1
|
Lettow J, Aref R, Schüller HJ. Transcriptional repressor Gal80 recruits corepressor complex Cyc8-Tup1 to structural genes of the Saccharomyces cerevisiae GAL regulon. Curr Genet 2021; 68:115-124. [PMID: 34622331 PMCID: PMC8801411 DOI: 10.1007/s00294-021-01215-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/14/2021] [Accepted: 09/26/2021] [Indexed: 11/30/2022]
Abstract
Under non-inducing conditions (absence of galactose), yeast structural genes of the GAL regulon are repressed by Gal80, preventing interaction of Gal4 bound to UASGAL promoter motifs with general factors of the transcriptional machinery. In this work, we show that Gal80 is also able to interact with histone deacetylase-recruiting corepressor proteins Cyc8 and Tup1, indicating an additional mechanism of gene repression. This is supported by our demonstration that a lexA–Gal80 fusion efficiently mediates repression of a reporter gene with an upstream lexA operator sequence. Corepressor interaction and in vivo gene repression could be mapped to a Gal80 minimal domain of 65 amino acids (aa 81-145). Site-directed mutagenesis of selected residues within this domain showed that a cluster of aromatic-hydrophobic amino acids (YLFV, aa 118-121) is important, although not solely responsible, for gene repression. Using chromatin immunoprecipitation, Cyc8 and Tup1 were shown to be present at the GAL1 promoter in a wild-type strain but not in a gal80 mutant strain under non-inducing (derepressing) growth conditions. Expression of a GAL1–lacZ fusion was elevated in a tup1 mutant (but not in a cyc8 mutant) grown in derepressing medium, indicating that Tup1 may be mainly responsible for this second mechanism of Gal80-dependent gene repression.
Collapse
Affiliation(s)
- Julia Lettow
- Center for Functional Genomics of Microbes, Abteilung Molekulare Genetik und Infektionsbiologie, Felix-Hausdorff-Str. 8, 17487, Greifswald, Germany
| | - Rasha Aref
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Shoubra El-Khaymah, Cairo, 11241, Egypt
| | - Hans-Joachim Schüller
- Center for Functional Genomics of Microbes, Abteilung Molekulare Genetik und Infektionsbiologie, Felix-Hausdorff-Str. 8, 17487, Greifswald, Germany.
| |
Collapse
|
2
|
Upadhyay SK. Dynamics of Gal80p in the Gal80p-Gal3p complex differ significantly from the dynamics in the Gal80p-Gal1p complex: implications for the higher specificity of Gal3p. MOLECULAR BIOSYSTEMS 2015; 10:3120-9. [PMID: 25220841 DOI: 10.1039/c4mb00371c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The expression of the GAL gene in Sacharomyces cerevisiae is regulated by three proteins; Gal3p/Gal1p, Gal80p and Gal4p. Both Gal3p and Gal1p act as transcriptional inducers, though Gal3p has a higher activity than Gal1p. The difference in activity may depend on the strength of the interaction and dynamical behavior of these proteins during complex formation with the repressor protein Gal80p. To address these queries we have modeled the binding interface of the Gal1p-Gal80p and Gal3p-Gal80p complexes. The comparison of the dynamics of these proteins in the complex and in the Apo protein was carried out. It was observed that the binding of Gal3p with Gal80p induces significant flexibility in Gal80p on a surface different from the one involved in binding with Gal3p. Several other differences at the interface between the Gal3p-Gal80p and the Gal1p-Gal80p complex were observed, which might permit Gal3p to act as a transcriptional inducer with higher activity. Further, we have discussed the dynamical event and plausible mechanism of complex formation of Gal3p and Gal1p with Gal80p at the molecular level.
Collapse
Affiliation(s)
- Sanjay K Upadhyay
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
3
|
Upadhyay SK, Sasidhar YU. Molecular simulation and docking studies of Gal1p and Gal3p proteins in the presence and absence of ligands ATP and galactose: implication for transcriptional activation of GAL genes. J Comput Aided Mol Des 2012; 26:847-64. [PMID: 22639079 DOI: 10.1007/s10822-012-9579-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 05/01/2012] [Indexed: 10/28/2022]
Abstract
The Gal4p mediated transcriptional activation of GAL genes requires the interaction between Gal3p bound with ATP and galactose and Gal80p. Though numerous studies suggest that galactose and ATP activate Gal3p/Gal1p interaction with Gal80p, neither the mechanism of activation nor the interacting surface that binds to Gal80p is well understood. In this study we investigated the dynamics of Gal3p and Gal1p in the presence and absence of ligands ATP and galactose to understand the role played by dynamics in the function of these proteins through molecular dynamics simulation and protein-protein docking studies. We performed simulations totaling to 510 ns on both Gal1p and Gal3p proteins in the presence and absence of ligands ATP and galactose. We find that, while binding of ligands ATP and galactose to Gal3p/Gal1p do not affect the global conformation of proteins, some local conformational changes around upper-lip helix including insertion domain are observed. We observed that only in the presence of ATP and galactose, Gal3p displays opening and closing motion between the two domains. And because of this motion, a binding interface, which is largely hydrophobic, opens up on the surface of Gal3p and this surface can bind to Gal80p. From our simulation studies we infer probable docking sites for Gal80p on Gal3p/Gal1p, which were further ascertained by the docking of Gal80p on to ligand bound Gal1p and Gal3p proteins, and the residues at the interface between Gal3p and Gal80p are identified. Our results correlate quite well with the existing body of literature on functional and dynamical aspects of Gal1p and Gal3p proteins.
Collapse
Affiliation(s)
- Sanjay K Upadhyay
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | |
Collapse
|
4
|
Aburatani S. Application of structure equation modeling for inferring a serial transcriptional regulation in yeast. GENE REGULATION AND SYSTEMS BIOLOGY 2011; 5:75-88. [PMID: 22272062 PMCID: PMC3236004 DOI: 10.4137/grsb.s7569] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Revealing the gene regulatory systems among DNA and proteins in living cells is one of the central aims of systems biology. In this study, I used Structural Equation Modeling (SEM) in combination with stepwise factor analysis to infer the protein-DNA interactions for gene expression control from only gene expression profiles, in the absence of protein information. I applied my approach to infer the causalities within the well-studied serial transcriptional regulation composed of GAL-related genes in yeast. This allowed me to reveal the hierarchy of serial transcriptional regulation, including previously unclear protein-DNA interactions. The validity of the constructed model was demonstrated by comparing the results with previous reports describing the regulation of the transcription factors. Furthermore, the model revealed combinatory regulation by Gal4p and Gal80p. In this study, the target genes were divided into three types: those regulated by one factor and those controlled by a combination of two factors.
Collapse
Affiliation(s)
- Sachiyo Aburatani
- Computational Biology Research Center, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| |
Collapse
|
5
|
Thoden JB, Ryan LA, Reece RJ, Holden HM. The interaction between an acidic transcriptional activator and its inhibitor. The molecular basis of Gal4p recognition by Gal80p. J Biol Chem 2008; 283:30266-72. [PMID: 18701455 DOI: 10.1074/jbc.m805200200] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The GAL genes, which encode the enzymes required for normal galactose metabolism in yeast, are transcriptionally regulated by three proteins: Gal4p, an activator; Gal80p, an inhibitor; and Gal3p, a galactose sensor. These proteins control the switch between inert and active gene expression. The transcriptional activation function of Gal4p is rendered inactive in the presence of Gal80p. Here we present the three-dimensional structure of a complex between the acidic activation domain of Gal4p and Gal80p. The transactivation domain initiates with an extended region of polypeptide chain followed by two turns of an amphipathic alpha-helix. It fits into and across a deep cleft within the Gal80p dimer with the protein-protein interface defined primarily by hydrophobic interactions. A disordered loop in the apo-Gal80p structure (Asp-309 to Ser-316) becomes well-defined upon binding of the transactivation domain. This investigation provides a new molecular scaffold for understanding previous biochemical and genetic studies.
Collapse
Affiliation(s)
- James B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
6
|
Sellick CA, Campbell RN, Reece RJ. Galactose metabolism in yeast-structure and regulation of the leloir pathway enzymes and the genes encoding them. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 269:111-50. [PMID: 18779058 DOI: 10.1016/s1937-6448(08)01003-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The enzymes of the Leloir pathway catalyze the conversion of galactose to a more metabolically useful version, glucose-6-phosphate. This pathway is required as galactose itself cannot be used for glycolysis directly. In most organisms, including the yeast Saccharomyces cerevisiae, five enzymes are required to catalyze this conversion: a galactose mutarotase, a galactokinase, a galactose-1-phosphate uridyltransferase, a UDP-galactose-4-epimerase, and a phosphoglucomutase. In yeast, the genes encoding these enzymes are tightly controlled at the level of transcription and are only transcribed under specific sets of conditions. In the presence of glucose, the genes encoding the Leloir pathway enzymes (often called the GAL genes) are repressed through the action of a transcriptional repressor Mig1p. In the presence of galactose, but in the absence of glucose, the concerted actions of three other proteins Gal4p, Gal80p, and Gal3p, and two small molecules (galactose and ATP) enable the rapid and high-level activation of the GAL genes. The precise molecular mechanism of the GAL genetic switch is controversial. Recent work on solving the three-dimensional structures of the various GAL enzymes proteins and the GAL transcriptional switch proteins affords a unique opportunity to delve into the precise, and potentially unambiguous, molecular mechanism of a highly exploited transcriptional circuit. Understanding the details of the transcriptional and metabolic events that occur in this pathway can be used as a paradigm for understanding the integration of metabolism and transcriptional control more generally, and will assist our understanding of fundamental biochemical processes and how these might be exploited.
Collapse
|
7
|
Segrè AV, Murray AW, Leu JY. High-resolution mutation mapping reveals parallel experimental evolution in yeast. PLoS Biol 2006; 4:e256. [PMID: 16856782 PMCID: PMC1514788 DOI: 10.1371/journal.pbio.0040256] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 05/31/2006] [Indexed: 11/30/2022] Open
Abstract
Understanding the genetic basis of evolutionary adaptation is limited by our ability to efficiently identify the genomic locations of adaptive mutations. Here we describe a method that can quickly and precisely map the genetic basis of naturally and experimentally evolved complex traits using linkage analysis. A yeast strain that expresses the evolved trait is crossed to a distinct strain background and DNA from a large pool of progeny that express the trait of interest is hybridized to oligonucleotide microarrays that detect thousands of polymorphisms between the two strains. Adaptive mutations are detected by linkage to the polymorphisms from the evolved parent. We successfully tested our method by mapping five known genes to a precision of 0.2–24 kb (0.1–10 cM), and developed computer simulations to test the effect of different factors on mapping precision. We then applied this method to four yeast strains that had independently adapted to a fluctuating glucose–galactose environment. All four strains had acquired one or more missense mutations in
GAL80, the repressor of the galactose utilization pathway. When transferred into the ancestral strain, the
gal80 mutations conferred the fitness advantage that the evolved strains show in the transition from glucose to galactose. Our results show an example of parallel adaptation caused by mutations in the same gene.
An array hybridization method enables genetic mapping via linkage analysis; applied here this new method shows parallel adaptation to a fluctuating glucose-galactose environment evidenced by mutations in the
GAL80 gene.
Collapse
Affiliation(s)
- Ayellet V Segrè
- 1Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Andrew W Murray
- 1Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Jun-Yi Leu
- 1Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
8
|
Thoden JB, Sellick CA, Reece RJ, Holden HM. Understanding a transcriptional paradigm at the molecular level. The structure of yeast Gal80p. J Biol Chem 2006; 282:1534-8. [PMID: 17121853 DOI: 10.1074/jbc.c600285200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In yeast, the GAL genes encode the enzymes required for normal galactose metabolism. Regulation of these genes in response to the organism being challenged with galactose has served as a paradigm for eukaryotic transcriptional control over the last 50 years. Three proteins, the activator Gal4p, the repressor Gal80p, and the ligand sensor Gal3p, control the switch between inert and active gene expression. Gal80p, the focus of this investigation, plays a pivotal role both in terms of repressing the activity of Gal4p and allowing the GAL switch to respond to galactose. Here we present the three-dimensional structure of Gal80p from Kluyveromyces lactis and show that it is structurally homologous to glucose-fructose oxidoreductase, an enzyme in the sorbitol-gluconate pathway. Our results clearly define the overall tertiary and quaternary structure of Gal80p and suggest that Gal4p and Gal3p bind to Gal80p at distinct but overlapping sites. In addition to providing a molecular basis for previous biochemical and genetic studies, our structure demonstrates that much of the enzymatic scaffold of the oxidoreductase has been maintained in Gal80p, but it is utilized in a very different manner to facilitate transcriptional regulation.
Collapse
Affiliation(s)
- James B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
9
|
Anders A, Lilie H, Franke K, Kapp L, Stelling J, Gilles ED, Breunig KD. The Galactose Switch in Kluyveromyces lactis Depends on Nuclear Competition between Gal4 and Gal1 for Gal80 Binding. J Biol Chem 2006; 281:29337-48. [PMID: 16867978 DOI: 10.1074/jbc.m604271200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Gal4 protein represents a universally functional transcription activator, which in yeast is regulated by protein-protein interaction of its transcription activation domain with the inhibitor Gal80. Gal80 inhibition is relieved via galactose-mediated Gal80-Gal1-Gal3 interaction. The Gal4-Gal80-Gal1/3 regulatory module is conserved between Saccharomyces cerevisiae and Kluyveromyces lactis. Here we demonstrate that K. lactis Gal80 (KlGal80) is a nuclear protein independent of the Gal4 activity status, whereas KlGal1 is detected throughout the entire cell, which implies that KlGal80 and KlGal1 interact in the nucleus. Consistently KlGal1 accumulates in the nucleus upon KlGAL80 overexpression. Furthermore, we show that the KlGal80-KlGal1 interaction blocks the galactokinase activity of KlGal1 and is incompatible with KlGal80-KlGal4-AD interaction. Thus, we propose that dissociation of KlGal80 from the AD forms the basis of KlGal4 activation in K. lactis. Quantitation of the dissociation constants for the KlGal80 complexes gives a much lower affinity for KlGal1 as compared with Gal4. Mathematical modeling shows that with these affinities a switch based on competition between Gal1 and Gal4 for Gal80 binding is nevertheless efficient provided two monomeric Gal1 molecules interact with dimeric Gal80. Consistent with such a mechanism, analysis of the sedimentation behavior by analytical ultracentrifugation demonstrates the formation of a heterotetrameric KlGal80-KlGal1 complex of 2:2 stoichiometry.
Collapse
Affiliation(s)
- Alexander Anders
- Institut für Genetik and Institut für Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|