1
|
Miki S, Sakai K, Nakagawa T, Tanaka T, Liu L, Yamashita H, Kusumoto KI. Analysis of nitrogen source assimilation in industrial strains of Aspergillus oryzae. J Biosci Bioeng 2024; 137:231-238. [PMID: 38346913 DOI: 10.1016/j.jbiosc.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/22/2023] [Accepted: 01/07/2024] [Indexed: 03/20/2024]
Abstract
Nitrogen source assimilation is important for the biological functions of fungi, and its pathway has been deeply studied. Aspergillus oryzae mutants defective in nitrogen source assimilation are known to grow poorly on Czapek-Dox (CD) medium. In this study, we found an industrial strain of A. oryzae that grew very poorly on a CD medium containing sodium nitrate as a nitrogen source. We used media with various nitrogen components to examine the steps affecting the nitrogen source assimilation pathway of this strain. The strain grew well on the CD medium supplied with nitrite salt or ammonium salt, suggesting that the strain was defective in nitrate assimilation step. To ascertain the gene causing the defect of nitrate assimilation, a gene expression vector harboring either niaD or crnA of A. oryzae RIB40 was introduced into the industrial strain. The industrial strain containing the crnA vector recovered its growth. This is the first report that a mutation of crnA causes poor growth on CD medium in an industrial strain of A. oryzae, and crnA can be used as a transformation marker for crnA deficient strains.
Collapse
Affiliation(s)
- Shouhei Miki
- Higuchi Matsunosuke Shoten Co., Ltd., 1-14-2 Harimacho, Abeno-ku, Osaka-shi, Osaka 545-0022, Japan; Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kanae Sakai
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takuro Nakagawa
- Higuchi Matsunosuke Shoten Co., Ltd., 1-14-2 Harimacho, Abeno-ku, Osaka-shi, Osaka 545-0022, Japan
| | - Takumi Tanaka
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Liyun Liu
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hideyuki Yamashita
- Higuchi Matsunosuke Shoten Co., Ltd., 1-14-2 Harimacho, Abeno-ku, Osaka-shi, Osaka 545-0022, Japan
| | - Ken-Ichi Kusumoto
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Shang Y, Lv P, Li S, Wang W, Liu Y, Yang C. Allele-based analysis revealed the critical functions of region 277-297 in the NorA efflux pump of Staphylococcus aureus. J Antimicrob Chemother 2021; 76:1420-1427. [PMID: 33677568 DOI: 10.1093/jac/dkab066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/11/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The NorA efflux pump in Staphylococcus aureus mediates resistance to many fluoroquinolone (FQ) antibiotics. Three norA alleles with high sequence similarity are found in various S. aureus strains exhibiting different FQ resistance profiles. This study aimed to elucidate the underlying molecular basis for the varying efflux activity of these three allelic variations. METHODS The norA genotypes of 20 S. aureus isolates were analysed. Multiple alignments and conservative analyses were conducted to explore the evolutionary variations. After heterologous expression in Escherichia coli, seven mutants were constructed for MIC tests, efflux activity and conformational change measurements. RESULTS Three NorA alleles were identified that displayed different FQ MICs and varying efflux activity for ethidium bromide, with the NorAII protein showing the strongest activity. A total of 29 single amino acid polymorphisms were identified by conservative analysis within three allelic peptides, with seven sites densely distributed in the 277-297 region. Mutations of these seven residues in NorAII all significantly impaired drug resistance and efflux activity, and three key mutants showed conformational changes in fluorescence resonance energy transfer (FRET) analysis. CONCLUSIONS Evolutionary variations of the 277-297 region could be a major explanation for the functional difference of three norA alleles and serve as a potential target for the development of novel NorA inhibitors.
Collapse
Affiliation(s)
- Yan Shang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Peiwen Lv
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Shannan Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Wenkai Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Yuanxiang Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Chunyu Yang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
3
|
Hosoi A, Katsuyama T, Sasaki Y, Kondo T, Yajima S, Ito S. Nitrate analogs as attractants for soybean cyst nematode. Biosci Biotechnol Biochem 2017; 81:1542-1547. [PMID: 28593809 DOI: 10.1080/09168451.2017.1332980] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/11/2017] [Indexed: 10/19/2022]
Abstract
Soybean cyst nematode (SCN) Heterodera glycines Ichinohe, a plant parasite, is one of the most serious pests of soybean. In this paper, we report that SCN is attracted to nitrate and its analogs. We performed attraction assays to screen for novel attractants for SCN and found that nitrates were attractants for SCN and SCN recognized nitrate gradients. However, attraction of SCN to nitrates was not observed on agar containing nitrate. To further elucidate the attraction mechanism in SCN, we performed attraction assays using nitrate analogs ([Formula: see text], [Formula: see text], [Formula: see text]). SCN was attracted to all nitrate analogs; however, attraction of SCN to nitrate analogs was not observed on agar containing nitrate. In contrast, SCN was attracted to azuki root, irrespective of presence or absence of nitrate in agar media. Our results suggest that the attraction mechanisms differ between plant-derived attractant and nitrate.
Collapse
Affiliation(s)
- Akito Hosoi
- a Department of Bioscience , Tokyo University of Agriculture , Tokyo , Japan
| | - Tsutomu Katsuyama
- a Department of Bioscience , Tokyo University of Agriculture , Tokyo , Japan
| | - Yasuyuki Sasaki
- a Department of Bioscience , Tokyo University of Agriculture , Tokyo , Japan
| | - Tatsuhiko Kondo
- b Graduate School of Bioagricultural Sciences, Nagoya University , Nagoya , Japan
| | - Shunsuke Yajima
- a Department of Bioscience , Tokyo University of Agriculture , Tokyo , Japan
| | - Shinsaku Ito
- a Department of Bioscience , Tokyo University of Agriculture , Tokyo , Japan
| |
Collapse
|
4
|
Dagenais Bellefeuille S, Morse D. The main nitrate transporter of the dinoflagellate Lingulodinium polyedrum is constitutively expressed and not responsible for daily variations in nitrate uptake rates. HARMFUL ALGAE 2016; 55:272-281. [PMID: 28073541 DOI: 10.1016/j.hal.2016.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 06/06/2023]
Abstract
Dinoflagellates are unicellular eukaryotes capable of forming spectacular harmful algal blooms (HABs). Eutrophication of coastal waters by fertilizer runoff, nitrate in particular, has contributed to recent increases in the frequency, magnitude and geographic extent of HABs. Although physiological nitrate uptake and assimilation in dinoflagellates have often been measured in the field and in the laboratory, no molecular components involved in nitrate transport have yet been reported. This study reports the first identification and characterization of dinoflagellate nitrate transporters, found in the transcriptome of the bloom-forming Lingulodinium polyedrum. Of the 23 putative transporters found by BLAST searches, only members of the nitrate transporter 2 (NRT2) family contained all key amino acids known to be essential for nitrate transport. The dinoflagellate NRT2 sequences have 12 predicted transmembrane domains, as do the NRT2 sequences of bacteria, plants and fungi. The NRT2 sequences in Lingulodinium appear to have two different evolutionary origins, as determined by phylogenetic analyses. The most expressed transcript of all putative nitrate transporters was determined by RNA-Seq to be LpNRT2.1. An antibody raised against this transporter showed that the same amount of protein was found at different times over the light dark cycle and with different sources of N. Finally, global nitrate uptake was assessed using a 15N tracer, which showed that the process was not under circadian-control as previously suggested, but simply light-regulated.
Collapse
Affiliation(s)
- Steve Dagenais Bellefeuille
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada H1X 2B2
| | - David Morse
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada H1X 2B2.
| |
Collapse
|
5
|
Abstract
We analyzed the role of the nitrate transporter-encoding gene (nrtA) of Aspergillus oryzae by gene disruption. Southern hybridization analysis indicated that homologous recombination occurred at the resident nrtA locus. Real-time PCR showed that the nrtA gene was strongly inducible by NaNO3. The nrtA disruptant did not exhibit normal growth when nitrate was available as the sole nitrogen source. These results indicate that NrtA is essential for nitrate uptake in A. oryzae. Kojic acid (KA) production was inhibited by the addition of a small amount of sodium nitrate. The nrtA-disrupted strain was deficient in the uptake of nitrate. As a result, KA production in this strain was not considerably affected by the presence of nitrate.
Collapse
Affiliation(s)
- Motoaki Sano
- a Genome Biotechnology Laboratory , Kanazawa Institute of Technology , Hakusan , Japan
| |
Collapse
|
6
|
Akhtar N, Karabika E, Kinghorn JR, Glass AD, Unkles SE, Rouch DA. High-affinity nitrate/nitrite transporters NrtA and NrtB of Aspergillus nidulans exhibit high specificity and different inhibitor sensitivity. MICROBIOLOGY-SGM 2015; 161:1435-46. [PMID: 25855763 PMCID: PMC4635503 DOI: 10.1099/mic.0.000088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The NrtA and NrtB nitrate transporters are paralogous members of the major facilitator superfamily in Aspergillus nidulans. The availability of loss-of-function mutations allowed individual investigation of the specificity and inhibitor sensitivity of both NrtA and NrtB. In this study, growth response tests were carried out at a growth-limiting concentration of nitrate (1 mM) as the sole nitrogen source, in the presence of a number of potential nitrate analogues at various concentrations, to evaluate their effect on nitrate transport. Both chlorate and chlorite inhibited fungal growth, with chlorite exerting the greater inhibition. The main transporter of nitrate, NrtA, proved to be more sensitive to chlorate than the minor transporter, NrtB. Similarly, the cation caesium was shown to exert differential effects, strongly inhibiting the activity of NrtB, but not NrtA. In contrast, no inhibition of nitrate uptake by NrtA or NrtB transporters was observed in either growth tests or uptake assays in the presence of bicarbonate, formate, malonate or oxalate (sulphite could not be tested in uptake assays owing to its reaction with nitrate), indicating significant specificity of nitrate transport. Kinetic analyses of nitrate uptake revealed that both chlorate and chlorite inhibited NrtA competitively, while these same inhibitors inhibited NrtB in a non-competitive fashion. The caesium ion appeared to inhibit NrtA in a non-competitive fashion, while NrtB was inhibited uncompetitively. The results provide further evidence of the distinctly different characteristics as well as the high specificity of nitrate uptake by these two transporters.
Collapse
Affiliation(s)
- Naureen Akhtar
- School of Biology, University of St Andrews, St Andrews, Fife, KY16 9TH, UK
| | - Eugenia Karabika
- Biochemistry Laboratory, Chemistry Department, University of Ioannina, Ioannina 45110, Greece
| | - James R. Kinghorn
- School of Biology, University of St Andrews, St Andrews, Fife, KY16 9TH, UK
| | - Anthony D.M. Glass
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Shiela E. Unkles
- School of Biology, University of St Andrews, St Andrews, Fife, KY16 9TH, UK
- Shiela E. Unkles
| | - Duncan A. Rouch
- Biotechnology and Environmental Biology, RMIT University, Melbourne, Australia
- Correspondence Duncan A. Rouch
| |
Collapse
|
7
|
Characterization of the mutagenic spectrum of 4-nitroquinoline 1-oxide (4-NQO) in Aspergillus nidulans by whole genome sequencing. G3-GENES GENOMES GENETICS 2014; 4:2483-92. [PMID: 25352541 PMCID: PMC4267943 DOI: 10.1534/g3.114.014712] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
4-Nitroquinoline 1-oxide (4-NQO) is a highly carcinogenic chemical that induces mutations in bacteria, fungi, and animals through the formation of bulky purine adducts. 4-NQO has been used as a mutagen for genetic screens and in both the study of DNA damage and DNA repair. In the model eukaryote Aspergillus nidulans, 4-NQO-based genetic screens have been used to study diverse processes, including gene regulation, mitosis, metabolism, organelle transport, and septation. Early work during the 1970s using bacterial and yeast mutation tester strains concluded that 4-NQO was a guanine-specific mutagen. However, these strains were limited in their ability to determine full mutagenic potential, as they could not identify mutations at multiple sites, unlinked suppressor mutations, or G:C to C:G transversions. We have now used a whole genome resequencing approach with mutant strains generated from two independent genetic screens to determine the full mutagenic spectrum of 4-NQO in A. nidulans. Analysis of 3994 mutations from 38 mutant strains reveals that 4-NQO induces substitutions in both guanine and adenine residues, although with a 19-fold preference for guanine. We found no association between mutation load and mutagen dose and observed no sequence bias in the residues flanking the mutated purine base. The mutations were distributed randomly throughout most of the genome. Our data provide new evidence that 4-NQO can potentially target all base pairs. Furthermore, we predict that current practices for 4-NQO-induced mutagenesis are sufficient to reach gene saturation for genetic screens with feasible identification of causative mutations via whole genome resequencing.
Collapse
|
8
|
Structure of the YajR transporter suggests a transport mechanism based on the conserved motif A. Proc Natl Acad Sci U S A 2013; 110:14664-9. [PMID: 23950222 DOI: 10.1073/pnas.1308127110] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The major facilitator superfamily (MFS) is the largest family of secondary active transporters and is present in all life kingdoms. Detailed structural basis of the substrate transport and energy-coupling mechanisms of these proteins remain to be elucidated. YajR is a putative proton-driven MFS transporter found in many Gram-negative bacteria. Here we report the crystal structure of Escherichia coli YajR at 3.15 Å resolution in an outward-facing conformation. In addition to having the 12 canonical transmembrane helices, the YajR structure includes a unique 65-residue C-terminal domain which is independently stable. The structure is unique in illustrating the functional role of "sequence motif A." This highly conserved element is seen to stabilize the outward conformation of YajR and suggests a general mechanism for the conformational change between the inward and outward states of the MFS transporters.
Collapse
|
9
|
Giffin MM, Raab RW, Morganstern M, Sohaskey CD. Mutational analysis of the respiratory nitrate transporter NarK2 of Mycobacterium tuberculosis. PLoS One 2012; 7:e45459. [PMID: 23029022 PMCID: PMC3445494 DOI: 10.1371/journal.pone.0045459] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/22/2012] [Indexed: 11/24/2022] Open
Abstract
Mycobacterium tuberculosis induces nitrate reductase activity in response to decreasing oxygen levels. This is due to regulation of both the transcription and the activity of the nitrate transporter NarK2. A model of NarK2 structure is proposed containing 12 membrane spanning regions consistent with other members of the major facilitator superfamily. The role of the proton gradient was determined by exposing M. tuberculosis to uncouplers. Nitrite production decreased indicating that the importation of nitrate involved an H+/nitrate symporter. The addition of nitrite before nitrate had no effect, suggesting no role for a nitrate/nitrite antiporter. In addition the NarK2 knockout mutant showed no defect in nitrite export. NarK2 is proposed to be a Type I H+/nitrate symporter. Site directed mutagenesis was performed changing 23 amino acids of NarK2. This allowed the identification of important regions and amino acids of this transporter. Five of these mutants were inactive for nitrate transport, seven produced reduced activity and eleven mutants retained wild type activity. NarK2 is inactivated in the presence of oxygen by an unknown mechanism. However none of the mutants, including those with mutated cysteines, were altered in their response to oxygen levels. The assimilatory nitrate transporter NasA of Bacillus subtilis was expressed in the M. tuberculosis NarK2 mutant. It remained active during aerobic incubation showing that the point of oxygen control is NarK2.
Collapse
|
10
|
A single channel for nitrate uptake, nitrite export and nitrite uptake by Escherichia coli NarU and a role for NirC in nitrite export and uptake. Biochem J 2008; 417:297-304. [DOI: 10.1042/bj20080746] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two related polytopic membrane proteins of the major facilitator family, NarK and NarU, catalyse nitrate uptake, nitrite export and nitrite uptake across the Escherichia coli cytoplasmic membrane by an unknown mechanism. A 12-helix model of NarU was constructed based upon six alkaline phosphatase and β-galactosidase fusions to NarK and the predicted hydropathy for the NarK family. Fifteen residues conserved in the NarK-NarU protein family were substituted by site-directed mutagenesis, including four residues that are essential for nitrate uptake by Aspergillus nidulans: arginines Arg87 and Arg303 in helices 2 and 8, and two glycines in a nitrate signature motif. Despite the wide range of substitutions studied, in no case did mutation result in loss of one biochemical function without simultaneous loss of all other functions. A NarU+ NirC+ strain grew more rapidly and accumulated nitrite more rapidly than the isogenic NarU+ NirC− strain. Only the NirC+ strain consumed nitrite rapidly during the later stages of growth. Under conditions in which the rate of nitrite reduction was limited by the rate of nitrite uptake, NirC+ strains reduced nitrite up to 10 times more rapidly than isogenic NarU+ strains, indicating that both nitrite efflux and nitrite uptake are largely dependent on NirC. Isotope tracer experiments with [15N]nitrate and [14N]nitrite revealed that [15N]nitrite accumulated in the extracellular medium even when there was a net rate of nitrite uptake and reduction. We propose that NarU functions as a single channel for nitrate uptake and nitrite expulsion, either as a nitrate–nitrite antiporter, or more likely as a nitrate/H+ or nitrite/H+ channel.
Collapse
|
11
|
Affiliation(s)
- Oluyomi A. Okunola
- a University of Maryland, Department of Chemistry and Biochemistry , College Park, MD, 20742, USA
| | - Paul V. Santacroce
- a University of Maryland, Department of Chemistry and Biochemistry , College Park, MD, 20742, USA
| | - Jeffery T. Davis
- a University of Maryland, Department of Chemistry and Biochemistry , College Park, MD, 20742, USA
| |
Collapse
|
12
|
Nowrousian M, Frank S, Koers S, Strauch P, Weitner T, Ringelberg C, Dunlap JC, Loros JJ, Kück U. The novel ER membrane protein PRO41 is essential for sexual development in the filamentous fungus Sordaria macrospora. Mol Microbiol 2007; 64:923-37. [PMID: 17501918 PMCID: PMC3694341 DOI: 10.1111/j.1365-2958.2007.05694.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The filamentous fungus Sordaria macrospora develops complex fruiting bodies (perithecia) to propagate its sexual spores. Here, we present an analysis of the sterile mutant pro41 that is unable to produce mature fruiting bodies. The mutant carries a deletion of 4 kb and is complemented by the pro41 open reading frame that is contained within the region deleted in the mutant. In silico analyses predict PRO41 to be an endoplasmic reticulum (ER) membrane protein, and a PRO41-EGFP fusion protein colocalizes with ER-targeted DsRED. Furthermore, Western blot analysis shows that the PRO41-EGFP fusion protein is present in the membrane fraction. A fusion of the predicted N-terminal signal sequence of PRO41 with EGFP is secreted out of the cell, indicating that the signal sequence is functional. pro41 transcript levels are upregulated during sexual development. This increase in transcript levels was not observed in the sterile mutant pro1 that lacks a transcription factor gene. Moreover, microarray analysis of gene expression in the mutants pro1, pro41 and the pro1/41 double mutant showed that pro41 is partly epistatic to pro1. Taken together, these data show that PRO41 is a novel ER membrane protein essential for fruiting body formation in filamentous fungi.
Collapse
Affiliation(s)
- Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Sandra Frank
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Sandra Koers
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Peter Strauch
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Thomas Weitner
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Carol Ringelberg
- Departments of Genetics and Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | - Jay C. Dunlap
- Departments of Genetics and Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | - Jennifer J. Loros
- Departments of Genetics and Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | - Ulrich Kück
- Departments of Genetics and Biochemistry, Dartmouth Medical School, Hanover, NH, USA
- For correspondence. ; Tel. (+49) 0 234 3226212; Fax (+49) 0 234 3214184
| |
Collapse
|
13
|
Kafasla P, Bouzarelou D, Frillingos S, Sophianopoulou V. The proline permease of Aspergillus nidulans: Functional replacement of the native cysteine residues and properties of a cysteine-less transporter. Fungal Genet Biol 2007; 44:615-26. [PMID: 17350864 DOI: 10.1016/j.fgb.2007.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 01/23/2007] [Accepted: 01/25/2007] [Indexed: 11/30/2022]
Abstract
The major proline transporter (PrnB) of Aspergillus nidulans belongs to the Amino acid Polyamine Organocation (APC) transporter superfamily. Members of this family have not been subjected to systematic structure-function relationship studies. In this report, we examine the functional replacement of the three native Cys residues (Cys54, Cys352 and Cys530) of PrnB and the properties of an engineered Cys-less PrnB protein, as background for employing a Cys-scanning mutagenesis approach. We show that simultaneous replacement of Cys54 with Ala, Cys352 with Ala and Cys530 with Ser results in a functional Cys-less PrnB transporter. We also introduce the use of a biotin-acceptor domain tag to quantitate protein levels of the engineered PrnB mutants by Western blot analysis. Finally, by using the background of the Cys-less PrnB transporter, we evaluate the functional importance of amino acids Q219, K245 and F248 of PrnB, which our previous data had suggested to be involved in the mechanism of PrnB-mediated proline uptake. In the current study, we show that K245 and F248 but not Q219 are critical for PrnB-mediated proline uptake.
Collapse
Affiliation(s)
- Panagiota Kafasla
- Institute of Biology, National Center for Scientific Research Demokritos, Aghia Paraskevi, 153 10 Athens, Greece
| | | | | | | |
Collapse
|
14
|
Pantazopoulou A, Diallinas G. The first transmembrane segment (TMS1) of UapA contains determinants necessary for expression in the plasma membrane and purine transport. Mol Membr Biol 2006; 23:337-48. [PMID: 16923727 DOI: 10.1080/09687860600738239] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
UapA, a member of the NAT/NCS2 family, is a high affinity, high capacity, uric acid-xanthine/H+ symporter in Aspergillus nidulans. Determinants critical for substrate binding and transport lie in a highly conserved signature motif downstream from TMS8 and within TMS12. Here we examine the role of TMS1 in UapA biogenesis and function. First, using a mutational analysis, we studied the role of a short motif (Q85H86), conserved in all NATs. Q85 mutants were cryosensitive, decreasing (Q85L, Q85N, Q85E) or abolishing (Q85T) the capacity for purine transport, without affecting physiological substrate binding or expression in the plasma membrane. All H86 mutants showed nearly normal substrate binding affinities but most (H86A, H86K, H86D) were cryosensitive, a phenotype associated with partial ER retention and/or targeting of UapA in small vacuoles. Only mutant H86N showed nearly wild-type function, suggesting that His or Asn residues might act as H donors in interactions affecting UapA topology. Thus, residues Q85 and H86 seem to affect the flexibility of UapA, in a way that affects either transport catalysis per se (Q85), or expression in the plasma membrane (H86). We then examined the role of a transmembrane Leu Repeat (LR) motif present in TMS1 of UapA, but not in other NATs. Mutations replacing Leu with Ala residues altered differentially the binding affinities of xanthine and uric acid, in a temperature-sensitive manner. This result strongly suggested that the presence of L77, L84 and L91 affects the flexibility of UapA substrate binding site, in a way that is necessary for high affinity uric acid transport. A possible role of the LR motif in intramolecular interactions or in UapA dimerization is discussed.
Collapse
Affiliation(s)
- Areti Pantazopoulou
- Faculty of Biology, Department of Botany, University of Athens, Panepistimioupolis, Athens, Greece
| | | |
Collapse
|
15
|
Little DY, Rao H, Oliva S, Daniel-Vedele F, Krapp A, Malamy JE. The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues. Proc Natl Acad Sci U S A 2005; 102:13693-8. [PMID: 16157886 PMCID: PMC1224627 DOI: 10.1073/pnas.0504219102] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lateral root initiation is strongly repressed in Arabidopsis by the combination of high external sucrose and low external nitrate. A previously isolated mutant, lin1, can overcome this repression. Here, we show that lin1 carries a missense mutation in the NRT2.1 gene. Several allelic mutants, including one in which the NRT2.1 gene is completely deleted, show similar phenotypes to lin1 and fail to complement lin1. NRT2.1 encodes a putative high-affinity nitrate transporter that functions at low external nitrate concentrations. Direct measurement of nitrate uptake and nitrate content in the lin1 mutant seedlings established that both are indeed reduced. Because repression of lateral root initiation in WT plants can be relieved by increased concentrations of external nitrate, it is surprising to find that repression is also relieved by a defect in a component of the high-affinity nitrate uptake system. Furthermore, lateral root initiation is increased in lin1 relative to WT even when seedlings are grown on nitrate-free media, suggesting that the mutant phenotype is nitrate-independent. These results indicate that NRT2.1 is a repressor of lateral root initiation and that this role is independent of nitrate uptake. We propose that Arabidopsis NRT2.1 acts either as a nitrate sensor or signal transducer to coordinate the development of the root system with nutritional cues.
Collapse
Affiliation(s)
- Daniel Y Little
- Department of Molecular Genetics and Cell Biology, University of Chicago, 1103 East 57th Street, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|