NGB protect cells against cytotoxicity and aggregate formation. These novel insights into the molecular pathways responsible for αSyn cytotoxicity indicate NGB as a potential target for therapeutic intervention in PD.
Collapse
Affiliation(s)
- Alexandra Kleinknecht
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, Georg-August-Universität, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Blagovesta Popova
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, Georg-August-Universität, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Diana F. Lázaro
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
- Department of NeuroDegeneration and Restorative Research, University of Göttingen Medical School, Göttingen, Germany
| | - Raquel Pinho
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
- Department of NeuroDegeneration and Restorative Research, University of Göttingen Medical School, Göttingen, Germany
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, Georg-August-Universität, Göttingen, Germany
| | - Tiago F. Outeiro
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
- Department of NeuroDegeneration and Restorative Research, University of Göttingen Medical School, Göttingen, Germany
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, Georg-August-Universität, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
- * E-mail:
| |
Collapse
|
29
|
Navarro-Yepes J, Anandhan A, Bradley E, Bohovych I, Yarabe B, de Jong A, Ovaa H, Zhou Y, Khalimonchuk O, Quintanilla-Vega B, Franco R. Inhibition of Protein Ubiquitination by Paraquat and 1-Methyl-4-Phenylpyridinium Impairs Ubiquitin-Dependent Protein Degradation Pathways. Mol Neurobiol 2015; 53:5229-51. [PMID: 26409479 DOI: 10.1007/s12035-015-9414-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 09/01/2015] [Indexed: 12/21/2022]
Abstract
Intracytoplasmic inclusions of protein aggregates in dopaminergic cells (Lewy bodies) are the pathological hallmark of Parkinson's disease (PD). Ubiquitin (Ub), alpha (α)-synuclein, p62/sequestosome 1, and oxidized proteins are the major components of Lewy bodies. However, the mechanisms involved in the impairment of misfolded/oxidized protein degradation pathways in PD are still unclear. PD is linked to mitochondrial dysfunction and environmental pesticide exposure. In this work, we evaluated the effects of the pesticide paraquat (PQ) and the mitochondrial toxin 1-methyl-4-phenylpyridinium (MPP(+)) on Ub-dependent protein degradation pathways. No increase in the accumulation of Ub-bound proteins or aggregates was observed in dopaminergic cells (SK-N-SH) treated with PQ or MPP(+), or in mice chronically exposed to PQ. PQ decreased Ub protein content, but not its mRNA transcription. Protein synthesis inhibition with cycloheximide depleted Ub levels and potentiated PQ-induced cell death. The inhibition of proteasomal activity by PQ was found to be a late event in cell death progression and had neither effect on the toxicity of either MPP(+) or PQ, nor on the accumulation of oxidized sulfenylated, sulfonylated (DJ-1/PARK7 and peroxiredoxins), and carbonylated proteins induced by PQ. PQ- and MPP(+)-induced Ub protein depletion prompted the dimerization/inactivation of the Ub-binding protein p62 that regulates the clearance of ubiquitinated proteins by autophagy. We confirmed that PQ and MPP(+) impaired autophagy flux and that the blockage of autophagy by the overexpression of a dominant-negative form of the autophagy protein 5 (dnAtg5) stimulated their toxicity, but there was no additional effect upon inhibition of the proteasome. PQ induced an increase in the accumulation of α-synuclein in dopaminergic cells and membrane-associated foci in yeast cells. Our results demonstrate that the inhibition of protein ubiquitination by PQ and MPP(+) is involved in the dysfunction of Ub-dependent protein degradation pathways.
Collapse
Affiliation(s)
- Juliana Navarro-Yepes
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA.,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, 114 VBS 0905, Lincoln, NE, 68583, USA.,Department of Toxicology, CINVESTAV-IPN, IPN No. 2508, Colonia Zacatenco, Mexico City, D.F., 07360, Mexico
| | - Annadurai Anandhan
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA.,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, 114 VBS 0905, Lincoln, NE, 68583, USA
| | - Erin Bradley
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Iryna Bohovych
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA.,Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Bo Yarabe
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Annemieke de Jong
- Division of Cell Biology II, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Huib Ovaa
- Division of Cell Biology II, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - You Zhou
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Oleh Khalimonchuk
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA.,Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Betzabet Quintanilla-Vega
- Department of Toxicology, CINVESTAV-IPN, IPN No. 2508, Colonia Zacatenco, Mexico City, D.F., 07360, Mexico.
| | - Rodrigo Franco
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA. .,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, 114 VBS 0905, Lincoln, NE, 68583, USA.
| |
Collapse
|
30
|
Menezes R, Tenreiro S, Macedo D, Santos CN, Outeiro TF. From the baker to the bedside: yeast models of Parkinson's disease. MICROBIAL CELL 2015; 2:262-279. [PMID: 28357302 PMCID: PMC5349099 DOI: 10.15698/mic2015.08.219] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The baker’s yeast Saccharomyces cerevisiae has been extensively explored for our understanding of fundamental cell biology processes highly conserved in the eukaryotic kingdom. In this context, they have proven invaluable in the study of complex mechanisms such as those involved in a variety of human disorders. Here, we first provide a brief historical perspective on the emergence of yeast as an experimental model and on how the field evolved to exploit the potential of the model for tackling the intricacies of various human diseases. In particular, we focus on existing yeast models of the molecular underpinnings of Parkinson’s disease (PD), focusing primarily on the central role of protein quality control systems. Finally, we compile and discuss the major discoveries derived from these studies, highlighting their far-reaching impact on the elucidation of PD-associated mechanisms as well as in the identification of candidate therapeutic targets and compounds with therapeutic potential.
Collapse
Affiliation(s)
- Regina Menezes
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras 2781-901, Portugal. ; Instituto de Tecnologia Química e Biológica António Xavier, Av. da República, 2780-157 Oeiras, Universidade Nova de Lisboa, Portugal
| | - Sandra Tenreiro
- Instituto de Medicina Molecular, Av. Prof. Egas Moniz, Lisboa 1649-028, Portugal. ; CEDOC - Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, Lisboa 1169-056, Portugal
| | - Diana Macedo
- Instituto de Tecnologia Química e Biológica António Xavier, Av. da República, 2780-157 Oeiras, Universidade Nova de Lisboa, Portugal
| | - Cláudia N Santos
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras 2781-901, Portugal. ; Instituto de Tecnologia Química e Biológica António Xavier, Av. da República, 2780-157 Oeiras, Universidade Nova de Lisboa, Portugal
| | - Tiago F Outeiro
- Instituto de Fisiologia, Faculdade de Medicina da Universidade de Lisboa, Lisboa 1649-028, Portugal. ; CEDOC - Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, Lisboa 1169-056, Portugal. ; Department of NeuroDegeneration and Restorative Research, University Medical Center Göttingen, Waldweg 33, Göttingen 37073, Germany
| |
Collapse
|
31
|
Popova B, Kleinknecht A, Braus GH. Posttranslational Modifications and Clearing of α-Synuclein Aggregates in Yeast. Biomolecules 2015; 5:617-34. [PMID: 25915624 PMCID: PMC4496687 DOI: 10.3390/biom5020617] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/01/2015] [Accepted: 04/14/2015] [Indexed: 12/20/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae represents an established model system to study the molecular mechanisms associated to neurodegenerative disorders. A key-feature of Parkinson’s disease is the formation of Lewy bodies, which are cytoplasmic protein inclusions. Misfolded α-synuclein is one of their main constituents. Expression of α-synuclein protein in yeast leads to protein aggregation and cellular toxicity, which is reminiscent to Lewy body containing human cells. The molecular mechanism involved in clearance of α-synuclein aggregates is a central question for elucidating the α-synuclein-related toxicity. Cellular clearance mechanisms include ubiquitin mediated 26S proteasome function as well as lysosome/vacuole associated degradative pathways as autophagy. Various modifications change α-synuclein posttranslationally and alter its inclusion formation, cytotoxicity and the distribution to different clearance pathways. Several of these modification sites are conserved from yeast to human. In this review, we summarize recent findings on the effect of phosphorylation and sumoylation of α-synuclein to the enhanced channeling to either the autophagy or the proteasome degradation pathway in yeast model of Parkinson’s disease.
Collapse
Affiliation(s)
- Blagovesta Popova
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, D-37077 Göttingen, Germany.
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), D-37077 Göttingen, Germany.
| | - Alexandra Kleinknecht
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, D-37077 Göttingen, Germany.
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), D-37077 Göttingen, Germany.
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, D-37077 Göttingen, Germany.
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), D-37077 Göttingen, Germany.
| |
Collapse
|
32
|
Braun RJ. Ubiquitin-dependent proteolysis in yeast cells expressing neurotoxic proteins. Front Mol Neurosci 2015; 8:8. [PMID: 25814926 PMCID: PMC4357299 DOI: 10.3389/fnmol.2015.00008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/24/2015] [Indexed: 01/16/2023] Open
Abstract
Critically impaired protein degradation is discussed to contribute to neurodegenerative disorders, including Parkinson's, Huntington's, Alzheimer's, and motor neuron diseases. Misfolded, aggregated, or surplus proteins are efficiently degraded via distinct protein degradation pathways, including the ubiquitin-proteasome system, autophagy, and vesicular trafficking. These pathways are regulated by covalent modification of target proteins with the small protein ubiquitin and are evolutionary highly conserved from humans to yeast. The yeast Saccharomyces cerevisiae is an established model for deciphering mechanisms of protein degradation, and for the elucidation of pathways underlying programmed cell death. The expression of human neurotoxic proteins triggers cell death in yeast, with neurotoxic protein-specific differences. Therefore, yeast cell death models are suitable for analyzing the role of protein degradation pathways in modulating cell death upon expression of disease-causing proteins. This review summarizes which protein degradation pathways are affected in these yeast models, and how they are involved in the execution of cell death. I will discuss to which extent this mimics the situation in other neurotoxic models, and how this may contribute to a better understanding of human disorders.
Collapse
Affiliation(s)
- Ralf J Braun
- Institut für Zellbiologie, Universität Bayreuth Bayreuth, Germany
| |
Collapse
|
33
|
Phosphatidylethanolamine deficiency disrupts α-synuclein homeostasis in yeast and worm models of Parkinson disease. Proc Natl Acad Sci U S A 2014; 111:E3976-85. [PMID: 25201965 DOI: 10.1073/pnas.1411694111] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Phosphatidylserine decarboxylase, which is embedded in the inner mitochondrial membrane, synthesizes phosphatidylethanolamine (PE) and, in some cells, synthesizes the majority of this important phospholipid. Normal levels of PE can decline with age in the brain. Here we used yeast and worms to test the hypothesis that low levels of PE alter the homeostasis of the Parkinson disease-associated protein α-synuclein (α-syn). In yeast, low levels of PE in the phosphatidylserine decarboxylase deletion mutant (psd1Δ) cause decreased respiration, endoplasmic reticulum (ER) stress, a defect in the trafficking of the uracil permease, α-syn accumulation and foci, and a slow growth phenotype. Supplemental ethanolamine (ETA), which can be converted to PE via the Kennedy pathway enzymes in the ER, had no effect on respiration, whereas, in contrast, this metabolite partially eliminated ER stress, decreased α-syn foci formation, and restored growth close to that of wild-type cells. In Caenorhabditis elegans, RNAi depletion of phosphatidylserine decarboxylase in dopaminergic neurons expressing α-syn accelerates neurodegeneration, which supplemental ETA rescues. ETA fails to rescue this degeneration in worms that undergo double RNAi depletion of phosphatidylserine decarboxylase (psd-1) and choline/ETA phosphotransferase (cept-1), which encodes the last enzyme in the CDP-ETA Kennedy pathway. This finding suggests that ETA exerts its protective effect by boosting PE through the Kennedy pathway. Overall, a low level of PE causes ER stress, disrupts vesicle trafficking, and causes α-syn to accumulate; such cells likely die from a combination of ER stress and excessive accumulation of α-syn.
Collapse
|
34
|
Abstract
Saccharomyces cerevisiae (baker's yeast) is a well-established eukaryotic model organism, which has significantly contributed to our understanding of mechanisms that drive numerous core cellular processes in higher eukaryotes. Moreover, this has led to a greater understanding of the underlying pathobiology associated with disease in humans. This tractable model offers an abundance of analytical capabilities, including a vast array of global genetics and molecular resources that allow genome-wide screening to be carried out relatively simply and cheaply. A prime example of the versatility and potential for applying yeast technologies to explore a mammalian disease is in the development of yeast models for amyloid diseases such as Alzheimer's, Parkinson's and Huntington's. The present chapter provides a broad overview of high profile human neurodegenerative diseases that have been modelled in yeast. We focus on some of the most recent findings that have been developed through genetic and drug screening studies using yeast genomic resources. Although this relatively simple unicellular eukaryote seems far removed from relatively complex multicellular organisms such as mammals, the conserved mechanisms for how amyloid exhibits toxicity clearly underscore the value of carrying out such studies in yeast.
Collapse
|
35
|
Splice isoform and pharmacological studies reveal that sterol depletion relocalizes α-synuclein and enhances its toxicity. Proc Natl Acad Sci U S A 2014; 111:3014-9. [PMID: 24516169 DOI: 10.1073/pnas.1324209111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synucleinopathies are neurodegenerative diseases associated with toxicity of the lipid-binding protein α-synuclein (α-syn). When expressed in yeast, α-syn associates with membranes at the endoplasmic reticulum and traffics with vesicles out to the plasma membrane. At higher levels it elicits a number of phenotypes, including blocking vesicle trafficking. The expression of α-syn splice isoforms varies with disease, but how these isoforms affect protein function is unknown. We investigated two of the most abundant isoforms, resulting in deletion of exon four (α-synΔ4) or exon six (α-synΔ6). α-SynΔ4, missing part of the lipid-binding domain, had reduced toxicity and membrane binding. α-SynΔ6, missing part of the protein-protein interaction domain, had reduced toxicity but no reduction in membrane binding. To compare the mechanism by which the splice isoforms exert toxicity, equally toxic strains were probed with genetic modifiers of α-syn-induced toxicity. Most modifiers equally altered the toxicity induced by the splice isoforms and full-length α-syn (α-synFL). However, the splice isoform strains responded differently to a sterol-binding protein, leading us to examine the effect of sterols on α-syn-induced toxicity. Upon inhibition of sterol synthesis, α-synFL and α-synΔ6, but not α-synΔ4, showed decreased plasma membrane association, increased vesicular association, and increased cellular toxicity. Thus, higher membrane sterol concentrations favor plasma membrane binding of α-synFL and α-synΔ6 and may be protective of synucleinopathy progression. Given the common use of cholesterol-reducing statins and these potential effects on membrane binding proteins, further investigation of how sterol concentration and α-syn splice isoforms affect vesicular trafficking in synucleinopathies is warranted.
Collapse
|
36
|
Evidence for prion-like mechanisms in several neurodegenerative diseases: potential implications for immunotherapy. Clin Dev Immunol 2013; 2013:473706. [PMID: 24228054 PMCID: PMC3817797 DOI: 10.1155/2013/473706] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/11/2013] [Accepted: 07/02/2013] [Indexed: 12/12/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) are fatal, untreatable neurodegenerative diseases. While the impact of TSEs on human health is relatively minor, these diseases are having a major influence on how we view, and potentially treat, other more common neurodegenerative disorders. Until recently, TSEs encapsulated a distinct category of neurodegenerative disorder, exclusive in their defining characteristic of infectivity. It now appears that similar mechanisms of self-propagation may underlie other proteinopathies such as Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, and Huntington's disease. This link is of scientific interest and potential therapeutic importance as this route of self-propagation offers conceptual support and guidance for vaccine development efforts. Specifically, the existence of a pathological, self-promoting isoform offers a rational vaccine target. Here, we review the evidence of prion-like mechanisms within a number of common neurodegenerative disorders and speculate on potential implications and opportunities for vaccine development.
Collapse
|
37
|
Uptake and mitochondrial dysfunction of alpha-synuclein in human astrocytes, cortical neurons and fibroblasts. Transl Neurodegener 2013; 2:20. [PMID: 24093918 PMCID: PMC3853407 DOI: 10.1186/2047-9158-2-20] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/01/2013] [Indexed: 12/14/2022] Open
Abstract
The accumulation and aggregation of alpha-synuclein (α-syn) in several tissue including the brain is a major pathological hallmark in Parkinson’s disease (PD). In this study, we show that α-syn can be taken up by primary human cortical neurons, astrocytes and skin-derived fibroblasts in vitro. Our findings that brain and peripheral cells exposed to α-syn can lead to impaired mitochondrial function, leading to cellular degeneration and cell death, provides additional evidence for the involvement of mitochondrial dysfunction as a mechanism of toxicity of α-syn in human cells.
Collapse
|
38
|
Formation of assemblies on cell membranes by secreted proteins: molecular studies of free λ light chain aggregates found on the surface of myeloma cells. Biochem J 2013; 454:479-89. [DOI: 10.1042/bj20130575] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have described the presence of cell-membrane-associated κFLCs (free immunoglobulin light chains) on the surface of myeloma cells. Notably, the anti-κFLC mAb (monoclonal antibody) MDX-1097 is being assessed in clinical trials as a therapy for κ light chain isotype multiple myeloma. Despite the clinical potential of anti-FLC mAbs, there have been limited studies on characterizing membrane-associated FLCs at a molecular level. Furthermore, it is not known whether λFLCs can associate with cell membranes of myeloma cells. In the present paper, we describe the presence of λFLCs on the surface of myeloma cells. We found that cell-surface-associated λFLCs are bound directly to the membrane and in an aggregated form. Subsequently, membrane interaction studies revealed that λFLCs interact with saturated zwitterionic lipids such as phosphatidylcholine and phosphatidylethanolamine, and using automated docking, we characterize a potential recognition site for these lipids. Atomic force microscopy confirmed that membrane-associated λFLCs are aggregated. Given the present findings, we propose a model whereby individual FLCs show modest affinity for zwitterionic lipids, with aggregation stabilizing the interaction due to multivalency. Notably, this is the first study to image FLCs bound to phospholipids and provides important insights into the possible mechanisms of membrane association by this unique myeloma surface antigen.
Collapse
|
39
|
The benefits of humanized yeast models to study Parkinson's disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:760629. [PMID: 23936613 PMCID: PMC3713309 DOI: 10.1155/2013/760629] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/18/2013] [Indexed: 12/21/2022]
Abstract
Over the past decade, the baker's yeast Saccharomyces cerevisiae has proven to be a useful model system to investigate fundamental questions concerning the pathogenic role of human proteins in neurodegenerative diseases such as Parkinson's disease (PD). These so-called humanized yeast models for PD initially focused on α-synuclein, which plays a key role in the etiology of PD. Upon expression of this human protein in the baker's yeast Saccharomyces cerevisiae, the events leading to aggregation and the molecular mechanisms that result in cellular toxicity are faithfully reproduced. More recently, a similar model to study the presumed pathobiology of the α-synuclein interaction partner synphilin-1 has been established. In this review we will discuss recent advances using these humanized yeast models, pointing to new roles for cell wall integrity signaling, Ca2+ homeostasis, mitophagy, and the cytoskeleton.
Collapse
|
40
|
Ocampo A, Liu J, Barrientos A. NAD+ salvage pathway proteins suppress proteotoxicity in yeast models of neurodegeneration by promoting the clearance of misfolded/oligomerized proteins. Hum Mol Genet 2013; 22:1699-708. [PMID: 23335597 PMCID: PMC3657478 DOI: 10.1093/hmg/ddt016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 12/04/2012] [Accepted: 01/16/2013] [Indexed: 01/07/2023] Open
Abstract
Increased levels of nicotinamide/nicotinic acid mononucleotide adenylyltransferase (NMNAT) act as a powerful suppressor of Wallerian degeneration and ataxin- and tau-induced neurodegeneration in flies and mice. However, the nature of the suppression mechanism/s remains controversial. Here, we show that in yeast models of proteinopathies, overexpression of the NMNAT yeast homologs, NMA1 and NMA2, suppresses polyglutamine (PolyQ) and α-synuclein-induced cytotoxicities. Unexpectedly, overexpression of other genes in the salvage pathway for NAD(+) biosynthesis, including QNS1, NPT1 and PNC1 also protected against proteotoxicity. Our data revealed that in all cases, this mechanism involves extensive clearance of the non-native protein. Importantly, we demonstrate that suppression by NMA1 does not require the presence of a functional salvage pathway for NAD(+) biosynthesis, SIR2 or an active mitochondrial oxidative phosphorylation (OXPHOS) system. Our results imply the existence of histone deacetylase- and OXPHOS-independent crosstalk between the proteins in the salvage pathway for NAD(+) biosynthesis and the proteasome that can be manipulated to achieve cellular protection against proteotoxic stress.
Collapse
Affiliation(s)
- Alejandro Ocampo
- Department of Biochemistry and Molecular Biology and
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jingjing Liu
- Department of Biochemistry and Molecular Biology and
| | - Antoni Barrientos
- Department of Biochemistry and Molecular Biology and
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
41
|
Ciaccioli G, Martins A, Rodrigues C, Vieira H, Calado P. A powerful yeast model to investigate the synergistic interaction of α-synuclein and tau in neurodegeneration. PLoS One 2013; 8:e55848. [PMID: 23393603 PMCID: PMC3564910 DOI: 10.1371/journal.pone.0055848] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 01/04/2013] [Indexed: 12/15/2022] Open
Abstract
Several studies revealed consistent overlap between synucleinopathies and tauopathies, demonstrating that α-synuclein (ASYN) and tau co-localize in neurofibrillary tangles and in Lewy bodies from Alzheimer’s and Parkinson’s disease patients and corresponding animal models. Additionally, it has been shown that ASYN can act as an initiator of tau aggregation and phosphorylation and that these two proteins directly interact. Despite these evidences, the cellular pathway implicated in this synergistic interaction remains to be clarified. The aim of this study was to create a yeast model where the concomitant expression of ASYN and tau can be used to perform genome wide screenings for the identification of genes that modulate this interaction, in order to shed light into the pathological mechanism of cell dysfunction and to provide new targets for future therapeutic intervention. We started by validating the synergistic toxicity of tau and ASYN co-expression in yeast, by developing episomal and integrative strains expressing WT and mutant forms of both proteins, alone or in combination. The episomal strains showed no differences in growth delay upon expression of ASYN isoforms (WT or A53T) alone or in combination with tau 2N/4R isoforms (WT or P301L). However, in these strains, the presence of ASYN led to increased tau insolubility and correlated with increased tau phosphorylation in S396/404, which is mainly mediated by RIM11, the human homolog of GSK3β in yeast. On the other hand, the integrative strains showed a strong synergistic toxic effect upon co-expression of ASYN WT and tau WT, which was related to high levels of intracellular ASYN inclusions and increased tau phosphorylation and aggregation. Taken together, the strains described in the present study are able to mimic relevant pathogenic features involved in neurodegeneration and are powerful tools to identify potential target genes able to modulate the synergistic pathway driven by ASYN and tau interaction.
Collapse
Affiliation(s)
- Gianmario Ciaccioli
- BIOALVO, Serviços Investigação e Desenvolvimento em Biotecnologia S.A., Edificio ICAT, Campus da FCUL, Campo Grande, Lisboa, Portugal
- DEIO and BIOFig Center, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Ana Martins
- BIOALVO, Serviços Investigação e Desenvolvimento em Biotecnologia S.A., Edificio ICAT, Campus da FCUL, Campo Grande, Lisboa, Portugal
| | - Cátia Rodrigues
- BIOALVO, Serviços Investigação e Desenvolvimento em Biotecnologia S.A., Edificio ICAT, Campus da FCUL, Campo Grande, Lisboa, Portugal
| | - Helena Vieira
- BIOALVO, Serviços Investigação e Desenvolvimento em Biotecnologia S.A., Edificio ICAT, Campus da FCUL, Campo Grande, Lisboa, Portugal
- DEIO and BIOFig Center, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Patrícia Calado
- BIOALVO, Serviços Investigação e Desenvolvimento em Biotecnologia S.A., Edificio ICAT, Campus da FCUL, Campo Grande, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
42
|
Caranci G, Piscopo P, Rivabene R, Traficante A, Riozzi B, Castellano AE, Ruggieri S, Vanacore N, Confaloni A. Gender differences in Parkinson's disease: focus on plasma α-synuclein. J Neural Transm (Vienna) 2013; 120:1209-15. [PMID: 23328951 DOI: 10.1007/s00702-013-0972-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 01/04/2013] [Indexed: 01/05/2023]
Abstract
Among promising biological markers proposed for Parkinson's disease (PD) and other disorders related to Lewy bodies, plasma alpha-synuclein assay has provided conflicting results mainly owing to the various laboratory assay techniques used and protein forms assayed. In this observational and exploratory cross-sectional study, using an immunoenzymatic technique, we assayed and compared total plasma alpha-synuclein concentrations in 69 patients with PD and 110 age-matched healthy control subjects. Two previously unreported findings concerned gender. First, plasma alpha-synuclein concentrations measured in the more advanced parkinsonian disease stages decreased in men, but not in women. Second, again only in men, plasma alpha-synuclein concentration was associated with cognitive impairments, hallucinations, and sleep disorders. These findings underline the gender-related differences in parkinsonian patients and indicate plasma alpha-synuclein expression as a potential biological marker for PD progression in men.
Collapse
Affiliation(s)
- Giovanni Caranci
- Department of Neurology, IRCCS Neuromed Institute, Pozzilli, IS, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Konno M, Hasegawa T, Baba T, Miura E, Sugeno N, Kikuchi A, Fiesel FC, Sasaki T, Aoki M, Itoyama Y, Takeda A. Suppression of dynamin GTPase decreases α-synuclein uptake by neuronal and oligodendroglial cells: a potent therapeutic target for synucleinopathy. Mol Neurodegener 2012; 7:38. [PMID: 22892036 PMCID: PMC3479026 DOI: 10.1186/1750-1326-7-38] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 08/06/2012] [Indexed: 12/25/2022] Open
Abstract
Background The intracellular deposition of misfolded proteins is a common neuropathological hallmark of most neurodegenerative disorders. Increasing evidence suggests that these pathogenic proteins may spread to neighboring cells and induce the propagation of neurodegeneration. Results In this study, we have demonstrated that α-synuclein (αSYN), a major constituent of intracellular inclusions in synucleinopathies, was taken up by neuronal and oligodendroglial cells in both a time- and concentration-dependent manner. Once incorporated, the extracellular αSYN was immediately assembled into high-molecular-weight oligomers and subsequently formed cytoplasmic inclusion bodies. Furthermore, αSYN uptake by neurons and cells of the oligodendroglial lineage was markedly decreased by the genetic suppression and pharmacological inhibition of the dynamin GTPases, suggesting the involvement of the endocytic pathway in this process. Conclusions Our findings shed light on the mode of αSYN uptake by neuronal and oligodendroglial cells and identify therapeutic strategies aimed at reducing the propagation of protein misfolding.
Collapse
Affiliation(s)
- Masatoshi Konno
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Contribution of yeast models to neurodegeneration research. J Biomed Biotechnol 2012; 2012:941232. [PMID: 22910375 PMCID: PMC3403639 DOI: 10.1155/2012/941232] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/11/2012] [Accepted: 05/07/2012] [Indexed: 11/18/2022] Open
Abstract
As a model organism Saccharomyces cerevisiae has greatly contributed to our understanding of many fundamental aspects of cellular biology in higher eukaryotes. More recently, engineered yeast models developed to study endogenous or heterologous proteins that lay at the root of a given disease have become powerful tools for unraveling the molecular basis of complex human diseases like neurodegeneration. Additionally, with the possibility of performing target-directed large-scale screenings, yeast models have emerged as promising first-line approaches in the discovery process of novel therapeutic opportunities against these pathologies. In this paper, several yeast models that have contributed to the uncovering of the etiology and pathogenesis of several neurodegenerative diseases are described, including the most common forms of neurodegeneration worldwide, Alzheimer's, Parkinson's, and Huntington's diseases. Moreover, the potential input of these cell systems in the development of more effective therapies in neurodegeneration, through the identification of genetic and chemical suppressors, is also addressed.
Collapse
|
45
|
Petroi D, Popova B, Taheri-Talesh N, Irniger S, Shahpasandzadeh H, Zweckstetter M, Outeiro TF, Braus GH. Aggregate clearance of α-synuclein in Saccharomyces cerevisiae depends more on autophagosome and vacuole function than on the proteasome. J Biol Chem 2012; 287:27567-79. [PMID: 22722939 DOI: 10.1074/jbc.m112.361865] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Parkinson disease is the second most common neurodegenerative disease. The molecular hallmark is the accumulation of proteinaceous inclusions termed Lewy bodies containing misfolded and aggregated α-synuclein. The molecular mechanism of clearance of α-synuclein aggregates was addressed using the bakers' yeast Saccharomyces cerevisiae as the model. Overexpression of wild type α-synuclein or the genetic variant A53T integrated into one genomic locus resulted in a gene copy-dependent manner in cytoplasmic proteinaceous inclusions reminiscent of the pathogenesis of the disease. In contrast, overexpression of the genetic variant A30P resulted only in transient aggregation, whereas the designer mutant A30P/A36P/A76P neither caused aggregation nor impaired yeast growth. The α-synuclein accumulation can be cleared after promoter shut-off by a combination of autophagy and vacuolar protein degradation. Whereas the proteasomal inhibitor MG-132 did not significantly inhibit aggregate clearance, treatment with phenylmethylsulfonyl fluoride, an inhibitor of vacuolar proteases, resulted in significant reduction in clearance. Consistently, a cim3-1 yeast mutant restricted in the 19 S proteasome regulatory subunit was unaffected in clearance, whereas an Δatg1 yeast mutant deficient in autophagy showed a delayed aggregate clearance response. A cim3-1Δatg1 double mutant was still able to clear aggregates, suggesting additional cellular mechanisms for α-synuclein clearance. Our data provide insight into the mechanisms yeast cells use for clearing different species of α-synuclein and demonstrate a higher contribution of the autophagy/vacuole than the proteasome system. This contributes to the understanding of how cells can cope with toxic and/or aggregated proteins and may ultimately enable the development of novel strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Doris Petroi
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Aggresome formation and segregation of inclusions influence toxicity of α-synuclein and synphilin-1 in yeast. Biochem Soc Trans 2012; 39:1476-81. [PMID: 21936837 DOI: 10.1042/bst0391476] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PD (Parkinson's disease) is a neurodegenerative disorder, caused by a selective loss of dopaminergic neurons in the substantia nigra, which affects an increasing number of the elderly population worldwide. One of the major hallmarks of PD is the occurrence of intracellular protein deposits in the dying neurons, termed Lewy bodies, which contain different proteins, including aggregated α-synuclein and its interacting protein synphilin-1. During the last decade, a number of groups developed yeast models that reproduced important features of PD and allowed the deciphering of pathways underlying the cytotoxicity triggered by α-synuclein. Here, we review the recent contributions obtained with yeast models designed to study the presumed pathobiology of synphilin-1. These models pointed towards a crucial role of the sirtuin Sir2 and the chaperonin complex TRiC (TCP-1 ring complex)/CCT (chaperonin containing TCP-1) in handling misfolded and aggregated proteins.
Collapse
|
47
|
Sideri TC, Koloteva-Levine N, Tuite MF, Grant CM. Methionine oxidation of Sup35 protein induces formation of the [PSI+] prion in a yeast peroxiredoxin mutant. J Biol Chem 2011; 286:38924-31. [PMID: 21832086 PMCID: PMC3234717 DOI: 10.1074/jbc.m111.272419] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The frequency with which the yeast [PSI+] prion form of Sup35 arises de novo is controlled by a number of genetic and environmental factors. We have previously shown that in cells lacking the antioxidant peroxiredoxin proteins Tsa1 and Tsa2, the frequency of de novo formation of [PSI+] is greatly elevated. We show here that Tsa1/Tsa2 also function to suppress the formation of the [PIN+] prion form of Rnq1. However, although oxidative stress increases the de novo formation of both [PIN+] and [PSI+], it does not overcome the requirement of cells being [PIN+] to form the [PSI+] prion. We use an anti-methionine sulfoxide antibody to show that methionine oxidation is elevated in Sup35 during oxidative stress conditions. Abrogating Sup35 methionine oxidation by overexpressing methionine sulfoxide reductase (MSRA) prevents [PSI+] formation, indicating that Sup35 oxidation may underlie the switch from a soluble to an aggregated form of Sup35. In contrast, we were unable to detect methionine oxidation of Rnq1, and MSRA overexpression did not affect [PIN+] formation in a tsa1 tsa2 mutant. The molecular basis of how yeast and mammalian prions form infectious amyloid-like structures de novo is poorly understood. Our data suggest a causal link between Sup35 protein oxidation and de novo [PSI+] prion formation.
Collapse
Affiliation(s)
- Theodora C Sideri
- Faculty of Life Sciences, University of Manchester, the Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | | | | | | |
Collapse
|
48
|
Fiske M, White M, Valtierra S, Herrera S, Solvang K, Konnikova A, Debburman S. Familial Parkinson's Disease Mutant E46K α-Synuclein Localizes to Membranous Structures, Forms Aggregates, and Induces Toxicity in Yeast Models. ISRN NEUROLOGY 2011; 2011:521847. [PMID: 22389823 PMCID: PMC3263534 DOI: 10.5402/2011/521847] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 05/02/2011] [Indexed: 12/20/2022]
Abstract
In Parkinson's disease (PD), midbrain dopaminergic neuronal death is linked to the accumulation of aggregated α-synuclein. The familial PD mutant form of α-synuclein, E46K, has not been thoroughly evaluated yet in an organismal model system. Here, we report that E46K resembled wild-type (WT) α-synuclein in Saccharomyces cerevisiae in that it predominantly localized to the plasma membrane, and it did not induce significant toxicity or accumulation. In contrast, in Schizosaccharomyces pombe, E46K did not associate with the plasma membrane. Instead, in one strain, it extensively aggregated in the cytoplasm and was as toxic as WT. Remarkably, in another strain, E46K extensively associated with the endomembrane system and was more toxic than WT. Our studies recapitulate and extend aggregation and phospholipid membrane association properties of E46K previously observed in vitro and cell culture. Furthermore, it supports the notion that E46K generates toxicity partly due to increased association with endomembrane systems within cells.
Collapse
Affiliation(s)
- Michael Fiske
- Biology Department, Lake Forest College, Box P7, 555 North Sheridan Road, Lake Forest, IL 60045, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Fiske M, Valtierra S, Solvang K, Zorniak M, White M, Herrera S, Konnikova A, Brezinsky R, Debburman S. Contribution of Alanine-76 and Serine Phosphorylation in α-Synuclein Membrane Association and Aggregation in Yeasts. PARKINSONS DISEASE 2011; 2011:392180. [PMID: 21826257 PMCID: PMC3148600 DOI: 10.4061/2011/392180] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 04/01/2011] [Indexed: 01/12/2023]
Abstract
In Parkinson's disease (PD), misfolded and aggregated α-synuclein protein accumulates in degenerating midbrain dopaminergic neurons. The amino acid alanine-76 in α-synuclein and phosphorylation at serine-87 and serine-129 are thought to regulate its aggregation and toxicity. However, their exact contributions to α-synuclein membrane association are less clear. We found that α-synuclein is indeed phosphorylated in fission yeast and budding yeast, the two models that we employed for assessing α-synuclein aggregation and membrane association properties, respectively. Surprisingly, blocking serine phosphorylation (S87A, S129A, and S87A/S129A) or mimicking it (S87D, S129D) altered α-synuclein aggregation in fission yeast. Either blocking or mimicking this phosphorylation increased endomembrane association in fission yeast, but only mimicking it decreased plasma membrane association in budding yeast. Polar substitution mutations of alanine-76 (A76E and A76R) decreased α-synuclein membrane association in budding yeast and decreased aggregation in fission yeast. These yeast studies extend our understanding of serine phosphorylation and alanine-76 contributions to α-synuclein aggregation and are the first to detail their impact on α-synuclein's plasma membrane and endomembrane association.
Collapse
Affiliation(s)
- Michael Fiske
- Biology Department, Lake Forest College, Box P7, 555 North Sheridan Road, Lake Forest, IL 60045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Grupi A, Haas E. Time-resolved FRET detection of subtle temperature-induced conformational biases in ensembles of α-synuclein molecules. J Mol Biol 2011; 411:234-47. [PMID: 21570984 DOI: 10.1016/j.jmb.2011.04.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 04/07/2011] [Accepted: 04/21/2011] [Indexed: 12/12/2022]
Abstract
The α-synuclein (αS) molecule, a polypeptide of 140 residues, is an intrinsically disordered protein that is involved in the onset of Parkinson's disease. We applied time-resolved excitation energy transfer measurements in search of specific deviations from the disordered state in segments of the αS backbone that might be involved in the initiation of aggregation. Since at higher temperatures, the αS molecule undergoes accelerated aggregation, we studied the temperature dependence of the distributions of intramolecular segmental end-to-end distances and their fast fluctuations in eight labeled chain segments of the αS molecule. Over the temperature range of 5-40 °C, no temperature-induced unfolding or folding was detected at the N-terminal domain (residues 1-66) of the αS molecule. The intramolecular diffusion coefficient of the segments' ends relative to each other increased monotonously with temperature. A common very high upper limiting value of ∼25 A²/ns was reached at 40 °C, another indication of a fully disordered state. Three exceptions were two segments with reduced values of the diffusion coefficients (the shortest segment where the excluded volume effect is dominant and the segment labeled in the NAC domain) and a nonlinear cooperative transition in the N-terminal segment. These specific subtle deviations from the common pattern of temperature dependence reflect specific structural constraints that could be critical in controlling the stability of the soluble monomer, or for its aggregation. Such very weak effects might be dominant in determination of the fate of ensembles of disordered polypeptides either to folding or to misfolding.
Collapse
Affiliation(s)
- Asaf Grupi
- The Goodman Faculty of Life Sciences, Bar-Ilan University, 52900 Ramat Gan, Israel
| | | |
Collapse
|