1
|
Lin G, Barnes CO, Weiss S, Dutagaci B, Qiu C, Feig M, Song J, Lyubimov A, Cohen AE, Kaplan CD, Calero G. Structural basis of transcription: RNA polymerase II substrate binding and metal coordination using a free-electron laser. Proc Natl Acad Sci U S A 2024; 121:e2318527121. [PMID: 39190355 PMCID: PMC11388330 DOI: 10.1073/pnas.2318527121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/23/2024] [Indexed: 08/28/2024] Open
Abstract
Catalysis and translocation of multisubunit DNA-directed RNA polymerases underlie all cellular mRNA synthesis. RNA polymerase II (Pol II) synthesizes eukaryotic pre-mRNAs from a DNA template strand buried in its active site. Structural details of catalysis at near-atomic resolution and precise arrangement of key active site components have been elusive. Here, we present the free-electron laser (FEL) structures of a matched ATP-bound Pol II and the hyperactive Rpb1 T834P bridge helix (BH) mutant at the highest resolution to date. The radiation-damage-free FEL structures reveal the full active site interaction network, including the trigger loop (TL) in the closed conformation, bonafide occupancy of both site A and B Mg2+, and, more importantly, a putative third (site C) Mg2+ analogous to that described for some DNA polymerases but not observed previously for cellular RNA polymerases. Molecular dynamics (MD) simulations of the structures indicate that the third Mg2+ is coordinated and stabilized at its observed position. TL residues provide half of the substrate binding pocket while multiple TL/BH interactions induce conformational changes that could allow translocation upon substrate hydrolysis. Consistent with TL/BH communication, a FEL structure and MD simulations of the T834P mutant reveal rearrangement of some active site interactions supporting potential plasticity in active site function and long-distance effects on both the width of the central channel and TL conformation, likely underlying its increased elongation rate at the expense of fidelity.
Collapse
Affiliation(s)
- Guowu Lin
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Christopher O. Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Simon Weiss
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Bercem Dutagaci
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
| | - Chenxi Qiu
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
| | - Jihnu Song
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA94025
| | - Artem Lyubimov
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA94025
| | - Aina E. Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA94025
| | - Craig D. Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA15260
| | - Guillermo Calero
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| |
Collapse
|
2
|
Kuldell JC, Kaplan CD. RNA Polymerase II Activity Control of Gene Expression and Involvement in Disease. J Mol Biol 2024:168770. [PMID: 39214283 DOI: 10.1016/j.jmb.2024.168770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Gene expression is dependent on RNA Polymerase II (Pol II) activity in eukaryotes. In addition to determining the rate of RNA synthesis for all protein coding genes, Pol II serves as a platform for the recruitment of factors and regulation of co-transcriptional events, from RNA processing to chromatin modification and remodeling. The transcriptome can be shaped by changes in Pol II kinetics affecting RNA synthesis itself or because of alterations to co-transcriptional events that are responsive to or coupled with transcription. Genetic, biochemical, and structural approaches to Pol II in model organisms have revealed critical insights into how Pol II works and the types of factors that regulate it. The complexity of Pol II regulation generally increases with organismal complexity. In this review, we describe fundamental aspects of how Pol II activity can shape gene expression, discuss recent advances in how Pol II elongation is regulated on genes, and how altered Pol II function is linked to human disease and aging.
Collapse
Affiliation(s)
- James C Kuldell
- Department of Biological Sciences, 202A LSA, Fifth and Ruskin Avenues, University of Pittsburgh, Pittsburgh PA 15260, United States
| | - Craig D Kaplan
- Department of Biological Sciences, 202A LSA, Fifth and Ruskin Avenues, University of Pittsburgh, Pittsburgh PA 15260, United States.
| |
Collapse
|
3
|
Lin G, Barnes CO, Weiss S, Dutagaci B, Qiu C, Feig M, Song J, Lyubimov A, Cohen AE, Kaplan CD, Calero G. Structural basis of transcription: RNA Polymerase II substrate binding and metal coordination at 3.0 Å using a free-electron laser. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.559052. [PMID: 37790421 PMCID: PMC10543002 DOI: 10.1101/2023.09.22.559052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Catalysis and translocation of multi-subunit DNA-directed RNA polymerases underlie all cellular mRNA synthesis. RNA polymerase II (Pol II) synthesizes eukaryotic pre-mRNAs from a DNA template strand buried in its active site. Structural details of catalysis at near atomic resolution and precise arrangement of key active site components have been elusive. Here we present the free electron laser (FEL) structure of a matched ATP-bound Pol II, revealing the full active site interaction network at the highest resolution to date, including the trigger loop (TL) in the closed conformation, bonafide occupancy of both site A and B Mg2+, and a putative third (site C) Mg2+ analogous to that described for some DNA polymerases but not observed previously for cellular RNA polymerases. Molecular dynamics (MD) simulations of the structure indicate that the third Mg2+ is coordinated and stabilized at its observed position. TL residues provide half of the substrate binding pocket while multiple TL/bridge helix (BH) interactions induce conformational changes that could propel translocation upon substrate hydrolysis. Consistent with TL/BH communication, a FEL structure and MD simulations of the hyperactive Rpb1 T834P bridge helix mutant reveals rearrangement of some active site interactions supporting potential plasticity in active site function and long-distance effects on both the width of the central channel and TL conformation, likely underlying its increased elongation rate at the expense of fidelity.
Collapse
Affiliation(s)
- Guowu Lin
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh PA 15261 USA
| | - Christopher O Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena CA 91125 USA
| | - Simon Weiss
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh PA 15261 USA
| | - Bercem Dutagaci
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing MI 48824 USA
| | - Chenxi Qiu
- Department of Genetics, Harvard Medical School, Boston MA 02115 USA
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing MI 48824 USA
| | - Jihnu Song
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Artem Lyubimov
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Aina E Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15260 USA
| | - Guillermo Calero
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh PA 15261 USA
| |
Collapse
|
4
|
Duan B, Qiu C, Sze SH, Kaplan C. Widespread epistasis shapes RNA Polymerase II active site function and evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530048. [PMID: 36909581 PMCID: PMC10002619 DOI: 10.1101/2023.02.27.530048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Multi-subunit RNA Polymerases (msRNAPs) are responsible for transcription in all kingdoms of life. At the heart of these msRNAPs is an ultra-conserved active site domain, the trigger loop (TL), coordinating transcription speed and fidelity by critical conformational changes impacting multiple steps in substrate selection, catalysis, and translocation. Previous studies have observed several different types of genetic interactions between eukaryotic RNA polymerase II (Pol II) TL residues, suggesting that the TL's function is shaped by functional interactions of residues within and around the TL. The extent of these interaction networks and how they control msRNAP function and evolution remain to be determined. Here we have dissected the Pol II TL interaction landscape by deep mutational scanning in Saccharomyces cerevisiae Pol II. Through analysis of over 15000 alleles, representing all single mutants, a rationally designed subset of double mutants, and evolutionarily observed TL haplotypes, we identify interaction networks controlling TL function. Substituting residues creates allele-specific networks and propagates epistatic effects across the Pol II active site. Furthermore, the interaction landscape further distinguishes alleles with similar growth phenotypes, suggesting increased resolution over the previously reported single mutant phenotypic landscape. Finally, co-evolutionary analyses reveal groups of co-evolving residues across Pol II converge onto the active site, where evolutionary constraints interface with pervasive epistasis. Our studies provide a powerful system to understand the plasticity of RNA polymerase mechanism and evolution, and provide the first example of pervasive epistatic landscape in a highly conserved and constrained domain within an essential enzyme.
Collapse
Affiliation(s)
- Bingbing Duan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Chenxi Qiu
- Department of Genetics, Harvard Medical School, Boston, MA 02215
| | - Sing-Hoi Sze
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843
| | - Craig Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
5
|
Chung C, Verheijen BM, Navapanich Z, McGann EG, Shemtov S, Lai GJ, Arora P, Towheed A, Haroon S, Holczbauer A, Chang S, Manojlovic Z, Simpson S, Thomas KW, Kaplan C, van Hasselt P, Timmers M, Erie D, Chen L, Gout JF, Vermulst M. Evolutionary conservation of the fidelity of transcription. Nat Commun 2023; 14:1547. [PMID: 36941254 PMCID: PMC10027832 DOI: 10.1038/s41467-023-36525-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/03/2023] [Indexed: 03/23/2023] Open
Abstract
Accurate transcription is required for the faithful expression of genetic information. However, relatively little is known about the molecular mechanisms that control the fidelity of transcription, or the conservation of these mechanisms across the tree of life. To address these issues, we measured the error rate of transcription in five organisms of increasing complexity and found that the error rate of RNA polymerase II ranges from 2.9 × 10-6 ± 1.9 × 10-7/bp in yeast to 4.0 × 10-6 ± 5.2 × 10-7/bp in worms, 5.69 × 10-6 ± 8.2 × 10-7/bp in flies, 4.9 × 10-6 ± 3.6 × 10-7/bp in mouse cells and 4.7 × 10-6 ± 9.9 × 10-8/bp in human cells. These error rates were modified by various factors including aging, mutagen treatment and gene modifications. For example, the deletion or modification of several related genes increased the error rate substantially in both yeast and human cells. This research highlights the evolutionary conservation of factors that control the fidelity of transcription. Additionally, these experiments provide a reasonable estimate of the error rate of transcription in human cells and identify disease alleles in a subunit of RNA polymerase II that display error-prone transcription. Finally, we provide evidence suggesting that the error rate and spectrum of transcription co-evolved with our genetic code.
Collapse
Affiliation(s)
- Claire Chung
- School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Bert M Verheijen
- School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Zoe Navapanich
- School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Eric G McGann
- School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Sarah Shemtov
- School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Guan-Ju Lai
- School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Payal Arora
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Atif Towheed
- Children's hospital of Philadelphia, Center for Mitochondrial and Epigenomic Medicine, Philadelphia, PA, USA
| | - Suraiya Haroon
- Children's hospital of Philadelphia, Center for Mitochondrial and Epigenomic Medicine, Philadelphia, PA, USA
| | - Agnes Holczbauer
- Children's hospital of Philadelphia, Center for Mitochondrial and Epigenomic Medicine, Philadelphia, PA, USA
| | - Sharon Chang
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zarko Manojlovic
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stephen Simpson
- College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH, USA
| | - Kelley W Thomas
- College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH, USA
| | - Craig Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter van Hasselt
- Department of Metabolic Disease, University of Utrecht, Utrecht, the Netherlands
| | - Marc Timmers
- Department of Urology, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dorothy Erie
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Lin Chen
- Department of Molecular and Cellular Biology, University of Southern California, Los Angeles, CA, USA
| | - Jean-Franćois Gout
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Marc Vermulst
- School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Jacobs RQ, Carter ZI, Lucius AL, Schneider DA. Uncovering the mechanisms of transcription elongation by eukaryotic RNA polymerases I, II, and III. iScience 2022; 25:105306. [PMID: 36304104 PMCID: PMC9593817 DOI: 10.1016/j.isci.2022.105306] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/16/2022] [Accepted: 10/03/2022] [Indexed: 11/01/2022] Open
Abstract
Eukaryotes express three nuclear RNA polymerases (Pols I, II, and III) that are essential for cell survival. Despite extensive investigation of the three Pols, significant knowledge gaps regarding their biochemical properties remain because each Pol has been evaluated independently under disparate experimental conditions and methodologies. To advance our understanding of the Pols, we employed identical in vitro transcription assays for direct comparison of their elongation rates, elongation complex (EC) stabilities, and fidelities. Pol I is the fastest, most likely to misincorporate, forms the least stable EC, and is most sensitive to alterations in reaction buffers. Pol II is the slowest of the Pols, forms the most stable EC, and negligibly misincorporated an incorrect nucleotide. The enzymatic properties of Pol III were intermediate between Pols I and II in all assays examined. These results reveal unique enzymatic characteristics of the Pols that provide new insights into their evolutionary divergence.
Collapse
Affiliation(s)
- Ruth Q. Jacobs
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Zachariah I. Carter
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Aaron L. Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David A. Schneider
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
7
|
Collin A, González-Jiménez A, González-Jiménez MDC, Alfonso MJ, Calvo O. The Role of S. cerevisiae Sub1/PC4 in Transcription Elongation Depends on the C-Terminal Region and Is Independent of the ssDNA Binding Domain. Cells 2022; 11:cells11203320. [PMID: 36291192 PMCID: PMC9600219 DOI: 10.3390/cells11203320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022] Open
Abstract
Saccharomyces cerevisiae Sub1 (ScSub1) has been defined as a transcriptional stimulatory protein due to its homology to the ssDNA binding domain (ssDBD) of human PC4 (hPC4). Recently, PC4/Sub1 orthologues have been elucidated in eukaryotes, prokaryotes, and bacteriophages with functions related to DNA metabolism. Additionally, ScSub1 contains a unique carboxyl–terminal region (CT) of unknown function up to date. Specifically, it has been shown that Sub1 is required for transcription activation, as well as other processes, throughout the transcription cycle. Despite the progress that has been made in understanding the mechanism underlying Sub1′s functions, some questions remain unanswered. As a case in point: whether Sub1’s roles in initiation and elongation are differentially predicated on distinct regions of the protein or how Sub1′s functions are regulated. Here, we uncover some residues that are key for DNA–ScSub1 interaction in vivo, localized in the ssDBD, and required for Sub1 recruitment to promoters. Furthermore, using an array of genetic and molecular techniques, we demonstrate that the CT region is required for transcription elongation by RNA polymerase II (RNAPII). Altogether, our data indicate that Sub1 plays a dual role during transcription—in initiation through the ssDBD and in elongation through the CT region.
Collapse
Affiliation(s)
- Alejandro Collin
- Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas-INICSA, CONICET-Universidad Nacional de Córdoba, Haya de la Torre s/n, Pabellón Argentina, 2º piso. Ciudad Universitaria, Cordoba CP5000, Argentina
| | - Araceli González-Jiménez
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, C/ Zacarías González, nº2, 37007 Salamanca, Spain
| | | | - Manuel J. Alfonso
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, C/ Zacarías González, nº2, 37007 Salamanca, Spain
| | - Olga Calvo
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, C/ Zacarías González, nº2, 37007 Salamanca, Spain
- Correspondence:
| |
Collapse
|
8
|
Paparella R, Caroleo AM, Agolini E, Chillemi G, Miele E, Pedace L, Rinelli M, Pizzi S, Boccuto L, Colafati GS, Lodi M, Cacchione A, Carai A, Digilio MC, Tomà P, Tartaglia M, Mastronuzzi A. Posterior fossa ependymoma in neurodevelopmental syndrome caused by a de novo germline pathogenic POLR2A variant. Am J Med Genet A 2022; 188:2796-2802. [PMID: 35689525 PMCID: PMC9543264 DOI: 10.1002/ajmg.a.62869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/12/2022] [Accepted: 04/16/2022] [Indexed: 01/25/2023]
Abstract
Ependymoma is the third most common pediatric brain tumor. Predisposition to develop ependymomas has been reported in different hereditary diseases, but the pathogenic variants related to the familial syndromes have rarely been detected in sporadic ependymomas. De novo variants in POLR2A, the gene encoding the largest subunit of RNA polymerase II, cause a neurodevelopmental disorder with a wide range of clinical manifestations, characterized by severe infantile-onset hypotonia, developmental delay, feeding difficulties, palatal anomalies, and facial dysmorphisms. As somatic events, POLR2A mutations represent a recurrent somatic lesion in benign meningiomas. Here we describe a case of ependymoma in a 2-year-old male with a de novo pathogenic variant in POLR2A predicted to impair proper interaction of the subunit with transcription-elongation factor TFIIS, whose function is required for back-tracking of the enzyme due to elongation blocks or nucleotide misincorporation, and expected to result in an increased error and reduced elongation rates. To date, ependymoma has never been reported in patients harboring pathogenic POLR2A variants. Further information is required to explore the possibility of a differential clinical and functional impact of the pathogenic POLR2A variants and the eventual inclusion of the POLR2A neurodevelopmental disorder among the cancer predisposition syndromes with the possible development of ependymomas.
Collapse
Affiliation(s)
- Roberto Paparella
- Department of Maternal and Child Health and UrologySapienza University of RomeRomeItaly
| | - Anna Maria Caroleo
- Department of Onco‐Hematology, Cell Therapy, Gene Therapy and Hemopoietic TransplantBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Emanuele Agolini
- Translational Cytogenomics Research Unit, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agri‐food and Forestry SystemsTuscia UniversityViterboItaly,Institute of Biomembranes, Bioenergetics and Molecular BiotechnologiesNational Research CenterBariItaly
| | - Evelina Miele
- Department of Onco‐Hematology, Cell Therapy, Gene Therapy and Hemopoietic TransplantBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Lucia Pedace
- Department of Onco‐Hematology, Cell Therapy, Gene Therapy and Hemopoietic TransplantBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Martina Rinelli
- Translational Cytogenomics Research Unit, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Simone Pizzi
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Luigi Boccuto
- School of Nursing, College of Behavioral, Social and Health SciencesClemson UniversityClemsonSouth CarolinaUSA
| | | | - Mariachiara Lodi
- Department of Onco‐Hematology, Cell Therapy, Gene Therapy and Hemopoietic TransplantBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Antonella Cacchione
- Department of Onco‐Hematology, Cell Therapy, Gene Therapy and Hemopoietic TransplantBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Paolo Tomà
- Department of Imaging, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Angela Mastronuzzi
- Department of Onco‐Hematology, Cell Therapy, Gene Therapy and Hemopoietic TransplantBambino Gesù Children's Hospital, IRCCSRomeItaly
| |
Collapse
|
9
|
Zardoni L, Nardini E, Brambati A, Lucca C, Choudhary R, Loperfido F, Sabbioneda S, Liberi G. Elongating RNA polymerase II and RNA:DNA hybrids hinder fork progression and gene expression at sites of head-on replication-transcription collisions. Nucleic Acids Res 2021; 49:12769-12784. [PMID: 34878142 PMCID: PMC8682787 DOI: 10.1093/nar/gkab1146] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 11/20/2022] Open
Abstract
Uncoordinated clashes between replication forks and transcription cause replication stress and genome instability, which are hallmarks of cancer and neurodegeneration. Here, we investigate the outcomes of head-on replication-transcription collisions, using as a model system budding yeast mutants for the helicase Sen1, the ortholog of human Senataxin. We found that RNA Polymerase II accumulates together with RNA:DNA hybrids at sites of head-on collisions. The replication fork and RNA Polymerase II are both arrested during the clash, leading to DNA damage and, in the long run, the inhibition of gene expression. The inactivation of RNA Polymerase II elongation factors, such as the HMG-like protein Spt2 and the DISF and PAF complexes, but not alterations in chromatin structure, allows replication fork progression through transcribed regions. Attenuation of RNA Polymerase II elongation rescues RNA:DNA hybrid accumulation and DNA damage sensitivity caused by the absence of Sen1, but not of RNase H proteins, suggesting that such enzymes counteract toxic RNA:DNA hybrids at different stages of the cell cycle with Sen1 mainly acting in replication. We suggest that the main obstacle to replication fork progression is the elongating RNA Polymerase II engaged in an R-loop, rather than RNA:DNA hybrids per se or hybrid-associated chromatin modifications.
Collapse
Affiliation(s)
- Luca Zardoni
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, 27100 Pavia, Italy.,Scuola Universitaria Superiore IUSS, 27100 Pavia, Italy
| | - Eleonora Nardini
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, 27100 Pavia, Italy
| | - Alessandra Brambati
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, 27100 Pavia, Italy
| | | | | | - Federica Loperfido
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, 27100 Pavia, Italy
| | - Simone Sabbioneda
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, 27100 Pavia, Italy
| | - Giordano Liberi
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, 27100 Pavia, Italy.,IFOM Foundation, 20139 Milan, Italy
| |
Collapse
|
10
|
Palo MZ, Zhu J, Mishanina TV, Landick R. Conserved Trigger Loop Histidine of RNA Polymerase II Functions as a Positional Catalyst Primarily through Steric Effects. Biochemistry 2021; 60:3323-3336. [PMID: 34705427 DOI: 10.1021/acs.biochem.1c00528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In all domains of life, multisubunit RNA polymerases (RNAPs) catalyze both the extension of mRNA transcripts by nucleotide addition and the hydrolysis of RNA, which enables proofreading by removal of misincorporated nucleotides. A highly conserved catalytic module within RNAPs called the trigger loop (TL) functions as the key controller of these activities. The TL is proposed to act as a positional catalyst of phosphoryl transfer and transcript cleavage via electrostatic and steric contacts with substrates in its folded helical form. The function of a near-universally conserved TL histidine that contacts NTP phosphates is of particular interest. Despite its exceptional conservation, substitutions of the TL His with Gln support efficient catalysis in bacterial and yeast RNAPs. Unlike bacterial TLs, which contain a nearby Arg, the TL His is the only acid-base catalyst candidate in the eukaryotic RNAPII TL. Nonetheless, replacement of the TL His with Leu is reported to support cell growth in yeast, suggesting that even hydrogen bonding and polarity at this position may be dispensable for efficient catalysis by RNAPII. To test how a TL His-to-Leu substitution affects the enzymatic functions of RNAPII, we compared its rates of nucleotide addition, pyrophosphorolysis, and RNA hydrolysis to those of the wild-type RNAPII enzyme. The His-to-Leu substitution slightly reduced rates of phosphoryl transfer with little if any effect on intrinsic transcript cleavage. These findings indicate that the highly conserved TL His is neither an obligate acid-base catalyst nor a polar contact for NTP phosphates but instead functions as a positional catalyst mainly through steric effects.
Collapse
Affiliation(s)
- Michael Z Palo
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Junqiao Zhu
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Tatiana V Mishanina
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.,Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
11
|
Ingram ZM, Schneider DA, Lucius AL. Transient-state kinetic analysis of multi-nucleotide addition catalyzed by RNA polymerase I. Biophys J 2021; 120:4378-4390. [PMID: 34509510 DOI: 10.1016/j.bpj.2021.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/02/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022] Open
Abstract
RNA polymerases execute the first step in gene expression: transcription of DNA into RNA. Eukaryotes, unlike prokaryotes, express at least three specialized nuclear multisubunit RNA polymerases (Pol I, Pol II, and Pol III). RNA polymerase I (Pol I) synthesizes the most abundant RNA, ribosomal RNA. Nearly 60% of total transcription is devoted to ribosomal RNA synthesis, making it one of the cell's most energy consuming tasks. While a kinetic mechanism for nucleotide addition catalyzed by Pol I has been reported, it remains unclear to what degree different nucleotide sequences impact the incorporation rate constants. Furthermore, it is currently unknown if the previous investigation of a single-nucleotide incorporation was sensitive to the translocation step. Here, we show that Pol I exhibits considerable variability in both kmax and K1/2values using an in vitro multi-NTP incorporation assay measuring AMP and GMP incorporations. We found the first two observed nucleotide incorporations exhibited faster kmax-values (∼200 s-1) compared with the remaining seven positions (∼60 s-1). Additionally, the average K1/2 for ATP incorporation was found to be approximately threefold higher compared with GTP, suggesting Pol I has a tighter affinity for GTP compared with ATP. Our results demonstrate that Pol I exhibits significant variability in the observed rate constant describing each nucleotide incorporation. Understanding of the differences between the Pol enzymes will provide insight on the evolutionary pressures that led to their specialized roles. Therefore, the findings resulting from this work are critically important for comparisons with other polymerases across all domains of life.
Collapse
Affiliation(s)
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama.
| | | |
Collapse
|
12
|
Abstract
Gene transcription by RNA polymerase II (Pol II) is the first step in the expression of the eukaryotic genome and a focal point for cellular regulation during development, differentiation, and responses to the environment. Two decades after the determination of the structure of Pol II, the mechanisms of transcription have been elucidated with studies of Pol II complexes with nucleic acids and associated proteins. Here we provide an overview of the nearly 200 available Pol II complex structures and summarize how these structures have elucidated promoter-dependent transcription initiation, promoter-proximal pausing and release of Pol II into active elongation, and the mechanisms that Pol II uses to navigate obstacles such as nucleosomes and DNA lesions. We predict that future studies will focus on how Pol II transcription is interconnected with chromatin transitions, RNA processing, and DNA repair.
Collapse
Affiliation(s)
- Sara Osman
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;,
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;,
| |
Collapse
|
13
|
Contractions of the C-Terminal Domain of Saccharomyces cerevisiae Rpb1p Are Mediated by Rad5p. G3-GENES GENOMES GENETICS 2020; 10:2543-2551. [PMID: 32467128 PMCID: PMC7341143 DOI: 10.1534/g3.120.401409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The C-terminal domain (CTD) is an essential domain of the largest subunit of RNA polymerase II, Rpb1p, and is composed of 26 tandem repeats of a seven-amino acid sequence, YSPTSPS. Despite being an essential domain within an essential gene, we have previously demonstrated that the CTD coding region is genetically unstable. Furthermore, yeast with a truncated or mutated CTD sequence are capable of promoting spontaneous genetic expansion or contraction of this coding region to improve fitness. We investigated the mechanism by which the CTD contracts using a tet-off reporter system for RPB1 to monitor genetic instability within the CTD coding region. We report that contractions require the post-replication repair factor Rad5p but, unlike expansions, not the homologous recombination factors Rad51p and Rad52p. Sequence analysis of contraction events reveals that deleted regions are flanked by microhomologies. We also find that G-quadruplex forming sequences predicted by the QGRS Mapper are enriched on the noncoding strand of the CTD compared to the body of RPB1. Formation of G-quadruplexes in the CTD coding region could block the replication fork, necessitating post-replication repair. We propose that contractions of the CTD result when microhomologies misalign during Rad5p-dependent template switching via fork reversal.
Collapse
|
14
|
Yague-Sanz C, Vanrobaeys Y, Fernandez R, Duval M, Larochelle M, Beaudoin J, Berro J, Labbé S, Jacques PÉ, Bachand F. Nutrient-dependent control of RNA polymerase II elongation rate regulates specific gene expression programs by alternative polyadenylation. Genes Dev 2020; 34:883-897. [PMID: 32499400 PMCID: PMC7328516 DOI: 10.1101/gad.337212.120] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/06/2020] [Indexed: 12/22/2022]
Abstract
In this study from Yague-Sanz et al., the authors investigated the physiological relevance of variations in RNAPII elongation kinetics, and show in yeast that a RNAPII mutant that reduces the transcription elongation rate causes widespread changes in alternative polyadenylation (APA). Their findings indicate that RNAPII is a sensor of nucleotide availability and that genes important for nucleotide pool maintenance have adopted regulatory mechanisms responsive to reduced rates of transcription elongation. Transcription by RNA polymerase II (RNAPII) is a dynamic process with frequent variations in the elongation rate. However, the physiological relevance of variations in RNAPII elongation kinetics has remained unclear. Here we show in yeast that a RNAPII mutant that reduces the transcription elongation rate causes widespread changes in alternative polyadenylation (APA). We unveil two mechanisms by which APA affects gene expression in the slow mutant: 3′ UTR shortening and gene derepression by premature transcription termination of upstream interfering noncoding RNAs. Strikingly, the genes affected by these mechanisms are enriched for functions involved in phosphate uptake and purine synthesis, processes essential for maintenance of the intracellular nucleotide pool. As nucleotide concentration regulates transcription elongation, our findings argue that RNAPII is a sensor of nucleotide availability and that genes important for nucleotide pool maintenance have adopted regulatory mechanisms responsive to reduced rates of transcription elongation.
Collapse
Affiliation(s)
- Carlo Yague-Sanz
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Yann Vanrobaeys
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Ronan Fernandez
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, Connecticut 06520, USA.,Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Maxime Duval
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Marc Larochelle
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Jude Beaudoin
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, Connecticut 06520, USA.,Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Simon Labbé
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | | | - François Bachand
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| |
Collapse
|
15
|
Qiu C, Jin H, Vvedenskaya I, Llenas JA, Zhao T, Malik I, Visbisky AM, Schwartz SL, Cui P, Čabart P, Han KH, Lai WKM, Metz RP, Johnson CD, Sze SH, Pugh BF, Nickels BE, Kaplan CD. Universal promoter scanning by Pol II during transcription initiation in Saccharomyces cerevisiae. Genome Biol 2020; 21:132. [PMID: 32487207 PMCID: PMC7265651 DOI: 10.1186/s13059-020-02040-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 05/08/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The majority of eukaryotic promoters utilize multiple transcription start sites (TSSs). How multiple TSSs are specified at individual promoters across eukaryotes is not understood for most species. In Saccharomyces cerevisiae, a pre-initiation complex (PIC) comprised of Pol II and conserved general transcription factors (GTFs) assembles and opens DNA upstream of TSSs. Evidence from model promoters indicates that the PIC scans from upstream to downstream to identify TSSs. Prior results suggest that TSS distributions at promoters where scanning occurs shift in a polar fashion upon alteration in Pol II catalytic activity or GTF function. RESULTS To determine the extent of promoter scanning across promoter classes in S. cerevisiae, we perturb Pol II catalytic activity and GTF function and analyze their effects on TSS usage genome-wide. We find that alterations to Pol II, TFIIB, or TFIIF function widely alter the initiation landscape consistent with promoter scanning operating at all yeast promoters, regardless of promoter class. Promoter architecture, however, can determine the extent of promoter sensitivity to altered Pol II activity in ways that are predicted by a scanning model. CONCLUSIONS Our observations coupled with previous data validate key predictions of the scanning model for Pol II initiation in yeast, which we term the shooting gallery. In this model, Pol II catalytic activity and the rate and processivity of Pol II scanning together with promoter sequence determine the distribution of TSSs and their usage.
Collapse
Affiliation(s)
- Chenxi Qiu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
- Present Address: Department of Medicine, Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Huiyan Jin
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
| | - Irina Vvedenskaya
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Genetics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Jordi Abante Llenas
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843-3128, USA
- Present Address: Whitaker Biomedical Engineering Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Tingting Zhao
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Indranil Malik
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
- Present Address: Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alex M Visbisky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Scott L Schwartz
- Genomics and Bioinformatics Service, Texas A&M AgriLife, College Station, TX, 77845, USA
| | - Ping Cui
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
| | - Pavel Čabart
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
- Present Address: First Faculty of Medicine, Charles University, BIOCEV, 252 42, Vestec, Czech Republic
| | - Kang Hoo Han
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, 16802, USA
| | - William K M Lai
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, 16802, USA
- Present Address: Department of Molecular Biology and Genetics, 458 Biotechnology, Cornell University, New York, 14853, USA
| | - Richard P Metz
- Genomics and Bioinformatics Service, Texas A&M AgriLife, College Station, TX, 77845, USA
| | - Charles D Johnson
- Genomics and Bioinformatics Service, Texas A&M AgriLife, College Station, TX, 77845, USA
| | - Sing-Hoi Sze
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, 77843-3127, USA
| | - B Franklin Pugh
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, 16802, USA
- Present Address: Department of Molecular Biology and Genetics, 458 Biotechnology, Cornell University, New York, 14853, USA
| | - Bryce E Nickels
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Genetics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
16
|
Leng X, Ivanov M, Kindgren P, Malik I, Thieffry A, Brodersen P, Sandelin A, Kaplan CD, Marquardt S. Organismal benefits of transcription speed control at gene boundaries. EMBO Rep 2020; 21:e49315. [PMID: 32103605 PMCID: PMC7132196 DOI: 10.15252/embr.201949315] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 12/22/2022] Open
Abstract
RNA polymerase II (RNAPII) transcription is crucial for gene expression. RNAPII density peaks at gene boundaries, associating these key regions for gene expression control with limited RNAPII movement. The connections between RNAPII transcription speed and gene regulation in multicellular organisms are poorly understood. Here, we directly modulate RNAPII transcription speed by point mutations in the second largest subunit of RNAPII in Arabidopsis thaliana. A RNAPII mutation predicted to decelerate transcription is inviable, while accelerating RNAPII transcription confers phenotypes resembling auto-immunity. Nascent transcription profiling revealed that RNAPII complexes with accelerated transcription clear stalling sites at both gene ends, resulting in read-through transcription. The accelerated transcription mutant NRPB2-Y732F exhibits increased association with 5' splice site (5'SS) intermediates and enhanced splicing efficiency. Our findings highlight potential advantages of RNAPII stalling through local reduction in transcription speed to optimize gene expression for the development of multicellular organisms.
Collapse
Affiliation(s)
- Xueyuan Leng
- Department of Plant and Environmental SciencesCopenhagen Plant Science CentreUniversity of CopenhagenFrederiksbergDenmark
| | - Maxim Ivanov
- Department of Plant and Environmental SciencesCopenhagen Plant Science CentreUniversity of CopenhagenFrederiksbergDenmark
| | - Peter Kindgren
- Department of Plant and Environmental SciencesCopenhagen Plant Science CentreUniversity of CopenhagenFrederiksbergDenmark
| | - Indranil Malik
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTXUSA
- Present address:
Department of NeurologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Axel Thieffry
- Biotech Research and Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Peter Brodersen
- Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Albin Sandelin
- Biotech Research and Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Craig D Kaplan
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTXUSA
- Department of Biological SciencesUniversity of PittsburghPittsburghPAUSA
| | - Sebastian Marquardt
- Department of Plant and Environmental SciencesCopenhagen Plant Science CentreUniversity of CopenhagenFrederiksbergDenmark
| |
Collapse
|
17
|
Excited-state photocycodimerization of 6-azauracil to oxazetidine cyclodimer: A mechanism elucidation in water surroundings. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Distinct transcriptional roles for Histone H3-K56 acetylation during the cell cycle in Yeast. Nat Commun 2019; 10:4372. [PMID: 31558720 PMCID: PMC6763489 DOI: 10.1038/s41467-019-12400-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/06/2019] [Indexed: 01/22/2023] Open
Abstract
Dynamic disruption and reassembly of promoter-proximal nucleosomes is a conserved hallmark of transcriptionally active chromatin. Histone H3-K56 acetylation (H3K56Ac) enhances these turnover events and promotes nucleosome assembly during S phase. Here we sequence nascent transcripts to investigate the impact of H3K56Ac on transcription throughout the yeast cell cycle. We find that H3K56Ac is a genome-wide activator of transcription. While H3K56Ac has a major impact on transcription initiation, it also appears to promote elongation and/or termination. In contrast, H3K56Ac represses promiscuous transcription that occurs immediately following replication fork passage, in this case by promoting efficient nucleosome assembly. We also detect a stepwise increase in transcription as cells transit S phase and enter G2, but this response to increased gene dosage does not require H3K56Ac. Thus, a single histone mark can exert both positive and negative impacts on transcription that are coupled to different cell cycle events.
Collapse
|
19
|
Fleiss A, O'Donnell S, Fournier T, Lu W, Agier N, Delmas S, Schacherer J, Fischer G. Reshuffling yeast chromosomes with CRISPR/Cas9. PLoS Genet 2019; 15:e1008332. [PMID: 31465441 PMCID: PMC6738639 DOI: 10.1371/journal.pgen.1008332] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/11/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022] Open
Abstract
Genome engineering is a powerful approach to study how chromosomal architecture impacts phenotypes. However, quantifying the fitness impact of translocations independently from the confounding effect of base substitutions has so far remained challenging. We report a novel application of the CRISPR/Cas9 technology allowing to generate with high efficiency both uniquely targeted and multiple concomitant reciprocal translocations in the yeast genome. Targeted translocations are constructed by inducing two double-strand breaks on different chromosomes and forcing the trans-chromosomal repair through homologous recombination by chimerical donor DNAs. Multiple translocations are generated from the induction of several DSBs in LTR repeated sequences and promoting repair using endogenous uncut LTR copies as template. All engineered translocations are markerless and scarless. Targeted translocations are produced at base pair resolution and can be sequentially generated one after the other. Multiple translocations result in a large diversity of karyotypes and are associated in many instances with the formation of unanticipated segmental duplications. To test the phenotypic impact of translocations, we first recapitulated in a lab strain the SSU1/ECM34 translocation providing increased sulphite resistance to wine isolates. Surprisingly, the same translocation in a laboratory strain resulted in decreased sulphite resistance. However, adding the repeated sequences that are present in the SSU1 promoter of the resistant wine strain induced sulphite resistance in the lab strain, yet to a lower level than that of the wine isolate, implying that additional polymorphisms also contribute to the phenotype. These findings illustrate the advantage brought by our technique to untangle the phenotypic impacts of structural variations from confounding effects of base substitutions. Secondly, we showed that strains with multiple translocations, even those devoid of unanticipated segmental duplications, display large phenotypic diversity in a wide range of environmental conditions, showing that simply reconfiguring chromosome architecture is sufficient to provide fitness advantages in stressful growth conditions. Chromosomes are highly dynamic objects that often undergo large structural variations such as reciprocal translocations. Such rearrangements can have dramatic functional consequences, as they can disrupt genes, change their regulation or create novel fusion genes at their breakpoints. For instance, 90–95% of patients diagnosed with chronic myeloid leukemia carry the Philadelphia chromosome characterized by a reciprocal translocation between chromosomes 9 and 22. In addition, translocations reorganize the genetic information along chromosomes, which in turn can modify the 3D architecture of the genome and potentially affect its functioning. Quantifying the fitness impact of translocations independently from the confounding effect of base substitutions has so far remained challenging. Here, we report a novel CRISPR/Cas9-based technology allowing to generate with high efficiency and at a base-pair precision either uniquely targeted or multiple reciprocal translocations in yeast, without leaving any marker or scar in the genome. Engineering targeted reciprocal translocations allowed us for the first time to untangle the phenotypic impacts of large chromosomal rearrangements from that of point mutations. In addition, the generation of multiple translocations led to a large reorganization of the genetic information along the chromosomes, often including unanticipated large segmental duplications. We showed that reshuffling the genome resulted in the emergence of fitness advantage in stressful environmental conditions, even in strains where no gene was disrupted or amplified by the translocations.
Collapse
Affiliation(s)
- Aubin Fleiss
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, Paris, France
| | - Samuel O'Donnell
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, Paris, France
| | - Téo Fournier
- Université de Strasbourg, CNRS, GMGM UMR7156, Strasbourg, France
| | - Wenqing Lu
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, Paris, France
| | - Nicolas Agier
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, Paris, France
| | - Stéphane Delmas
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, Paris, France
| | | | - Gilles Fischer
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, Paris, France
- * E-mail:
| |
Collapse
|
20
|
Haijes HA, Koster MJE, Rehmann H, Li D, Hakonarson H, Cappuccio G, Hancarova M, Lehalle D, Reardon W, Schaefer GB, Lehman A, van de Laar IMBH, Tesselaar CD, Turner C, Goldenberg A, Patrier S, Thevenon J, Pinelli M, Brunetti-Pierri N, Prchalová D, Havlovicová M, Vlckova M, Sedláček Z, Lopez E, Ragoussis V, Pagnamenta AT, Kini U, Vos HR, van Es RM, van Schaik RFMA, van Essen TAJ, Kibaek M, Taylor JC, Sullivan J, Shashi V, Petrovski S, Fagerberg C, Martin DM, van Gassen KLI, Pfundt R, Falk MJ, McCormick EM, Timmers HTM, van Hasselt PM. De Novo Heterozygous POLR2A Variants Cause a Neurodevelopmental Syndrome with Profound Infantile-Onset Hypotonia. Am J Hum Genet 2019; 105:283-301. [PMID: 31353023 PMCID: PMC6699192 DOI: 10.1016/j.ajhg.2019.06.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/30/2019] [Indexed: 11/26/2022] Open
Abstract
The RNA polymerase II complex (pol II) is responsible for transcription of all ∼21,000 human protein-encoding genes. Here, we describe sixteen individuals harboring de novo heterozygous variants in POLR2A, encoding RPB1, the largest subunit of pol II. An iterative approach combining structural evaluation and mass spectrometry analyses, the use of S. cerevisiae as a model system, and the assessment of cell viability in HeLa cells allowed us to classify eleven variants as probably disease-causing and four variants as possibly disease-causing. The significance of one variant remains unresolved. By quantification of phenotypic severity, we could distinguish mild and severe phenotypic consequences of the disease-causing variants. Missense variants expected to exert only mild structural effects led to a malfunctioning pol II enzyme, thereby inducing a dominant-negative effect on gene transcription. Intriguingly, individuals carrying these variants presented with a severe phenotype dominated by profound infantile-onset hypotonia and developmental delay. Conversely, individuals carrying variants expected to result in complete loss of function, thus reduced levels of functional pol II from the normal allele, exhibited the mildest phenotypes. We conclude that subtle variants that are central in functionally important domains of POLR2A cause a neurodevelopmental syndrome characterized by profound infantile-onset hypotonia and developmental delay through a dominant-negative effect on pol-II-mediated transcription of DNA.
Collapse
Affiliation(s)
- Hanneke A Haijes
- Department of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, the Netherlands; Department of Biomedical Genetics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, the Netherlands; German Cancer Consortium (DKTK) standort Freiburg and German Cancer Research Center (DKFZ), 79106 Heidelberg, Germany
| | - Maria J E Koster
- Regenerative Medicine Center and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, the Netherlands; German Cancer Consortium (DKTK) standort Freiburg and German Cancer Research Center (DKFZ), 79106 Heidelberg, Germany
| | - Holger Rehmann
- Expertise Center for Structural Biology, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, the Netherlands; Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Oncode Institute, 3584 CT Utrecht, the Netherlands
| | - Dong Li
- Center for Applied Genomics, the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Human Genetics, the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gerarda Cappuccio
- Department of Translational Medicine, Federico II University, 80126 Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, 80126 Naples, Italy
| | - Miroslava Hancarova
- Department of Biology and Medical Genetics, Charles University Second Faculty of Medicine and University Hospital Motol, 150 06 Prague, Czech Republic
| | - Daphne Lehalle
- Department of Genetics, Centre Hospitalier Universitaire de Dijon, 21000 Dijon, France
| | - Willie Reardon
- Department of Clinical and Medical Genetics, Our Lady's Hospital for Sick Children, D12 N512 Dublin, Ireland
| | - G Bradley Schaefer
- Department of Pediatrics, Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, Arkansas, AR 72223, USA
| | - Anna Lehman
- Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, BC V6H 3N1 Vancouver, Canada
| | - Ingrid M B H van de Laar
- Department of Clinical Genetics, Erasmus Medical University Center Rotterdam, 3000 CA Rotterdam, the Netherlands
| | - Coranne D Tesselaar
- Department of Pediatrics, Amphia Hospital Breda, 4818 CK Breda, the Netherlands
| | - Clesson Turner
- Department of Clinical Genetics and Pediatrics, Walter Reed National Military Medical Center, Bethesda, Maryland, MD 20814, USA
| | - Alice Goldenberg
- Department of Genetics, Rouen University Hospital, Centre de Référence Anomalies du Développement, Normandy Centre for Genomic and Personalized Medicine, 76000 Rouen, France
| | - Sophie Patrier
- Department of Pathology, Rouen University Hospital, Centre de Référence Anomalies du Développement, 76000 Rouen, France
| | - Julien Thevenon
- Department of Genetics and Reproduction, Centre Hospitalier Universitaire de Grenoble, 38700 Grenoble, France
| | - Michele Pinelli
- Department of Translational Medicine, Federico II University, 80126 Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, 80126 Naples, Italy
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Federico II University, 80126 Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, 80126 Naples, Italy
| | - Darina Prchalová
- Department of Biology and Medical Genetics, Charles University Second Faculty of Medicine and University Hospital Motol, 150 06 Prague, Czech Republic
| | - Markéta Havlovicová
- Department of Biology and Medical Genetics, Charles University Second Faculty of Medicine and University Hospital Motol, 150 06 Prague, Czech Republic
| | - Markéta Vlckova
- Department of Biology and Medical Genetics, Charles University Second Faculty of Medicine and University Hospital Motol, 150 06 Prague, Czech Republic
| | - Zdeněk Sedláček
- Department of Biology and Medical Genetics, Charles University Second Faculty of Medicine and University Hospital Motol, 150 06 Prague, Czech Republic
| | - Elena Lopez
- Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, BC V6H 3N1 Vancouver, Canada
| | - Vassilis Ragoussis
- National Institute for Health Research Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN Oxford, UK
| | - Alistair T Pagnamenta
- National Institute for Health Research Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN Oxford, UK
| | - Usha Kini
- Department of Genomic Medicine, Oxford Centre for Genomic Medicine, Oxford University Hospitals National Health Service Foundation Trust, OX3 7LE Oxford, UK
| | - Harmjan R Vos
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Oncode Institute, 3584 CT Utrecht, the Netherlands
| | - Robert M van Es
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Oncode Institute, 3584 CT Utrecht, the Netherlands
| | - Richard F M A van Schaik
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Oncode Institute, 3584 CT Utrecht, the Netherlands
| | - Ton A J van Essen
- Department of Clinical Genetics, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Maria Kibaek
- H.C. Andersen Children Hospital, Odense University Hospital, 5000 Odense, Denmark
| | - Jenny C Taylor
- National Institute for Health Research Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN Oxford, UK
| | - Jennifer Sullivan
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, NC 27710, USA
| | - Vandana Shashi
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, NC 27710, USA
| | - Slave Petrovski
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, NC 27710, USA; AstraZeneca Centre for Genomics Research, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, CB4 0WG Cambridge, United Kingdom; Department of Medicine, the University of Melbourne, VIC 3010 Melbourne, Australia
| | - Christina Fagerberg
- Department of Clinical Genetics, Odense University Hospital, 5000 Odense, Denmark
| | - Donna M Martin
- Departments of Pediatrics and Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, MI 48109, USA
| | - Koen L I van Gassen
- Department of Biomedical Genetics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center Nijmegen, 6525 HR Nijmegen, the Netherlands
| | - Marni J Falk
- Division of Human Genetics, the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Mitochondrial Medicine Frontier Program, Division of Human Genetics, the Children's Hospital of Philadelphia, PA 19104, Philadelphia, USA
| | - Elizabeth M McCormick
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, the Children's Hospital of Philadelphia, PA 19104, Philadelphia, USA
| | - H T Marc Timmers
- Regenerative Medicine Center and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, the Netherlands; Department of Urology, University Medical Center Freiburg, University of Freiburg, 79110 Freiburg, Germany
| | - Peter M van Hasselt
- Department of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, the Netherlands.
| |
Collapse
|
21
|
Genetic analyses led to the discovery of a super-active mutant of the RNA polymerase I. PLoS Genet 2019; 15:e1008157. [PMID: 31136569 PMCID: PMC6555540 DOI: 10.1371/journal.pgen.1008157] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 06/07/2019] [Accepted: 04/25/2019] [Indexed: 01/08/2023] Open
Abstract
Most transcriptional activity of exponentially growing cells is carried out by the RNA Polymerase I (Pol I), which produces a ribosomal RNA (rRNA) precursor. In budding yeast, Pol I is a multimeric enzyme with 14 subunits. Among them, Rpa49 forms with Rpa34 a Pol I-specific heterodimer (homologous to PAF53/CAST heterodimer in human Pol I), which might be responsible for the specific functions of the Pol I. Previous studies provided insight in the involvement of Rpa49 in initiation, elongation, docking and releasing of Rrn3, an essential Pol I transcription factor. Here, we took advantage of the spontaneous occurrence of extragenic suppressors of the growth defect of the rpa49 null mutant to better understand the activity of Pol I. Combining genetic approaches, biochemical analysis of rRNA synthesis and investigation of the transcription rate at the individual gene scale, we characterized mutated residues of the Pol I as novel extragenic suppressors of the growth defect caused by the absence of Rpa49. When mapped on the Pol I structure, most of these mutations cluster within the jaw-lobe module, at an interface formed by the lobe in Rpa135 and the jaw made up of regions of Rpa190 and Rpa12. In vivo, the suppressor allele RPA135-F301S restores normal rRNA synthesis and increases Pol I density on rDNA genes when Rpa49 is absent. Growth of the Rpa135-F301S mutant is impaired when combined with exosome mutation rrp6Δ and it massively accumulates pre-rRNA. Moreover, Pol I bearing Rpa135-F301S is a hyper-active RNA polymerase in an in vitro tailed-template assay. We conclude that RNA polymerase I can be engineered to produce more rRNA in vivo and in vitro. We propose that the mutated area undergoes a conformational change that supports the DNA insertion into the cleft of the enzyme resulting in a super-active form of Pol I. The nuclear genome of eukaryotic cells is transcribed by three RNA polymerases. RNA polymerase I (Pol I) is a multimeric enzyme specialized in the synthesis of ribosomal RNA. Deregulation of the Pol I function is linked to the etiology of a broad range of human diseases. Understanding the Pol I activity and regulation represents therefore a major challenge. We chose the budding yeast Saccharomyces cerevisiae as a model, because Pol I transcription apparatus is genetically amenable in this organism. Analyses of phenotypic consequences of deletion/truncation of Pol I subunits-coding genes in yeast indeed provided insights into the activity and regulation of the enzyme. Here, we characterized mutations in Pol I that can alleviate the growth defect caused by the absence of Rpa49, one of the subunits composing this multi-protein enzyme. We mapped these mutations on the Pol I structure and found that they all cluster in a well-described structural element, the jaw-lobe module. Combining genetic and biochemical approaches, we showed that Pol I bearing one of these mutations in the Rpa135 subunit is able to produce more ribosomal RNA in vivo and in vitro. We propose that this super-activity is explained by structural rearrangement of the Pol I jaw/lobe interface.
Collapse
|
22
|
Scull CE, Ingram ZM, Lucius AL, Schneider DA. A Novel Assay for RNA Polymerase I Transcription Elongation Sheds Light on the Evolutionary Divergence of Eukaryotic RNA Polymerases. Biochemistry 2019; 58:2116-2124. [PMID: 30912638 PMCID: PMC6600827 DOI: 10.1021/acs.biochem.8b01256] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Eukaryotic cells express at least three nuclear RNA polymerases (Pols), each with a unique set of gene targets. Though these enzymes are homologous, there are many differences among the Pols. In this study, a novel assay for Pol I transcription elongation was developed to probe enzymatic differences among the Pols. In Saccharomyces cerevisiae, a mutation in the universally conserved hinge region of the trigger loop, E1103G, induces a gain of function in the Pol II elongation rate, whereas the corresponding mutation in Pol I, E1224G, results in a loss of function. The E1103G Pol II mutation stabilizes the closed conformation of the trigger loop, promoting the catalytic step, the putative rate-limiting step for Pol II. In single-nucleotide and multinucleotide addition assays, we observe a decrease in the rate of nucleotide addition and dinucleotide cleavage activity by E1224G Pol I and an increase in the rate of misincorporation. Collectively, these data suggest that Pol I is at least in part rate-limited by the same step as Pol II, the catalytic step.
Collapse
Affiliation(s)
- Catherine E. Scull
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Zachariah M. Ingram
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Aaron L. Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - David A. Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| |
Collapse
|
23
|
Qiu C, Kaplan CD. Functional assays for transcription mechanisms in high-throughput. Methods 2019; 159-160:115-123. [PMID: 30797033 PMCID: PMC6589137 DOI: 10.1016/j.ymeth.2019.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/18/2019] [Indexed: 01/12/2023] Open
Abstract
Dramatic increases in the scale of programmed synthesis of nucleic acid libraries coupled with deep sequencing have powered advances in understanding nucleic acid and protein biology. Biological systems centering on nucleic acids or encoded proteins greatly benefit from such high-throughput studies, given that large DNA variant pools can be synthesized and DNA, or RNA products of transcription, can be easily analyzed by deep sequencing. Here we review the scope of various high-throughput functional assays for studies of nucleic acids and proteins in general, followed by discussion of how these types of study have yielded insights into the RNA Polymerase II (Pol II) active site as an example. We discuss methodological considerations in the design and execution of these experiments that should be valuable to studies in any system.
Collapse
Affiliation(s)
- Chenxi Qiu
- Department of Medicine, Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
24
|
Peck SA, Hughes KD, Victorino JF, Mosley AL. Writing a wrong: Coupled RNA polymerase II transcription and RNA quality control. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1529. [PMID: 30848101 PMCID: PMC6570551 DOI: 10.1002/wrna.1529] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/27/2018] [Accepted: 02/07/2019] [Indexed: 12/20/2022]
Abstract
Processing and maturation of precursor RNA species is coupled to RNA polymerase II transcription. Co-transcriptional RNA processing helps to ensure efficient and proper capping, splicing, and 3' end processing of different RNA species to help ensure quality control of the transcriptome. Many improperly processed transcripts are not exported from the nucleus, are restricted to the site of transcription, and are in some cases degraded, which helps to limit any possibility of aberrant RNA causing harm to cellular health. These critical quality control pathways are regulated by the highly dynamic protein-protein interaction network at the site of transcription. Recent work has further revealed the extent to which the processes of transcription and RNA processing and quality control are integrated, and how critically their coupling relies upon the dynamic protein interactions that take place co-transcriptionally. This review focuses specifically on the intricate balance between 3' end processing and RNA decay during transcription termination. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Processing > 3' End Processing RNA Processing > Splicing Mechanisms RNA Processing > Capping and 5' End Modifications.
Collapse
Affiliation(s)
- Sarah A Peck
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Katlyn D Hughes
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jose F Victorino
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
25
|
Collin P, Jeronimo C, Poitras C, Robert F. RNA Polymerase II CTD Tyrosine 1 Is Required for Efficient Termination by the Nrd1-Nab3-Sen1 Pathway. Mol Cell 2019; 73:655-669.e7. [PMID: 30639244 DOI: 10.1016/j.molcel.2018.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/09/2018] [Accepted: 11/29/2018] [Indexed: 12/15/2022]
Abstract
In Saccharomyces cerevisiae, transcription termination at protein-coding genes is coupled to the cleavage of the nascent transcript, whereas most non-coding RNA transcription relies on a cleavage-independent termination pathway involving Nrd1, Nab3, and Sen1 (NNS). Termination involves RNA polymerase II CTD phosphorylation, but a systematic analysis of the contribution of individual residues would improve our understanding of the role of the CTD in this process. Here we investigated the effect of mutating phosphorylation sites in the CTD on termination. We observed widespread termination defects at protein-coding genes in mutants for Ser2 or Thr4 but rare defects in Tyr1 mutants for this genes class. Instead, mutating Tyr1 led to widespread termination defects at non-coding genes terminating via NNS. Finally, we showed that Tyr1 is important for pausing in the 5' end of genes and that slowing down transcription suppresses termination defects. Our work highlights the importance of Tyr1-mediated pausing in NNS-dependent termination.
Collapse
Affiliation(s)
- Pierre Collin
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Célia Jeronimo
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Christian Poitras
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - François Robert
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
26
|
Yankov EP, Bakalska RI, Horkel E, Svatunek D, Delchev VB. Experimental and theoretical study of the excited-state tautomerism of 6-azauracil in water surroundings. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.07.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Babokhov M, Mosaheb MM, Baker RW, Fuchs SM. Repeat-Specific Functions for the C-Terminal Domain of RNA Polymerase II in Budding Yeast. G3 (BETHESDA, MD.) 2018; 8:1593-1601. [PMID: 29523636 PMCID: PMC5940151 DOI: 10.1534/g3.118.200086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/06/2018] [Indexed: 12/22/2022]
Abstract
The C-terminal domain (CTD) of the largest subunit of RNA polymerase II (RNAPII) is required to regulate transcription and to integrate it with other essential cellular processes. In the budding yeast Saccharomyces cerevisiae, the CTD of Rpb1p consists of 26 conserved heptad repeats that are post-translationally modified to orchestrate protein factor binding at different stages of the transcription cycle. A long-standing question in the study of the CTD is if there are any functional differences between the 26 repeats. In this study, we present evidence that repeats of identical sequence have different functions based on their position within the CTD. We assembled plasmids expressing Rpb1p with serine to alanine substitutions in three defined regions of the CTD and measured a range of phenotypes for yeast expressing these constructs. Mutations in the beginning and middle regions of the CTD had drastic, and region-specific effects, while mutating the distal region had no observable phenotype. Further mutational analysis determined that Ser5 within the first region of repeats was solely responsible for the observed growth differences and sequencing fast-growing suppressors allowed us to further define the functional regions of the CTD. This mutational analysis is consistent with current structural models for how the RNAPII holoenzyme and the CTD specifically would reside in complex with Mediator and establishes a foundation for studying regioselective binding along the repetitive RNAPII CTD.
Collapse
Affiliation(s)
| | | | - Richard W Baker
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | | |
Collapse
|
28
|
Soares LM, He PC, Chun Y, Suh H, Kim T, Buratowski S. Determinants of Histone H3K4 Methylation Patterns. Mol Cell 2017; 68:773-785.e6. [PMID: 29129639 DOI: 10.1016/j.molcel.2017.10.013] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 08/23/2017] [Accepted: 10/12/2017] [Indexed: 11/28/2022]
Abstract
Various factors differentially recognize trimethylated histone H3 lysine 4 (H3K4me3) near promoters, H3K4me2 just downstream, and promoter-distal H3K4me1 to modulate gene expression. This methylation "gradient" is thought to result from preferential binding of the H3K4 methyltransferase Set1/complex associated with Set1 (COMPASS) to promoter-proximal RNA polymerase II. However, other studies have suggested that location-specific cues allosterically activate Set1. Chromatin immunoprecipitation sequencing (ChIP-seq) experiments show that H3K4 methylation patterns on active genes are not universal or fixed and change in response to both transcription elongation rate and frequency as well as reduced COMPASS activity. Fusing Set1 to RNA polymerase II results in H3K4me2 throughout transcribed regions and similarly extended H3K4me3 on highly transcribed genes. Tethered Set1 still requires histone H2B ubiquitylation for activity. These results show that higher-level methylations reflect not only Set1/COMPASS recruitment but also multiple rounds of transcription. This model provides a simple explanation for non-canonical methylation patterns at some loci or in certain COMPASS mutants.
Collapse
Affiliation(s)
- Luis M Soares
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - P Cody He
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Yujin Chun
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hyunsuk Suh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - TaeSoo Kim
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Malik I, Qiu C, Snavely T, Kaplan CD. Wide-ranging and unexpected consequences of altered Pol II catalytic activity in vivo. Nucleic Acids Res 2017; 45:4431-4451. [PMID: 28119420 PMCID: PMC5416818 DOI: 10.1093/nar/gkx037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/13/2017] [Indexed: 01/28/2023] Open
Abstract
Here we employ a set of RNA Polymerase II (Pol II) activity mutants to determine the consequences of increased or decreased Pol II catalysis on gene expression in Saccharomyces cerevisiae. We find that alteration of Pol II catalytic rate, either fast or slow, leads to decreased Pol II occupancy and apparent reduction in elongation rate in vivo. However, we also find that determination of elongation rate in vivo by chromatin immunoprecipitation can be confounded by the kinetics and conditions of transcriptional shutoff in the assay. We identify promoter and template-specific effects on severity of gene expression defects for both fast and slow Pol II mutants. We show that mRNA half-lives for a reporter gene are increased in both fast and slow Pol II mutant strains and the magnitude of half-life changes correlate both with mutants' growth and reporter expression defects. Finally, we tested a model that altered Pol II activity sensitizes cells to nucleotide depletion. In contrast to model predictions, mutated Pol II retains normal sensitivity to altered nucleotide levels. Our experiments establish a framework for understanding the diversity of transcription defects derived from altered Pol II activity mutants, essential for their use as probes of transcription mechanisms.
Collapse
Affiliation(s)
- Indranil Malik
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Chenxi Qiu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Thomas Snavely
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Craig D Kaplan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
30
|
Fong N, Saldi T, Sheridan RM, Cortazar MA, Bentley DL. RNA Pol II Dynamics Modulate Co-transcriptional Chromatin Modification, CTD Phosphorylation, and Transcriptional Direction. Mol Cell 2017; 66:546-557.e3. [PMID: 28506463 DOI: 10.1016/j.molcel.2017.04.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 01/11/2017] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
Abstract
Eukaryotic genes are marked by conserved post-translational modifications on the RNA pol II C-terminal domain (CTD) and the chromatin template. How the 5'-3' profiles of these marks are established is poorly understood. Using pol II mutants in human cells, we found that slow transcription repositioned specific co-transcriptionally deposited chromatin modifications; histone H3 lysine 36 trimethyl (H3K36me3) shifted within genes toward 5' ends, and histone H3 lysine 4 dimethyl (H3K4me2) extended farther upstream of start sites. Slow transcription also evoked a hyperphosphorylation of CTD Ser2 residues at 5' ends of genes that is conserved in yeast. We propose a "dwell time in the target zone" model to explain the effects of transcriptional dynamics on the establishment of co-transcriptionally deposited protein modifications. Promoter-proximal Ser2 phosphorylation is associated with a longer pol II dwell time at start sites and reduced transcriptional polarity because of strongly enhanced divergent antisense transcription at promoters. These results demonstrate that pol II dynamics help govern the decision between sense and divergent antisense transcription.
Collapse
Affiliation(s)
- Nova Fong
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Tassa Saldi
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Ryan M Sheridan
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Michael A Cortazar
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - David L Bentley
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA.
| |
Collapse
|
31
|
Harutyunyan AA, Panosyan HA, Tamazyan RA, Aivazyan AG, Danagulyan GG. 4-alkylated 2-(2,3,5-tri-O-acyl-β-D-ribofuranosyl)- and 2-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)-1,2,4-triazine-3,5-diones. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1070428017040121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Pause & go: from the discovery of RNA polymerase pausing to its functional implications. Curr Opin Cell Biol 2017; 46:72-80. [PMID: 28363125 DOI: 10.1016/j.ceb.2017.03.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/06/2017] [Accepted: 03/07/2017] [Indexed: 12/25/2022]
Abstract
The synthesis of nascent RNA is a discontinuous process in which phases of productive elongation by RNA polymerase are interrupted by frequent pauses. Transcriptional pausing was first observed decades ago, but was long considered to be a special feature of transcription at certain genes. This view was challenged when studies using genome-wide approaches revealed that RNA polymerase II pauses at promoter-proximal regions in large sets of genes in Drosophila and mammalian cells. High-resolution genomic methods uncovered that pausing is not restricted to promoters, but occurs globally throughout gene-body regions, implying the existence of key-rate limiting steps in nascent RNA synthesis downstream of transcription initiation. Here, we outline the experimental breakthroughs that led to the discovery of pervasive transcriptional pausing, discuss its emerging roles and regulation, and highlight the importance of pausing in human development and disease.
Collapse
|
33
|
Baejen C, Andreani J, Torkler P, Battaglia S, Schwalb B, Lidschreiber M, Maier KC, Boltendahl A, Rus P, Esslinger S, Söding J, Cramer P. Genome-wide Analysis of RNA Polymerase II Termination at Protein-Coding Genes. Mol Cell 2017; 66:38-49.e6. [PMID: 28318822 DOI: 10.1016/j.molcel.2017.02.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/06/2016] [Accepted: 02/09/2017] [Indexed: 01/09/2023]
Abstract
At the end of protein-coding genes, RNA polymerase (Pol) II undergoes a concerted transition that involves 3'-processing of the pre-mRNA and transcription termination. Here, we present a genome-wide analysis of the 3'-transition in budding yeast. We find that the 3'-transition globally requires the Pol II elongation factor Spt5 and factors involved in the recognition of the polyadenylation (pA) site and in endonucleolytic RNA cleavage. Pol II release from DNA occurs in a narrow termination window downstream of the pA site and requires the "torpedo" exonuclease Rat1 (XRN2 in human). The Rat1-interacting factor Rai1 contributes to RNA degradation downstream of the pA site. Defects in the 3'-transition can result in increased transcription at downstream genes.
Collapse
Affiliation(s)
- Carlo Baejen
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Jessica Andreani
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Phillipp Torkler
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Sofia Battaglia
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Bjoern Schwalb
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Michael Lidschreiber
- Karolinska Institutet, Department of Biosciences and Nutrition, Center for Innovative Medicine and Science for Life Laboratory, Novum, Hälsovägen 7, 141 83 Huddinge, Sweden
| | - Kerstin C Maier
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Andrea Boltendahl
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Petra Rus
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stephanie Esslinger
- Gene Center Munich and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Johannes Söding
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Patrick Cramer
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
34
|
High-Resolution Phenotypic Landscape of the RNA Polymerase II Trigger Loop. PLoS Genet 2016; 12:e1006321. [PMID: 27898685 PMCID: PMC5127505 DOI: 10.1371/journal.pgen.1006321] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/24/2016] [Indexed: 11/30/2022] Open
Abstract
The active sites of multisubunit RNA polymerases have a “trigger loop” (TL) that multitasks in substrate selection, catalysis, and translocation. To dissect the Saccharomyces cerevisiae RNA polymerase II TL at individual-residue resolution, we quantitatively phenotyped nearly all TL single variants en masse. Three mutant classes, revealed by phenotypes linked to transcription defects or various stresses, have distinct distributions among TL residues. We find that mutations disrupting an intra-TL hydrophobic pocket, proposed to provide a mechanism for substrate-triggered TL folding through destabilization of a catalytically inactive TL state, confer phenotypes consistent with pocket disruption and increased catalysis. Furthermore, allele-specific genetic interactions among TL and TL-proximal domain residues support the contribution of the funnel and bridge helices (BH) to TL dynamics. Our structural genetics approach incorporates structural and phenotypic data for high-resolution dissection of transcription mechanisms and their evolution, and is readily applicable to other essential yeast proteins. Proper regulation of Pol II transcription, the first step of gene expression, is essential for life. Extensive evidence has revealed a widely conserved and dynamic polymerase active site component, termed the Trigger Loop (TL), in balancing transcription rate and fidelity while possibly allowing control of transcription elongation. Coupling high-throughput sequencing with our previously established genetic system, we are able to assess the in vivo phenotypes for almost all possible single substitution Pol II TL mutants in the budding yeast Saccharomyces cerevisiae. We show that mutants in the TL nucleotide interacting and linker regions widely confer dominant and severe growth defects. Clustering of TL mutants’ transcription-related and general stress phenotypes reveals three main classes of TL mutants, including previously identified fast and slow elongating mutants. Comprehensive analyses of the distribution of fast and slow elongation mutants in light of existing Pol II crystal structures reveal critical regions contributing to proper TL dynamics and function. Evidence is presented linking a previously observed hydrophobic pocket to NTP substrate-induced TL closing, the mechanism critical for correct substrates selection and transcription fidelity. Finally, we assess the functional interplay between TL and its proximal domains, and their presumptive roles in the function and evolution of the TL. Utilizing the Pol II TL as a case study, we present a structural genetics approach that reveals insights into a complex, multi-functional, and essential domain in yeast.
Collapse
|
35
|
Relationships Between RNA Polymerase II Activity and Spt Elongation Factors to Spt- Phenotype and Growth in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2016; 6:2489-504. [PMID: 27261007 PMCID: PMC4978902 DOI: 10.1534/g3.116.030346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The interplay between adjacent transcription units can result in transcription-dependent alterations in chromatin structure or recruitment of factors that determine transcription outcomes, including the generation of intragenic or other cryptic transcripts derived from cryptic promoters. Mutations in a number of genes in Saccharomyces cerevisiae confer both cryptic intragenic transcription and the Suppressor of Ty (Spt-) phenotype for the lys2-128∂ allele of the LYS2 gene. Mutants that suppress lys2-128∂ allow transcription from a normally inactive Ty1 ∂ promoter, conferring a LYS+ phenotype. The arrangement of transcription units at lys2-128∂ is reminiscent of genes containing cryptic promoters within their open reading frames. We set out to examine the relationship between RNA Polymerase II (Pol II) activity, functions of Spt elongation factors, and cryptic transcription because of the previous observation that increased-activity Pol II alleles confer an Spt- phenotype. We identify both cooperating and antagonistic genetic interactions between Pol II alleles and alleles of elongation factors SPT4, SPT5, and SPT6. We find that cryptic transcription at FLO8 and STE11 is distinct from that at lys2-128∂, though all show sensitivity to reduction in Pol II activity, especially the expression of lys2-128∂ found in Spt- mutants. We determine that the lys2-128∂ Spt- phenotypes for spt6-1004 and increased activity rpo21/rpb1 alleles each require transcription from the LYS2 promoter. Furthermore, we identify the Ty1 transcription start site (TSS) within the ∂ element as the position of Spt- transcription in tested Spt- mutants.
Collapse
|
36
|
Engineered Covalent Inactivation of TFIIH-Kinase Reveals an Elongation Checkpoint and Results in Widespread mRNA Stabilization. Mol Cell 2016; 63:433-44. [PMID: 27477907 DOI: 10.1016/j.molcel.2016.06.036] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/09/2016] [Accepted: 06/23/2016] [Indexed: 12/25/2022]
Abstract
During transcription initiation, the TFIIH-kinase Kin28/Cdk7 marks RNA polymerase II (Pol II) by phosphorylating the C-terminal domain (CTD) of its largest subunit. Here we describe a structure-guided chemical approach to covalently and specifically inactivate Kin28 kinase activity in vivo. This method of irreversible inactivation recapitulates both the lethal phenotype and the key molecular signatures that result from genetically disrupting Kin28 function in vivo. Inactivating Kin28 impacts promoter release to differing degrees and reveals a "checkpoint" during the transition to productive elongation. While promoter-proximal pausing is not observed in budding yeast, inhibition of Kin28 attenuates elongation-licensing signals, resulting in Pol II accumulation at the +2 nucleosome and reduced transition to productive elongation. Furthermore, upon inhibition, global stabilization of mRNA masks different degrees of reduction in nascent transcription. This study resolves long-standing controversies on the role of Kin28 in transcription and provides a rational approach to irreversibly inhibit other kinases in vivo.
Collapse
|
37
|
Harlen KM, Trotta KL, Smith EE, Mosaheb MM, Fuchs SM, Churchman LS. Comprehensive RNA Polymerase II Interactomes Reveal Distinct and Varied Roles for Each Phospho-CTD Residue. Cell Rep 2016; 15:2147-2158. [PMID: 27239037 DOI: 10.1016/j.celrep.2016.05.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/22/2016] [Accepted: 04/26/2016] [Indexed: 12/11/2022] Open
Abstract
Transcription controls splicing and other gene regulatory processes, yet mechanisms remain obscure due to our fragmented knowledge of the molecular connections between the dynamically phosphorylated RNA polymerase II (Pol II) C-terminal domain (CTD) and regulatory factors. By systematically isolating phosphorylation states of the CTD heptapeptide repeat (Y1S2P3T4S5P6S7), we identify hundreds of protein factors that are differentially enriched, revealing unappreciated connections between the Pol II CTD and co-transcriptional processes. These data uncover a role for threonine-4 in 3' end processing through control of the transition between cleavage and termination. Furthermore, serine-5 phosphorylation seeds spliceosomal assembly immediately downstream of 3' splice sites through a direct interaction with spliceosomal subcomplex U1. Strikingly, threonine-4 phosphorylation also impacts splicing by serving as a mark of co-transcriptional spliceosome release and ensuring efficient post-transcriptional splicing genome-wide. Thus, comprehensive Pol II interactomes identify the complex and functional connections between transcription machinery and other gene regulatory complexes.
Collapse
Affiliation(s)
- Kevin M Harlen
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Kristine L Trotta
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Erin E Smith
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Stephen M Fuchs
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | | |
Collapse
|
38
|
Morrill SA, Exner AE, Babokhov M, Reinfeld BI, Fuchs SM. DNA Instability Maintains the Repeat Length of the Yeast RNA Polymerase II C-terminal Domain. J Biol Chem 2016; 291:11540-50. [PMID: 27026700 PMCID: PMC4882425 DOI: 10.1074/jbc.m115.696252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Indexed: 11/06/2022] Open
Abstract
The C-terminal domain (CTD) of RNA polymerase II in eukaryotes is comprised of tandemly repeating units of a conserved seven-amino acid sequence. The number of repeats is, however, quite variable across different organisms. Furthermore, previous studies have identified evidence of rearrangements within the CTD coding region, suggesting that DNA instability may play a role in regulating or maintaining CTD repeat number. The work described here establishes a clear connection between DNA instability and CTD repeat number in Saccharomyces cerevisiae First, analysis of 36 diverse S. cerevisiae isolates revealed evidence of numerous past rearrangements within the DNA sequence that encodes the CTD. Interestingly, the total number of CTD repeats was relatively static (24-26 repeats in all strains), suggesting a balancing act between repeat expansion and contraction. In an effort to explore the genetic plasticity within this region, we measured the rates of repeat expansion and contraction using novel reporters and a doxycycline-regulated expression system for RPB1 In efforts to determine the mechanisms leading to CTD repeat variability, we identified the presence of DNA secondary structures, specifically G-quadruplex-like DNA, within the CTD coding region. Furthermore, we demonstrated that mutating PIF1, a G-quadruplex-specific helicase, results in increased CTD repeat length polymorphisms. We also determined that RAD52 is necessary for CTD repeat expansion but not contraction, identifying a role for recombination in repeat expansion. Results from these DNA rearrangements may help explain the CTD copy number variation seen across eukaryotes, as well as support a model of CTD expansion and contraction to maintain CTD integrity and overall length.
Collapse
Affiliation(s)
- Summer A Morrill
- From the Department of Biology, Tufts University, Medford, Massachusetts 02155
| | - Alexandra E Exner
- From the Department of Biology, Tufts University, Medford, Massachusetts 02155
| | - Michael Babokhov
- From the Department of Biology, Tufts University, Medford, Massachusetts 02155
| | - Bradley I Reinfeld
- From the Department of Biology, Tufts University, Medford, Massachusetts 02155
| | - Stephen M Fuchs
- From the Department of Biology, Tufts University, Medford, Massachusetts 02155
| |
Collapse
|
39
|
Čabart P, Jin H, Li L, Kaplan CD. Activation and reactivation of the RNA polymerase II trigger loop for intrinsic RNA cleavage and catalysis. Transcription 2015; 5:e28869. [PMID: 25764335 PMCID: PMC4574878 DOI: 10.4161/trns.28869] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In addition to RNA synthesis, multisubunit RNA polymerases (msRNAPs) support enzymatic reactions such as intrinsic transcript cleavage. msRNAP active sites from different species appear to exhibit differential intrinsic transcript cleavage efficiency and have likely evolved to allow fine-tuning of the transcription process. Here we show that a single amino-acid substitution in the trigger loop (TL) of Saccharomyces RNAP II, Rpb1 H1085Y, engenders a gain of intrinsic cleavage activity where the substituted tyrosine appears to participate in acid-base chemistry at alkaline pH for both intrinsic cleavage and nucleotidyl transfer. We extensively characterize this TL substitution for each of these reactions by examining the responses RNAP II enzymes to catalytic metals, altered pH, and factor inputs. We demonstrate that TFIIF stimulation of the first phosphodiester bond formation by RNAP II requires wild type TL function and that H1085Y substitution within the TL compromises or alters RNAP II responsiveness to both TFIIB and TFIIF. Finally, Mn(2+) stimulation of H1085Y RNAP II reveals possible allosteric effects of TFIIB on the active center and cooperation between TFIIB and TFIIF.
Collapse
Affiliation(s)
- Pavel Čabart
- a Department of Biochemistry and Biophysics; Texas A&M University; College Station, TX
| | | | | | | |
Collapse
|
40
|
Crystal Structure of a Transcribing RNA Polymerase II Complex Reveals a Complete Transcription Bubble. Mol Cell 2015; 59:258-69. [PMID: 26186291 DOI: 10.1016/j.molcel.2015.06.034] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 05/13/2015] [Accepted: 06/25/2015] [Indexed: 11/24/2022]
Abstract
Notwithstanding numerous published structures of RNA Polymerase II (Pol II), structural details of Pol II engaging a complete nucleic acid scaffold have been lacking. Here, we report the structures of TFIIF-stabilized transcribing Pol II complexes, revealing the upstream duplex and full transcription bubble. The upstream duplex lies over a wedge-shaped loop from Rpb2 that engages its minor groove, providing part of the structural framework for DNA tracking during elongation. At the upstream transcription bubble fork, rudder and fork loop 1 residues spatially coordinate strand annealing and the nascent RNA transcript. At the downstream fork, a network of Pol II interactions with the non-template strand forms a rigid domain with the trigger loop (TL), allowing visualization of its open state. Overall, our observations suggest that "open/closed" conformational transitions of the TL may be linked to interactions with the non-template strand, possibly in a synchronized ratcheting manner conducive to polymerase translocation.
Collapse
|
41
|
Fong N, Kim H, Zhou Y, Ji X, Qiu J, Saldi T, Diener K, Jones K, Fu XD, Bentley DL. Pre-mRNA splicing is facilitated by an optimal RNA polymerase II elongation rate. Genes Dev 2015; 28:2663-76. [PMID: 25452276 PMCID: PMC4248296 DOI: 10.1101/gad.252106.114] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Fong et al. examined cotranscriptional pre-mRNA splicing using RNA polymerase II mutants that change average elongation rates genome-wide. Slow and fast elongation affected constitutive and alternative splicing and often both increased or both decreased inclusion of a particular exon or retained intron. These results suggest that an optimal rate of transcriptional elongation is required for normal cotranscriptional pre-mRNA splicing. Alternative splicing modulates expression of most human genes. The kinetic model of cotranscriptional splicing suggests that slow elongation expands and that fast elongation compresses the “window of opportunity” for recognition of upstream splice sites, thereby increasing or decreasing inclusion of alternative exons. We tested the model using RNA polymerase II mutants that change average elongation rates genome-wide. Slow and fast elongation affected constitutive and alternative splicing, frequently altering exon inclusion and intron retention in ways not predicted by the model. Cassette exons included by slow and excluded by fast elongation (type I) have weaker splice sites, shorter flanking introns, and distinct sequence motifs relative to “slow-excluded” and “fast-included” exons (type II). Many rate-sensitive exons are misspliced in tumors. Unexpectedly, slow and fast elongation often both increased or both decreased inclusion of a particular exon or retained intron. These results suggest that an optimal rate of transcriptional elongation is required for normal cotranscriptional pre-mRNA splicing.
Collapse
Affiliation(s)
- Nova Fong
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Hyunmin Kim
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Yu Zhou
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California at San Diego, San Diego, California 92093, USA
| | - Xiong Ji
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California at San Diego, San Diego, California 92093, USA
| | - Jinsong Qiu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California at San Diego, San Diego, California 92093, USA
| | - Tassa Saldi
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Katrina Diener
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Ken Jones
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California at San Diego, San Diego, California 92093, USA
| | - David L Bentley
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA;
| |
Collapse
|
42
|
Wang B, Opron K, Burton ZF, Cukier RI, Feig M. Five checkpoints maintaining the fidelity of transcription by RNA polymerases in structural and energetic details. Nucleic Acids Res 2014; 43:1133-46. [PMID: 25550432 PMCID: PMC4333413 DOI: 10.1093/nar/gku1370] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Transcriptional fidelity, which prevents the misincorporation of incorrect nucleoside monophosphates in RNA, is essential for life. Results from molecular dynamics (MD) simulations of eukaryotic RNA polymerase (RNAP) II and bacterial RNAP with experimental data suggest that fidelity may involve as many as five checkpoints. Using MD simulations, the effects of different active site NTPs in both open and closed trigger loop (TL) structures of RNAPs are compared. Unfavorable initial binding of mismatched substrates in the active site with an open TL is proposed to be the first fidelity checkpoint. The leaving of an incorrect substrate is much easier than a correct one energetically from the umbrella sampling simulations. Then, the closing motion of the TL, required for catalysis, is hindered by the presence of mismatched NTPs. Mismatched NTPs also lead to conformational changes in the active site, which perturb the coordination of magnesium ions and likely affect the ability to proceed with catalysis. This step appears to be the most important checkpoint for deoxy-NTP discrimination. Finally, structural perturbations in the template DNA and the nascent RNA in the presence of mismatches likely hinder nucleotide addition and provide the structural foundation for backtracking followed by removing erroneously incorporated nucleotides during proofreading.
Collapse
Affiliation(s)
- Beibei Wang
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Kristopher Opron
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Zachary F Burton
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Robert I Cukier
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Michael Feig
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
43
|
Li W, Selvam K, Ko T, Li S. Transcription bypass of DNA lesions enhances cell survival but attenuates transcription coupled DNA repair. Nucleic Acids Res 2014; 42:13242-53. [PMID: 25389266 PMCID: PMC4245964 DOI: 10.1093/nar/gku1150] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transcription-coupled DNA repair (TCR) is a subpathway of nucleotide excision repair (NER) dedicated to rapid removal of DNA lesions in the transcribed strand of actively transcribed genes. The precise nature of the TCR signal and how the repair machinery gains access to lesions imbedded in stalled RNA polymerase II (RNAP II) complexes in eukaryotic cells are still enigmatic. RNAP II has an intrinsic capacity for transcription bypass of DNA lesions by incorporation or misincorporation of nucleotides across the lesions. It has been suggested that transcription bypass of lesions, which exposes the lesions, may be required for TCR. Here, we show that E1103G mutation of Rpb1, the largest subunit of RNAP II, which promotes transcription bypass of UV-induced cyclobutane pyrimidine dimers (CPDs), increases survival of UV irradiated yeast cells but attenuates TCR. The increased cell survival is independent of any NER subpathways. In contrast, G730D mutation of Rpb1, which impairs transcription bypass of CPDs, enhances TCR. Our results suggest that transcription bypass of lesions attenuates TCR but enhances cell tolerance to DNA lesions. Efficient stalling of RNAP II is essential for efficient TCR.
Collapse
Affiliation(s)
- Wentao Li
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kathiresan Selvam
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Tengyu Ko
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Shisheng Li
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
44
|
Relationships of RNA polymerase II genetic interactors to transcription start site usage defects and growth in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2014; 5:21-33. [PMID: 25380729 PMCID: PMC4291466 DOI: 10.1534/g3.114.015180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Transcription initiation by RNA Polymerase II (Pol II) is an essential step in gene expression and regulation in all organisms. Initiation requires a great number of factors, and defects in this process can be apparent in the form of altered transcription start site (TSS) selection in Saccharomyces cerevisiae (Baker's yeast). It has been shown previously that TSS selection in S. cerevisiae is altered in Pol II catalytic mutants defective in a conserved active site feature known as the trigger loop. Pol II trigger loop mutants show growth phenotypes in vivo that correlate with biochemical defects in vitro and exhibit wide-ranging genetic interactions. We assessed how Pol II mutant growth phenotypes and TSS selection in vivo are modified by Pol II genetic interactors to estimate the relationship between altered TSS selection in vivo and organismal fitness of Pol II mutants. We examined whether the magnitude of TSS selection defects could be correlated with Pol II mutant-transcription factor double mutant phenotypes. We observed broad genetic interactions among Pol II trigger loop mutants and General Transcription Factor (GTF) alleles, with reduced-activity Pol II mutants especially sensitive to defects in TFIIB. However, Pol II mutant growth defects could be uncoupled from TSS selection defects in some Pol II allele-GTF allele double mutants, whereas a number of other Pol II genetic interactors did not influence ADH1 start site selection alone or in combination with Pol II mutants. Initiation defects are likely only partially responsible for Pol II allele growth phenotypes, with some Pol II genetic interactors able to exacerbate Pol II mutant growth defects while leaving initiation at a model TSS selection promoter unaffected.
Collapse
|
45
|
Karakasili E, Burkert-Kautzsch C, Kieser A, Sträßer K. Degradation of DNA damage-independently stalled RNA polymerase II is independent of the E3 ligase Elc1. Nucleic Acids Res 2014; 42:10503-15. [PMID: 25120264 PMCID: PMC4176355 DOI: 10.1093/nar/gku731] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 11/21/2022] Open
Abstract
Transcription elongation is a highly dynamic and discontinuous process, which includes frequent pausing of RNA polymerase II (RNAPII). RNAPII complexes that stall persistently on a gene during transcription elongation block transcription and thus have to be removed. It has been proposed that the cellular pathway for removal of these DNA damage-independently stalled RNAPII complexes is similar or identical to the removal of RNAPII complexes stalled due to DNA damage. Here, we show that-consistent with previous data-DNA damage-independent stalling causes polyubiquitylation and proteasome-mediated degradation of Rpb1, the largest subunit of RNAPII, using Saccharomyces cerevisiae as model system. Moreover, recruitment of the proteasome to RNAPII and transcribed genes is increased when transcription elongation is impaired indicating that Rpb1 degradation takes place at the gene. Importantly, in contrast to the DNA damage-dependent pathway Rpb1 degradation of DNA damage-independently stalled RNAPII is independent of the E3 ligase Elc1. In addition, deubiquitylation of RNAPII is also independent of the Elc1-antagonizing deubiquitylase Ubp3. Thus, the pathway for degradation of DNA damage-independently stalled RNAPII is overlapping yet distinct from the previously described pathway for degradation of RNAPII stalled due to DNA damage. Taken together, we provide the first evidence that the cell discriminates between DNA damage-dependently and -independently stalled RNAPII.
Collapse
Affiliation(s)
- Eleni Karakasili
- Gene Center and Munich Center for Integrated Protein Science CIPSM at the Department of Biochemistry of the Ludwig-Maximilians-University of Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Cornelia Burkert-Kautzsch
- Gene Center and Munich Center for Integrated Protein Science CIPSM at the Department of Biochemistry of the Ludwig-Maximilians-University of Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Anja Kieser
- Gene Center and Munich Center for Integrated Protein Science CIPSM at the Department of Biochemistry of the Ludwig-Maximilians-University of Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Katja Sträßer
- Gene Center and Munich Center for Integrated Protein Science CIPSM at the Department of Biochemistry of the Ludwig-Maximilians-University of Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| |
Collapse
|
46
|
Schulz D, Pirkl N, Lehmann E, Cramer P. Rpb4 subunit functions mainly in mRNA synthesis by RNA polymerase II. J Biol Chem 2014; 289:17446-52. [PMID: 24802753 DOI: 10.1074/jbc.m114.568014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
RNA polymerase II (Pol II) is the central enzyme that carries out eukaryotic mRNA transcription and consists of a 10-subunit catalytic core and a subcomplex of subunits Rpb4 and Rpb7 (Rpb4/7). Rpb4/7 has been proposed to dissociate from Pol II, enter the cytoplasm, and function there in mRNA translation and degradation. Here we provide evidence that Rpb4 mainly functions in nuclear mRNA synthesis by Pol II, as well as evidence arguing against an important cytoplasmic role in mRNA degradation. We used metabolic RNA labeling and comparative Dynamic Transcriptome Analysis to show that Rpb4 deletion in Saccharomyces cerevisiae causes a drastic defect in mRNA synthesis that is compensated by down-regulation of mRNA degradation, resulting in mRNA level buffering. Deletion of Rpb4 can be rescued by covalent fusion of Rpb4 to the Pol II core subunit Rpb2, which largely restores mRNA synthesis and degradation defects caused by Rpb4 deletion. Thus, Rpb4 is a bona fide Pol II core subunit that functions mainly in mRNA synthesis.
Collapse
Affiliation(s)
- Daniel Schulz
- From the Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich and
| | - Nicole Pirkl
- From the Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich and
| | - Elisabeth Lehmann
- From the Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich and
| | - Patrick Cramer
- From the Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich and the Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
47
|
Moehle EA, Braberg H, Krogan NJ, Guthrie C. Adventures in time and space: splicing efficiency and RNA polymerase II elongation rate. RNA Biol 2014; 11:313-9. [PMID: 24717535 PMCID: PMC4075515 DOI: 10.4161/rna.28646] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Control of pre-mRNA splicing is a critical part of the eukaryotic gene expression process. Extensive evidence indicates that transcription and splicing are spatiotemporally coordinated and that most splicing events occur co-transcriptionally. A kinetic coupling model has been proposed in metazoans to describe how changing RNA Polymerase II (RNAPII) elongation rate can impact which alternative splice sites are used. In Saccharomyces cerevisiae, in which most spliced genes have only a single intron and splice sites adhere to a strong consensus sequence, we recently observed that splicing efficiency was sensitive to mutations in RNAPII that increase or decrease its elongation rate. Our data revealed that RNAPII speed and splicing efficiency are generally anti-correlated: at many genes, increased elongation rate caused decreased splicing efficiency, while decreased elongation rate increased splicing efficiency. An improved splicing phenotype was also observed upon deletion of SUB1, a condition in which elongation rate is slowed. We discuss these data in the context of a growing field and expand the kinetic coupling model to apply to both alternative splicing and splicing efficiency.
Collapse
Affiliation(s)
- Erica A Moehle
- Department of Biochemistry and Biophysics; University of California; San Francisco, CA USA
| | - Hannes Braberg
- Department of Cellular and Molecular Pharmacology; University of California; San Francisco, CA USA; California Institute for Quantitative Biosciences; QB3; San Francisco, CA USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology; University of California; San Francisco, CA USA; California Institute for Quantitative Biosciences; QB3; San Francisco, CA USA; J. David Gladstone Institutes; San Francisco, CA USA
| | - Christine Guthrie
- Department of Biochemistry and Biophysics; University of California; San Francisco, CA USA
| |
Collapse
|
48
|
Jimeno-González S, Schmid M, Malagon F, Haaning LL, Jensen TH. Rat1p maintains RNA polymerase II CTD phosphorylation balance. RNA (NEW YORK, N.Y.) 2014; 20:551-558. [PMID: 24501251 PMCID: PMC3964916 DOI: 10.1261/rna.041129.113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 12/23/2013] [Indexed: 06/03/2023]
Abstract
In S. cerevisiae, the 5'-3' exonuclease Rat1p partakes in transcription termination. Although Rat1p-mediated RNA degradation has been suggested to play a role for this activity, the exact mechanisms by which Rat1p helps release RNA polymerase II (RNAPII) from the DNA template are poorly understood. Here we describe a function of Rat1p in regulating phosphorylation levels of the C-terminal domain (CTD) of the largest RNAPII subunit, Rpb1p, during transcription elongation. The rat1-1 mutant exhibits highly elevated levels of CTD phosphorylation as well as RNAPII distribution and transcription termination defects. These phenotypes are all rescued by overexpression of the CTD phosphatase Fcp1p, suggesting a functional relationship between the absence of Rat1p activity, elevated CTD phosphorylation, and transcription defects. We also demonstrate that rat1-1 cells display increased RNAPII transcription kinetics, a feature that may contribute to the cellular phenotypes of the mutant. Consistently, the rat1-1 allele is synthetic lethal with the rpb1-E1103G mutation, causing increased RNAPII speed, and is suppressed by the rpb2-10 mutation, causing slowed transcription. Thus, Rat1p plays more complex roles in controlling transcription than previously thought.
Collapse
|
49
|
Wang B, Predeus AV, Burton ZF, Feig M. Energetic and structural details of the trigger-loop closing transition in RNA polymerase II. Biophys J 2014; 105:767-75. [PMID: 23931324 DOI: 10.1016/j.bpj.2013.05.060] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 05/26/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022] Open
Abstract
An evolutionarily conserved element in RNA polymerase II, the trigger loop (TL), has been suggested to play an important role in the elongation rate, fidelity of selection of the matched nucleoside triphosphate (NTP), catalysis of transcription elongation, and translocation in both eukaryotes and prokaryotes. In response to NTP binding, the TL undergoes large conformational changes to switch between distinct open and closed states to tighten the active site and avail catalysis. A computational strategy for characterizing the conformational transition pathway is presented to bridge the open and closed states of the TL. Information from a large number of independent all-atom molecular dynamics trajectories from Hamiltonian replica exchange and targeted molecular dynamics simulations is gathered together to assemble a connectivity map of the conformational transition. The results show that with a cognate NTP, TL closing should be a spontaneous process. One major intermediate state is identified along the conformational transition pathway, and the key structural features are characterized. The complete pathway from the open TL to the closed TL provides a clear picture of the TL closing.
Collapse
Affiliation(s)
- Beibei Wang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, USA
| | | | | | | |
Collapse
|
50
|
Afonin KA, Desai R, Viard M, Kireeva ML, Bindewald E, Case CL, Maciag AE, Kasprzak WK, Kim T, Sappe A, Stepler M, KewalRamani VN, Kashlev M, Blumenthal R, Shapiro BA. Co-transcriptional production of RNA-DNA hybrids for simultaneous release of multiple split functionalities. Nucleic Acids Res 2014; 42:2085-97. [PMID: 24194608 PMCID: PMC3919563 DOI: 10.1093/nar/gkt1001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/30/2013] [Accepted: 10/04/2013] [Indexed: 12/12/2022] Open
Abstract
Control over the simultaneous delivery of different functionalities and their synchronized intracellular activation can greatly benefit the fields of RNA and DNA biomedical nanotechnologies and allow for the production of nanoparticles and various switching devices with controllable functions. We present a system of multiple split functionalities embedded in the cognate pairs of RNA-DNA hybrids which are programmed to recognize each other, re-associate and form a DNA duplex while also releasing the split RNA fragments which upon association regain their original functions. Simultaneous activation of three different functionalities (RNAi, Förster resonance energy transfer and RNA aptamer) confirmed by multiple in vitro and cell culture experiments prove the concept. To automate the design process, a novel computational tool that differentiates between the thermodynamic stabilities of RNA-RNA, RNA-DNA and DNA-DNA duplexes was developed. Moreover, here we demonstrate that besides being easily produced by annealing synthetic RNAs and DNAs, the individual hybrids carrying longer RNAs can be produced by RNA polymerase II-dependent transcription of single-stranded DNA templates.
Collapse
Affiliation(s)
- Kirill A. Afonin
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ravi Desai
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mathias Viard
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Maria L. Kireeva
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Eckart Bindewald
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Christopher L. Case
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Anna E. Maciag
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Wojciech K. Kasprzak
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Taejin Kim
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Alison Sappe
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Marissa Stepler
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Vineet N. KewalRamani
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mikhail Kashlev
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Robert Blumenthal
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Bruce A. Shapiro
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|