1
|
Mills C, Marconett CN, Lewinger JP, Mi H. PEACOCK: a machine learning approach to assess the validity of cell type-specific enhancer-gene regulatory relationships. NPJ Syst Biol Appl 2023; 9:9. [PMID: 37012250 PMCID: PMC10070356 DOI: 10.1038/s41540-023-00270-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/20/2023] [Indexed: 04/05/2023] Open
Abstract
The vast majority of disease-associated variants identified in genome-wide association studies map to enhancers, powerful regulatory elements which orchestrate the recruitment of transcriptional complexes to their target genes' promoters to upregulate transcription in a cell type- and timing-dependent manner. These variants have implicated thousands of enhancers in many common genetic diseases, including nearly all cancers. However, the etiology of most of these diseases remains unknown because the regulatory target genes of the vast majority of enhancers are unknown. Thus, identifying the target genes of as many enhancers as possible is crucial for learning how enhancer regulatory activities function and contribute to disease. Based on experimental results curated from scientific publications coupled with machine learning methods, we developed a cell type-specific score predictive of an enhancer targeting a gene. We computed the score genome-wide for every possible cis enhancer-gene pair and validated its predictive ability in four widely used cell lines. Using a pooled final model trained across multiple cell types, all possible gene-enhancer regulatory links in cis (~17 M) were scored and added to the publicly available PEREGRINE database ( www.peregrineproj.org ). These scores provide a quantitative framework for the enhancer-gene regulatory prediction that can be incorporated into downstream statistical analyses.
Collapse
Affiliation(s)
- Caitlin Mills
- Division of Bioinformatics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Crystal N Marconett
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine USC, Los Angeles, CA, USA
- Norris Cancer Center, Keck School of Medicine USC, Los Angeles, CA, USA
| | - Juan Pablo Lewinger
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Huaiyu Mi
- Division of Bioinformatics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
2
|
Marchetti M, Piacentini L, Berloco MF, Casale AM, Cappucci U, Pimpinelli S, Fanti L. Cytological heterogeneity of heterochromatin among 10 sequenced Drosophila species. Genetics 2022; 222:iyac119. [PMID: 35946576 PMCID: PMC9526073 DOI: 10.1093/genetics/iyac119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/01/2022] [Indexed: 11/14/2022] Open
Abstract
In Drosophila chromosomal rearrangements can be maintained and are associated with karyotypic variability among populations from different geographic localities. The abundance of variability in gene arrangements among chromosomal arms is even greater when comparing more distantly related species and the study of these chromosomal changes has provided insights into the evolutionary history of species in the genus. In addition, the sequencing of genomes of several Drosophila species has offered the opportunity to establish the global pattern of genomic evolution, at both genetic and chromosomal level. The combined approaches of comparative analysis of syntenic blocks and direct physical maps on polytene chromosomes have elucidated changes in the orientation of genomic sequences and the difference between heterochromatic and euchromatic regions. Unfortunately, the centromeric heterochromatic regions cannot be studied using the cytological maps of polytene chromosomes because they are underreplicated and therefore reside in the chromocenter. In Drosophila melanogaster, a cytological map of the heterochromatin has been elaborated using mitotic chromosomes from larval neuroblasts. In the current work, we have expanded on that mapping by producing cytological maps of the mitotic heterochromatin in an additional 10 sequenced Drosophila species. These maps highlight 2 apparently different paths, for the evolution of the pericentric heterochromatin between the subgenera Sophophora and Drosophila. One path leads toward a progressive complexity of the pericentric heterochromatin (Sophophora) and the other toward a progressive simplification (Drosophila). These maps are also useful for a better understanding how karyotypes have been altered by chromosome arm reshuffling during evolution.
Collapse
Affiliation(s)
- Marcella Marchetti
- Istituto Pasteur Italia and Dipartimento di Biologia e Biotecnologie “Charles Darwin”, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Lucia Piacentini
- Istituto Pasteur Italia and Dipartimento di Biologia e Biotecnologie “Charles Darwin”, “Sapienza” University of Rome, 00185 Rome, Italy
| | | | - Assunta Maria Casale
- Istituto Pasteur Italia and Dipartimento di Biologia e Biotecnologie “Charles Darwin”, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Ugo Cappucci
- Istituto Pasteur Italia and Dipartimento di Biologia e Biotecnologie “Charles Darwin”, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Sergio Pimpinelli
- Istituto Pasteur Italia and Dipartimento di Biologia e Biotecnologie “Charles Darwin”, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Laura Fanti
- Istituto Pasteur Italia and Dipartimento di Biologia e Biotecnologie “Charles Darwin”, “Sapienza” University of Rome, 00185 Rome, Italy
| |
Collapse
|
3
|
Cotsworth S, Jackson CJ, Hallson G, Fitzpatrick KA, Syrzycka M, Coulthard AB, Bejsovec A, Marchetti M, Pimpinelli S, Wang SJH, Camfield RG, Verheyen EM, Sinclair DA, Honda BM, Hilliker AJ. Characterization of Gfat1 ( zeppelin) and Gfat2, Essential Paralogous Genes Which Encode the Enzymes That Catalyze the Rate-Limiting Step in the Hexosamine Biosynthetic Pathway in Drosophila melanogaster. Cells 2022; 11:448. [PMID: 35159258 PMCID: PMC8834284 DOI: 10.3390/cells11030448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 11/16/2022] Open
Abstract
The zeppelin (zep) locus is known for its essential role in the development of the embryonic cuticle of Drosophila melanogaster. We show here that zep encodes Gfat1 (Glutamine: Fructose-6-Phosphate Aminotransferase 1; CG12449), the enzyme that catalyzes the rate-limiting step in the hexosamine biosynthesis pathway (HBP). This conserved pathway diverts 2%-5% of cellular glucose from glycolysis and is a nexus of sugar (fructose-6-phosphate), amino acid (glutamine), fatty acid [acetyl-coenzymeA (CoA)], and nucleotide/energy (UDP) metabolism. We also describe the isolation and characterization of lethal mutants in the euchromatic paralog, Gfat2 (CG1345), and demonstrate that ubiquitous expression of Gfat1+ or Gfat2+ transgenes can rescue lethal mutations in either gene. Gfat1 and Gfat2 show differences in mRNA and protein expression during embryogenesis and in essential tissue-specific requirements for Gfat1 and Gfat2, suggesting a degree of functional evolutionary divergence. An evolutionary, cytogenetic analysis of the two genes in six Drosophila species revealed Gfat2 to be located within euchromatin in all six species. Gfat1 localizes to heterochromatin in three melanogaster-group species, and to euchromatin in the more distantly related species. We have also found that the pattern of flanking-gene microsynteny is highly conserved for Gfat1 and somewhat less conserved for Gfat2.
Collapse
Affiliation(s)
- Shawn Cotsworth
- Department of Molecular Biology and Biochemistry (MBB), Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada; (S.C.); (C.J.J.); (G.H.); (K.A.F.); (M.S.); (S.J.H.W.); (E.M.V.); (D.A.S.); (B.M.H.)
| | - Catherine J. Jackson
- Department of Molecular Biology and Biochemistry (MBB), Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada; (S.C.); (C.J.J.); (G.H.); (K.A.F.); (M.S.); (S.J.H.W.); (E.M.V.); (D.A.S.); (B.M.H.)
- Department of Plastic and Reconstructive Surgery, Institute for Surgical Research, University of Oslo, N-0424 Oslo, Norway
- The Department of Medical Biochemistry, Oslo University Hospital, N-0424 Oslo, Norway
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, N-0424 Oslo, Norway
| | - Graham Hallson
- Department of Molecular Biology and Biochemistry (MBB), Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada; (S.C.); (C.J.J.); (G.H.); (K.A.F.); (M.S.); (S.J.H.W.); (E.M.V.); (D.A.S.); (B.M.H.)
| | - Kathleen A. Fitzpatrick
- Department of Molecular Biology and Biochemistry (MBB), Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada; (S.C.); (C.J.J.); (G.H.); (K.A.F.); (M.S.); (S.J.H.W.); (E.M.V.); (D.A.S.); (B.M.H.)
| | - Monika Syrzycka
- Department of Molecular Biology and Biochemistry (MBB), Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada; (S.C.); (C.J.J.); (G.H.); (K.A.F.); (M.S.); (S.J.H.W.); (E.M.V.); (D.A.S.); (B.M.H.)
- Allergan Canada, 500-85 Enterprise Blvd, Markham, ON L6G 0B5, Canada
| | | | - Amy Bejsovec
- Department of Biology, Duke University, Durham, NC 27708, USA;
| | - Marcella Marchetti
- Department of Biology and Biotechnology “C. Darwin”, “Sapienza” University of Rome, 00185 Rome, Italy; (M.M.); (S.P.)
| | - Sergio Pimpinelli
- Department of Biology and Biotechnology “C. Darwin”, “Sapienza” University of Rome, 00185 Rome, Italy; (M.M.); (S.P.)
| | - Simon J. H. Wang
- Department of Molecular Biology and Biochemistry (MBB), Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada; (S.C.); (C.J.J.); (G.H.); (K.A.F.); (M.S.); (S.J.H.W.); (E.M.V.); (D.A.S.); (B.M.H.)
| | - Robert G. Camfield
- BC Genome Science Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada;
| | - Esther M. Verheyen
- Department of Molecular Biology and Biochemistry (MBB), Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada; (S.C.); (C.J.J.); (G.H.); (K.A.F.); (M.S.); (S.J.H.W.); (E.M.V.); (D.A.S.); (B.M.H.)
| | - Donald A. Sinclair
- Department of Molecular Biology and Biochemistry (MBB), Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada; (S.C.); (C.J.J.); (G.H.); (K.A.F.); (M.S.); (S.J.H.W.); (E.M.V.); (D.A.S.); (B.M.H.)
| | - Barry M. Honda
- Department of Molecular Biology and Biochemistry (MBB), Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada; (S.C.); (C.J.J.); (G.H.); (K.A.F.); (M.S.); (S.J.H.W.); (E.M.V.); (D.A.S.); (B.M.H.)
| | | |
Collapse
|
4
|
Evolutionary Dynamics of the Pericentromeric Heterochromatin in Drosophila virilis and Related Species. Genes (Basel) 2021; 12:genes12020175. [PMID: 33513919 PMCID: PMC7911463 DOI: 10.3390/genes12020175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/19/2022] Open
Abstract
Pericentromeric heterochromatin in Drosophila generally consists of repetitive DNA, forming the environment associated with gene silencing. Despite the expanding knowledge of the impact of transposable elements (TEs) on the host genome, little is known about the evolution of pericentromeric heterochromatin, its structural composition, and age. During the evolution of the Drosophilidae, hundreds of genes have become embedded within pericentromeric regions yet retained activity. We investigated a pericentromeric heterochromatin fragment found in D. virilis and related species, describing the evolution of genes in this region and the age of TE invasion. Regardless of the heterochromatic environment, the amino acid composition of the genes is under purifying selection. However, the selective pressure affects parts of genes in varying degrees, resulting in expansion of gene introns due to TEs invasion. According to the divergence of TEs, the pericentromeric heterochromatin of the species of virilis group began to form more than 20 million years ago by invasions of retroelements, miniature inverted repeat transposable elements (MITEs), and Helitrons. Importantly, invasions into the heterochromatin continue to occur by TEs that fall under the scope of piRNA silencing. Thus, the pericentromeric heterochromatin, in spite of its ability to induce silencing, has the means for being dynamic, incorporating the regions of active transcription.
Collapse
|
5
|
Kasinathan B, Colmenares SU, McConnell H, Young JM, Karpen GH, Malik HS. Innovation of heterochromatin functions drives rapid evolution of essential ZAD-ZNF genes in Drosophila. eLife 2020; 9:e63368. [PMID: 33169670 PMCID: PMC7655104 DOI: 10.7554/elife.63368] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Contrary to dogma, evolutionarily young and dynamic genes can encode essential functions. We find that evolutionarily dynamic ZAD-ZNF genes, which encode the most abundant class of insect transcription factors, are more likely to encode essential functions in Drosophila melanogaster than ancient, conserved ZAD-ZNF genes. We focus on the Nicknack ZAD-ZNF gene, which is evolutionarily young, poorly retained in Drosophila species, and evolves under strong positive selection. Yet we find that it is necessary for larval development in D. melanogaster. We show that Nicknack encodes a heterochromatin-localizing protein like its paralog Oddjob, also an evolutionarily dynamic yet essential ZAD-ZNF gene. We find that the divergent D. simulans Nicknack protein can still localize to D. melanogaster heterochromatin and rescue viability of female but not male Nicknack-null D. melanogaster. Our findings suggest that innovation for rapidly changing heterochromatin functions might generally explain the essentiality of many evolutionarily dynamic ZAD-ZNF genes in insects.
Collapse
Affiliation(s)
- Bhavatharini Kasinathan
- Medical Scientist Training Program, University of Washington School of MedicineSeattleUnited States
- Molecular and Cellular Biology Graduate program, University of Washington School of MedicineSeattleUnited States
- Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Serafin U Colmenares
- Biological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California at BerkeleyBerkeleyUnited States
- Innovative Genomics InstituteBerkeleyUnited States
| | - Hannah McConnell
- Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Janet M Young
- Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Gary H Karpen
- Biological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California at BerkeleyBerkeleyUnited States
- Innovative Genomics InstituteBerkeleyUnited States
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research CenterSeattleUnited States
| |
Collapse
|
6
|
Funikov SY, Rezvykh AP, Kulikova DA, Zelentsova ES, Protsenko LA, Chuvakova LN, Tyukmaeva VI, Arkhipova IR, Evgen'ev MB. Adaptation of gene loci to heterochromatin in the course of Drosophila evolution is associated with insulator proteins. Sci Rep 2020; 10:11893. [PMID: 32681087 PMCID: PMC7368049 DOI: 10.1038/s41598-020-68879-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/23/2020] [Indexed: 01/11/2023] Open
Abstract
Pericentromeric heterochromatin is generally composed of repetitive DNA forming a transcriptionally repressive environment. Dozens of genes were embedded into pericentromeric heterochromatin during evolution of Drosophilidae lineage while retaining activity. However, factors that contribute to insusceptibility of gene loci to transcriptional silencing remain unknown. Here, we find that the promoter region of genes that can be embedded in both euchromatin and heterochromatin exhibits a conserved structure throughout the Drosophila phylogeny and carries motifs for binding of certain chromatin remodeling factors, including insulator proteins. Using ChIP-seq data, we demonstrate that evolutionary gene relocation between euchromatin and pericentric heterochromatin occurred with preservation of sites of insulation of BEAF-32 in evolutionarily distant species, i.e. D. melanogaster and D. virilis. Moreover, promoters of virtually all protein-coding genes located in heterochromatin in D. melanogaster are enriched with insulator proteins BEAF-32, GAF and dCTCF. Applying RNA-seq of a BEAF-32 mutant, we show that the impairment of BEAF-32 function has a complex effect on gene expression in D. melanogaster, affecting even those genes that lack BEAF-32 association in their promoters. We propose that conserved intrinsic properties of genes, such as sites of insulation near the promoter regions, may contribute to adaptation of genes to the heterochromatic environment and, hence, facilitate the evolutionary relocation of genes loci between euchromatin and heterochromatin.
Collapse
Affiliation(s)
- Sergei Yu Funikov
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexander P Rezvykh
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Dina A Kulikova
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - Elena S Zelentsova
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russia
| | - Lyudmila A Protsenko
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Lyubov N Chuvakova
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russia
| | - Venera I Tyukmaeva
- Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Irina R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Michael B Evgen'ev
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
7
|
Hjelmen CE, Holmes VR, Burrus CG, Piron E, Mynes M, Garrett MA, Blackmon H, Johnston JS. Thoracic underreplication in Drosophila species estimates a minimum genome size and the dynamics of added DNA. Evolution 2020; 74:1423-1436. [PMID: 32438451 DOI: 10.1111/evo.14022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/05/2020] [Accepted: 05/17/2020] [Indexed: 12/11/2022]
Abstract
Many cells in the thorax of Drosophila were found to stall during replication, a phenomenon known as underreplication. Unlike underreplication in nuclei of salivary and follicle cells, this stall occurs with less than one complete round of replication. This stall point allows precise estimations of early-replicating euchromatin and late-replicating heterochromatin regions, providing a powerful tool to investigate the dynamics of structural change across the genome. We measure underreplication in 132 species across the Drosophila genus and leverage these data to propose a model for estimating the rate at which additional DNA is accumulated as heterochromatin and euchromatin and also predict the minimum genome size for Drosophila. According to comparative phylogenetic approaches, the rates of change of heterochromatin differ strikingly between Drosophila subgenera. Although these subgenera differ in karyotype, there were no differences by chromosome number, suggesting other structural changes may influence accumulation of heterochromatin. Measurements were taken for both sexes, allowing the visualization of genome size and heterochromatin changes for the hypothetical path of XY sex chromosome differentiation. Additionally, the model presented here estimates a minimum genome size in Sophophora remarkably close to the smallest insect genome measured to date, in a species over 200 million years diverged from Drosophila.
Collapse
Affiliation(s)
- Carl E Hjelmen
- Department of Biology, Texas A&M University, College Station, Texas.,Department of Entomology, Texas A&M University, College Station, Texas
| | | | - Crystal G Burrus
- Department of Biology, Texas A&M University, College Station, Texas
| | - Elizabeth Piron
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Melissa Mynes
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Margaret A Garrett
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Heath Blackmon
- Department of Biology, Texas A&M University, College Station, Texas
| | | |
Collapse
|
8
|
Hjelmen CE, Blackmon H, Holmes VR, Burrus CG, Johnston JS. Genome Size Evolution Differs Between Drosophila Subgenera with Striking Differences in Male and Female Genome Size in Sophophora. G3 (BETHESDA, MD.) 2019; 9:3167-3179. [PMID: 31358560 PMCID: PMC6778784 DOI: 10.1534/g3.119.400560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/26/2019] [Indexed: 11/29/2022]
Abstract
Genome size varies across the tree of life, with no clear correlation to organismal complexity or coding sequence, but with differences in non-coding regions. Phylogenetic methods have recently been incorporated to further disentangle this enigma, yet most of these studies have focused on widely diverged species. Few have compared patterns of genome size change in closely related species with known structural differences in the genome. As a consequence, the relationship between genome size and differences in chromosome number or inter-sexual differences attributed to XY systems are largely unstudied. We hypothesize that structural differences associated with chromosome number and X-Y chromosome differentiation, should result in differing rates and patterns of genome size change. In this study, we utilize the subgenera within the Drosophila to ask if patterns and rates of genome size change differ between closely related species with differences in chromosome numbers and states of the XY system. Genome sizes for males and females of 152 species are used to answer these questions (with 92 newly added or updated estimates). While we find no relationship between chromosome number and genome size or chromosome number and inter-sexual differences in genome size, we find evidence for differing patterns of genome size change between the subgenera, and increasing rates of change throughout time. Estimated shifts in rates of change in sex differences in genome size occur more often in Sophophora and correspond to known neo-sex events.
Collapse
Affiliation(s)
- Carl E Hjelmen
- Department of Biology and
- Department of Entomology, Texas A&M University, College Station, TX 77843
| | - Heath Blackmon
- Department of Entomology, Texas A&M University, College Station, TX 77843
| | | | - Crystal G Burrus
- Department of Entomology, Texas A&M University, College Station, TX 77843
| | | |
Collapse
|
9
|
A New Portrait of Constitutive Heterochromatin: Lessons from Drosophila melanogaster. Trends Genet 2019; 35:615-631. [PMID: 31320181 DOI: 10.1016/j.tig.2019.06.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022]
Abstract
Constitutive heterochromatin represents a significant portion of eukaryotic genomes, but its functions still need to be elucidated. Even in the most updated genetics and molecular biology textbooks, constitutive heterochromatin is portrayed mainly as the 'silent' component of eukaryotic genomes. However, there may be more complexity to the relationship between heterochromatin and gene expression. In the fruit fly Drosophila melanogaster, a model for heterochromatin studies, about one-third of the genome is heterochromatic and is concentrated in the centric, pericentric, and telomeric regions of the chromosomes. Recent findings indicate that hundreds of D. melanogaster genes can 'live and work' properly within constitutive heterochromatin. The genomic size of these genes is generally larger than that of euchromatic genes and together they account for a significant fraction of the entire constitutive heterochromatin. Thus, this peculiar genome component in spite its ability to induce silencing, has in fact the means for being quite dynamic. A major scope of this review is to revisit the 'dogma of silent heterochromatin'.
Collapse
|
10
|
Caizzi R, Moschetti R, Piacentini L, Fanti L, Marsano RM, Dimitri P. Comparative Genomic Analyses Provide New Insights into the Evolutionary Dynamics of Heterochromatin in Drosophila. PLoS Genet 2016; 12:e1006212. [PMID: 27513559 PMCID: PMC4981424 DOI: 10.1371/journal.pgen.1006212] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 07/02/2016] [Indexed: 12/21/2022] Open
Abstract
The term heterochromatin has been long considered synonymous with gene silencing, but it is now clear that the presence of transcribed genes embedded in pericentromeric heterochromatin is a conserved feature in the evolution of eukaryotic genomes. Several studies have addressed the epigenetic changes that enable the expression of genes in pericentric heterochromatin, yet little is known about the evolutionary processes through which this has occurred. By combining genome annotation analysis and high-resolution cytology, we have identified and mapped 53 orthologs of D. melanogaster heterochromatic genes in the genomes of two evolutionarily distant species, D. pseudoobscura and D. virilis. Our results show that the orthologs of the D. melanogaster heterochromatic genes are clustered at three main genomic regions in D. virilis and D. pseudoobscura. In D. virilis, the clusters lie in the middle of euchromatin, while those in D. pseudoobscura are located in the proximal portion of the chromosome arms. Some orthologs map to the corresponding Muller C element in D. pseudoobscura and D. virilis, while others localize on the Muller B element, suggesting that chromosomal rearrangements that have been instrumental in the fusion of two separate elements involved the progenitors of genes currently located in D. melanogaster heterochromatin. These results demonstrate an evolutionary repositioning of gene clusters from ancestral locations in euchromatin to the pericentromeric heterochromatin of descendent D. melanogaster chromosomes. Remarkably, in both D. virilis and D. pseudoobscura the gene clusters show a conserved association with the HP1a protein, one of the most highly evolutionarily conserved epigenetic marks. In light of these results, we suggest a new scenario whereby ancestral HP1-like proteins (and possibly other epigenetic marks) may have contributed to the evolutionary repositioning of gene clusters into heterochromatin.
Collapse
Affiliation(s)
- Ruggiero Caizzi
- Dipartimento di Biologia, Università degli Studi di Bari, Bari, Italy
- * E-mail: (RC); (PD)
| | - Roberta Moschetti
- Dipartimento di Biologia, Università degli Studi di Bari, Bari, Italy
| | - Lucia Piacentini
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie ‘‘Charles Darwin”, Sapienza Università di Roma, Roma, Italy
| | - Laura Fanti
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie ‘‘Charles Darwin”, Sapienza Università di Roma, Roma, Italy
| | | | - Patrizio Dimitri
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie ‘‘Charles Darwin”, Sapienza Università di Roma, Roma, Italy
- * E-mail: (RC); (PD)
| |
Collapse
|
11
|
Sex Differences in Drosophila melanogaster Heterochromatin Are Regulated by Non-Sex Specific Factors. PLoS One 2015; 10:e0128114. [PMID: 26053165 PMCID: PMC4459879 DOI: 10.1371/journal.pone.0128114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/22/2015] [Indexed: 12/26/2022] Open
Abstract
The eukaryotic genome is assembled into distinct types of chromatin. Gene-rich euchromatin has active chromatin marks, while heterochromatin is gene-poor and enriched for silencing marks. In spite of this, genes native to heterochromatic regions are dependent on their normal environment for full expression. Expression of genes in autosomal heterochromatin is reduced in male flies mutated for the noncoding roX RNAs, but not in females. roX mutations also disrupt silencing of reporter genes in male, but not female, heterochromatin, revealing a sex difference in heterochromatin. We adopted a genetic approach to determine how this difference is regulated, and found no evidence that known X chromosome counting elements, or the sex determination pathway that these control, are involved. This suggested that the sex chromosome karyotype regulates autosomal heterochromatin by a different mechanism. To address this, candidate genes that regulate chromosome organization were examined. In XX flies mutation of Topoisomerase II (Top2), a gene involved in chromatin organization and homolog pairing, made heterochromatic silencing dependent on roX, and thus male-like. Interestingly, Top2 also binds to a large block of pericentromeric satellite repeats (359 bp repeats) that are unique to the X chromosome. Deletion of X heterochromatin also makes autosomal heterochromatin in XX flies dependent on roX and enhances the effect of Top2 mutations, suggesting a combinatorial action. We postulate that Top2 and X heterochromatin in Drosophila comprise a novel karyotype-sensing pathway that determines the sensitivity of autosomal heterochromatin to loss of roX RNA.
Collapse
|
12
|
Moschetti R, Celauro E, Cruciani F, Caizzi R, Dimitri P. On the evolution of Yeti, a Drosophila melanogaster heterochromatin gene. PLoS One 2014; 9:e113010. [PMID: 25405891 PMCID: PMC4236135 DOI: 10.1371/journal.pone.0113010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/22/2014] [Indexed: 11/22/2022] Open
Abstract
Constitutive heterochromatin is a ubiquitous and still unveiled component of eukaryotic genomes, within which it comprises large portions. Although constitutive heterochromatin is generally considered to be transcriptionally silent, it contains a significant variety of sequences that are expressed, among which about 300 single-copy coding genes have been identified by genetic and genomic analyses in the last decades. Here, we report the results of the evolutionary analysis of Yeti, an essential gene of Drosophila melanogaster located in the deep pericentromeric region of chromosome 2R. By FISH, we showed that Yeti maintains a heterochromatin location in both D. simulans and D. sechellia species, closely related to D. melanogaster, while in the more distant species e.g., D. pseudoobscura and D. virilis, it is found within euchromatin, in the syntenic chromosome Muller C, that corresponds to the 2R arm of D. melanogaster chromosome 2. Thus, over evolutionary time, Yeti has been resident on the same chromosomal element, but it progressively moved closer to the pericentric regions. Moreover, in silico reconstruction of the Yeti gene structure in 19 Drosophila species and in 5 non-drosophilid dipterans shows a rather stable organization during evolution. Accordingly, by PCR analysis and sequencing, we found that the single intron of Yeti does not undergo major intraspecies or interspecies size changes, unlike the introns of other essential Drosophila heterochromatin genes, such as light and Dbp80. This implicates diverse evolutionary forces in shaping the structural organization of genes found within heterochromatin. Finally, the results of dS - dN tests show that Yeti is under negative selection both in heterochromatin and euchromatin, and indicate that the change in genomic location did not affected significantly the molecular evolution of the gene. Together, the results of this work contribute to our understanding of the evolutionary dynamics of constitutive heterochromatin in the genomes of higher eukaryotes.
Collapse
Affiliation(s)
- Roberta Moschetti
- Dipartimento di Biologia, Università degli Studi di Bari, Bari, Italy
| | - Emanuele Celauro
- Dipartimento di Biologia e Biotecnologie “Charles Darwin” and Istituto Pasteur Fondazione Cenci-Bolognetti, Sapienza Università di Roma, Roma, Italy
| | - Fulvio Cruciani
- Dipartimento di Biologia e Biotecnologie “Charles Darwin” and Istituto Pasteur Fondazione Cenci-Bolognetti, Sapienza Università di Roma, Roma, Italy
| | - Ruggiero Caizzi
- Dipartimento di Biologia, Università degli Studi di Bari, Bari, Italy
| | - Patrizio Dimitri
- Dipartimento di Biologia e Biotecnologie “Charles Darwin” and Istituto Pasteur Fondazione Cenci-Bolognetti, Sapienza Università di Roma, Roma, Italy
- * E-mail:
| |
Collapse
|
13
|
Lang M, Murat S, Clark AG, Gouppil G, Blais C, Matzkin LM, Guittard É, Yoshiyama−Yanagawa T, Kataoka H, Niwa R, Lafont R, Dauphin−Villemant C, Orgogozo V. Mutations in the neverland gene turned Drosophila pachea into an obligate specialist species. Science 2012; 337:1658-61. [PMID: 23019649 PMCID: PMC4729188 DOI: 10.1126/science.1224829] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Most living species exploit a limited range of resources. However, little is known about how tight associations build up during evolution between such specialist species and the hosts they use. We examined the dependence of Drosophila pachea on its single host, the senita cactus. Several amino acid changes in the Neverland oxygenase rendered D. pachea unable to transform cholesterol into 7-dehydrocholesterol (the first reaction in the steroid hormone biosynthetic pathway in insects) and thus made D. pachea dependent on the uncommon sterols of its host plant. The neverland mutations increase survival on the cactus's unusual sterols and are in a genomic region that faced recent positive selection. This study illustrates how relatively few genetic changes in a single gene may restrict the ecological niche of a species.
Collapse
Affiliation(s)
- Michael Lang
- CNRS UMR7592, Univ Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, 15 rue Hélène Brion, 75205 Paris cedex 13, France
| | - Sophie Murat
- CNRS UMR7592, Univ Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, 15 rue Hélène Brion, 75205 Paris cedex 13, France
- UPMC, Univ Paris 06, CNRS, Bâtiment A, 7 quai Saint Bernard, 75005 Paris, France
| | - Andrew G. Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY USA
| | - Géraldine Gouppil
- CNRS UMR7592, Univ Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, 15 rue Hélène Brion, 75205 Paris cedex 13, France
| | - Catherine Blais
- UPMC, Univ Paris 06, CNRS, Bâtiment A, 7 quai Saint Bernard, 75005 Paris, France
| | - Luciano M. Matzkin
- Department of Biological Sciences, University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville AL 35899, USA
| | - Émilie Guittard
- UPMC, Univ Paris 06, CNRS, Bâtiment A, 7 quai Saint Bernard, 75005 Paris, France
| | - Takuji Yoshiyama−Yanagawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Hiroshi Kataoka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Ryusuke Niwa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - René Lafont
- UPMC, Univ Paris 06, CNRS, Bâtiment A, 7 quai Saint Bernard, 75005 Paris, France
| | | | - Virginie Orgogozo
- CNRS UMR7592, Univ Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, 15 rue Hélène Brion, 75205 Paris cedex 13, France
- UPMC, Univ Paris 06, CNRS, Bâtiment A, 7 quai Saint Bernard, 75005 Paris, France
| |
Collapse
|
14
|
Fan C, Walling JG, Zhang J, Hirsch CD, Jiang J, Wing RA. Conservation and purifying selection of transcribed genes located in a rice centromere. THE PLANT CELL 2011; 23:2821-30. [PMID: 21856794 PMCID: PMC3180794 DOI: 10.1105/tpc.111.085605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Recombination is strongly suppressed in centromeric regions. In chromosomal regions with suppressed recombination, deleterious mutations can easily accumulate and cause degeneration of genes and genomes. Surprisingly, the centromere of chromosome8 (Cen8) of rice (Oryza sativa) contains several transcribed genes. However, it remains unclear as to what selective forces drive the evolution and existence of transcribed genes in Cen8. Sequencing of orthologous Cen8 regions from two additional Oryza species, Oryza glaberrima and Oryza brachyantha, which diverged from O. sativa 1 and 10 million years ago, respectively, revealed a set of seven transcribed Cen8 genes conserved across all three species. Chromatin immunoprecipitation analysis with the centromere-specific histone CENH3 confirmed that the sequenced orthologous regions are part of the functional centromere. All seven Cen8 genes have undergone purifying selection, representing a striking phenomenon of active gene survival within a recombination-free zone over a long evolutionary time. The coding sequences of the Cen8 genes showed sequence divergence and mutation rates that were significantly reduced from those of genes located on the chromosome arms. This suggests that Oryza has a mechanism to maintain the fidelity and functionality of Cen8 genes, even when embedded in a sea of repetitive sequences and transposable elements.
Collapse
MESH Headings
- Base Sequence
- Centromere/genetics
- Chromatin Immunoprecipitation
- Chromosomes, Plant/genetics
- DNA Transposable Elements
- DNA, Plant/genetics
- Evolution, Molecular
- Genes, Plant/genetics
- Genetic Variation/genetics
- Genome, Plant/genetics
- Molecular Sequence Data
- Mutation Rate
- Oryza/classification
- Oryza/genetics
- Polymorphism, Single Nucleotide
- Repetitive Sequences, Nucleic Acid
- Selection, Genetic
- Sequence Analysis, DNA
- Transcription, Genetic
Collapse
Affiliation(s)
- Chuanzhu Fan
- Arizona Genomics Institute, School of Plant Sciences, Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721
| | - Jason G. Walling
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin 53706
| | - Jianwei Zhang
- Arizona Genomics Institute, School of Plant Sciences, Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721
| | - Cory D. Hirsch
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin 53706
| | - Jiming Jiang
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin 53706
| | - Rod A. Wing
- Arizona Genomics Institute, School of Plant Sciences, Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721
- Address correspondence to
| |
Collapse
|
15
|
Essential loci in centromeric heterochromatin of Drosophila melanogaster. I: the right arm of chromosome 2. Genetics 2010; 185:479-95. [PMID: 20382826 DOI: 10.1534/genetics.110.117259] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
With the most recent releases of the Drosophila melanogaster genome sequences, much of the previously absent heterochromatic sequences have now been annotated. We undertook an extensive genetic analysis of existing lethal mutations, as well as molecular mapping and sequence analysis (using a candidate gene approach) to identify as many essential genes as possible in the centromeric heterochromatin on the right arm of the second chromosome (2Rh) of D. melanogaster. We also utilized available RNA interference lines to knock down the expression of genes in 2Rh as another approach to identifying essential genes. In total, we verified the existence of eight novel essential loci in 2Rh: CG17665, CG17683, CG17684, CG17883, CG40127, CG41265, CG42595, and Atf6. Two of these essential loci, CG41265 and CG42595, are synonymous with the previously characterized loci l(2)41Ab and unextended, respectively. The genetic and molecular analysis of the previously reported locus, l(2)41Ae, revealed that this is not a single locus, but rather it is a large region of 2Rh that extends from unextended (CG42595) to CG17665 and includes four of the novel loci uncovered here.
Collapse
|
16
|
Brown S, Zeidler MP. Unphosphorylated STATs go nuclear. Curr Opin Genet Dev 2008; 18:455-60. [PMID: 18840523 DOI: 10.1016/j.gde.2008.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 08/22/2008] [Accepted: 09/05/2008] [Indexed: 10/21/2022]
Abstract
The JAK/STAT signal transduction pathway has traditionally been viewed as a cytokine-stimulated activator of gene expression consisting of a straightforward receptor/JAK kinase/STAT transcription factor cascade. Recent studies in Drosophila, have, however consistently identified a range of chromatin-remodelling factors as regulators of in vivo JAK/STAT signalling. Now, the detailed analysis of one of these, heterochromatin protein 1 (HP1), has provided an insight into an unexpected non-canonical in vivo role for STAT. In this model, unphosphorylated STATs associate with and maintain the stability of transcriptionally repressed heterochromatin--an effect countered by the recruitment of STAT to the canonical pathway. We examine the background of this new model and its implications for JAK/STAT pathway requirements in stem cell maintenance and cancer.
Collapse
Affiliation(s)
- Stephen Brown
- Faculty of Life Science, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
17
|
Schaeffer SW, Bhutkar A, McAllister BF, Matsuda M, Matzkin LM, O'Grady PM, Rohde C, Valente VLS, Aguadé M, Anderson WW, Edwards K, Garcia ACL, Goodman J, Hartigan J, Kataoka E, Lapoint RT, Lozovsky ER, Machado CA, Noor MAF, Papaceit M, Reed LK, Richards S, Rieger TT, Russo SM, Sato H, Segarra C, Smith DR, Smith TF, Strelets V, Tobari YN, Tomimura Y, Wasserman M, Watts T, Wilson R, Yoshida K, Markow TA, Gelbart WM, Kaufman TC. Polytene chromosomal maps of 11 Drosophila species: the order of genomic scaffolds inferred from genetic and physical maps. Genetics 2008; 179:1601-55. [PMID: 18622037 PMCID: PMC2475758 DOI: 10.1534/genetics.107.086074] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Accepted: 03/13/2008] [Indexed: 11/18/2022] Open
Abstract
The sequencing of the 12 genomes of members of the genus Drosophila was taken as an opportunity to reevaluate the genetic and physical maps for 11 of the species, in part to aid in the mapping of assembled scaffolds. Here, we present an overview of the importance of cytogenetic maps to Drosophila biology and to the concepts of chromosomal evolution. Physical and genetic markers were used to anchor the genome assembly scaffolds to the polytene chromosomal maps for each species. In addition, a computational approach was used to anchor smaller scaffolds on the basis of the analysis of syntenic blocks. We present the chromosomal map data from each of the 11 sequenced non-Drosophila melanogaster species as a series of sections. Each section reviews the history of the polytene chromosome maps for each species, presents the new polytene chromosome maps, and anchors the genomic scaffolds to the cytological maps using genetic and physical markers. The mapping data agree with Muller's idea that the majority of Drosophila genes are syntenic. Despite the conservation of genes within homologous chromosome arms across species, the karyotypes of these species have changed through the fusion of chromosomal arms followed by subsequent rearrangement events.
Collapse
Affiliation(s)
- Stephen W Schaeffer
- Department of Biology and Institute of Molecular Evolutionary Genetics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Volkova EI, Belyakin SN, Belyaeva ES, Zhimulev IF. Distribution of induced chromosome rearrangement breakpoints along the chromosome length and the problem of intercalary heterochromatin in Drosophila melanogaster. RUSS J GENET+ 2008. [DOI: 10.1134/s1022795408060033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Belyaeva ES, Andreyeva EN, Belyakin SN, Volkova EI, Zhimulev IF. Intercalary heterochromatin in polytene chromosomes of Drosophila melanogaster. Chromosoma 2008; 117:411-8. [PMID: 18491121 DOI: 10.1007/s00412-008-0163-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 03/06/2008] [Accepted: 04/10/2008] [Indexed: 01/06/2023]
Abstract
Intercalary heterochromatin consists of extended chromosomal domains which are interspersed throughout the euchromatin and contain silent genetic material. These domains comprise either clusters of functionally unrelated genes or tandem gene duplications and possibly stretches of noncoding sequences. Strong repression of genetic activity means that intercalary heterochromatin displays properties that are normally attributable to classic pericentric heterochromatin: high compaction, late replication and underreplication in polytene chromosomes, and the presence of heterochromatin-specific proteins. Late replication and underreplication occurs when the suppressor of underreplication protein is present in intercalary heterochromatic regions. Intercalary heterochromatin underreplication in polytene chromosomes results in free double-stranded ends of DNA molecules; ligation of these free ends is the most likely mechanism for ectopic pairing between intercalary heterochromatic and pericentric heterochromatic regions. No support has been found for the view that the frequency of chromosome aberrations is elevated in intercalary heterochromatin.
Collapse
Affiliation(s)
- E S Belyaeva
- Institute of Cytology and Genetics, Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia
| | | | | | | | | |
Collapse
|
20
|
Fan C, Long M. A New Retroposed Gene in Drosophila Heterochromatin Detected by Microarray-Based Comparative Genomic Hybridization. J Mol Evol 2006; 64:272-83. [PMID: 17177089 DOI: 10.1007/s00239-006-0169-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Accepted: 08/17/2006] [Indexed: 10/23/2022]
Abstract
A genomic pattern of new gene origination is often dependent on a genomic method that can efficiently identify a statistically adequate number of recently originated genes. The heterochromatic regions have often been viewed as genomic deserts with low coding potential and thus a low flux of new genes. However, increasing reports revealed unexpected roles of heterochromatic regions in the evolution of genes and genomes. We identified recently retroposed genes that originated in heterochromatic regions in Drosophila, by developing microarray-based comparative genomic hybridization (CGH) with multiple species. This new gene family, named Ifc-2h, originated in the common ancestor of the clade of D. simulans, D. mauritiana, and D. sechellia. The sequence features and phylogenetic distribution indicated that Ifc-2h resulted from the retroposition from its parental gene, Infertile crescent (Ifc), and integrated into heterochromatic region of common ancestor of the three sibling species 2 million years ago. Expression analysis revealed that Ifc-2h had developed a new expression pattern by recruiting a putative regulatory element from its target sequence. The distribution of indel variation in Ifc-2h of D. simulans and D. mauritiana revealed a significant sequence constraint, suggesting that the Ifc-2h gene may be functional. These analyses cast fresh insight into the evolution of heterochromatin and the origin of its coding regions.
Collapse
Affiliation(s)
- Chuanzhu Fan
- Department of Ecology and Evolution, The University of Chicago, 1101 East 57th Street, Chicago, IL 60637, USA
| | | |
Collapse
|
21
|
Corradini N, Rossi F, Giordano E, Caizzi R, Verní F, Dimitri P. Drosophila melanogaster as a model for studying protein-encoding genes that are resident in constitutive heterochromatin. Heredity (Edinb) 2006; 98:3-12. [PMID: 17080025 DOI: 10.1038/sj.hdy.6800877] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The organization of chromosomes into euchromatin and heterochromatin is one of the most enigmatic aspects of genome evolution. For a long time, heterochromatin was considered to be a genomic wasteland, incompatible with gene expression. However, recent studies--primarily conducted in Drosophila melanogaster--have shown that this peculiar genomic component performs important cellular functions and carries essential genes. New research on the molecular organization, function and evolution of heterochromatin has been facilitated by the sequencing and annotation of heterochromatic DNA. About 450 predicted genes have been identified in the heterochromatin of D. melanogaster, indicating that the number of active genes is higher than had been suggested by genetic analysis. Most of the essential genes are still unknown at the molecular level, and a detailed functional analysis of the predicted genes is difficult owing to the lack of mutant alleles. Far from being a peculiarity of Drosophila, heterochromatic genes have also been found in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Oryza sativa and Arabidopsis thaliana, as well as in humans. The presence of expressed genes in heterochromatin seems paradoxical because they appear to function in an environment that has been considered incompatible with gene expression. In the future, genetic, functional genomic and proteomic analyses will offer powerful approaches with which to explore the functions of heterochromatic genes and to elucidate the mechanisms driving their expression.
Collapse
Affiliation(s)
- N Corradini
- Laboratorio di Genomica Funzionale e Proteomica di Sistemi modello and Dipartimento di Genetica e Biologia Molecolare 'Charles Darwin', Università 'La Sapienza', Piazzale Aldo Moro 5, 00185 Roma, Italy
| | | | | | | | | | | |
Collapse
|