1
|
Chin FW, Hussin H, Chau DM, Ong TA, Yunus R, Abdul Razack AH, Yusoff K, Chan SC, Veerakumarasivam A. Differential Protein Expression Patterns of HOXA13 and HOXB13 Are Associated with Bladder Cancer Progression. Diagnostics (Basel) 2023; 13:2636. [PMID: 37627895 PMCID: PMC10453033 DOI: 10.3390/diagnostics13162636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/02/2023] [Accepted: 07/08/2023] [Indexed: 08/27/2023] Open
Abstract
Bladder cancer is a common urological cancer and has the highest recurrence rate of any cancer. The aim of our study was to profile and characterize the protein expression of homeobox A13 (HOXA13) and homeobox B13 (HOXB13) genes in Malaysian bladder cancer patients. The protein expression of HOXA13 and HOXB13 in formalin-fixed paraffin-embedded (FFPE) bladder cancer tissues was determined by immunohistochemistry (IHC) analysis. The association between HOXA13/HOXB13 protein expression and demographic/clinicopathological characteristics of the bladder cancer patients was determined by chi-square analysis. Approximately 63.6% of the bladder cancer tissues harbored high HOXA13 expression. High HOXA13 expression was significantly associated with non-muscle invasive bladder cancer, lower tumor grade, higher number of lymph node metastases, and recurrence risk. In contrast, low HOXB13 expression (including those with negative expression) was observed in 71.6% of the bladder cancer tissues analyzed. Low HOXB13 expression was significantly associated with muscle-invasive bladder cancer, higher tumor stage, tumor grade, and metastatic risk. Both HOXA13 and HOXB13 protein expression were found to be associated with bladder tumorigenesis. The putative oncogenic and tumor suppressive roles of HOXA13 and HOXB13, respectively, suggest their potential utility as biomarkers in bladder cancer.
Collapse
Affiliation(s)
- Fee-Wai Chin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Huzlinda Hussin
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - De-Ming Chau
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Teng-Aik Ong
- Department of Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Rosna Yunus
- Department of Pathology, Hospital Kuala Lumpur, Kuala Lumpur 50586, Malaysia
| | | | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Kajang 43000, Selangor, Malaysia
| | - Soon-Choy Chan
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Kajang 43000, Selangor, Malaysia
- School of Liberal Arts, Science and Technology, Perdana University, Kuala Lumpur 50490, Malaysia
| | - Abhi Veerakumarasivam
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Kajang 43000, Selangor, Malaysia
- School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Selangor, Malaysia
| |
Collapse
|
2
|
Liu H, Ma H, Zeng X, Wu C, Acharya S, Sudan SK, Zhang X. Ubiquitination of GRK2 Is Required for the β-Arrestin-Biased Signaling Pathway of Dopamine D2 Receptors to Activate ERK Kinases. Int J Mol Sci 2023; 24:10031. [PMID: 37373182 DOI: 10.3390/ijms241210031] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
A class-A GPCR dopamine D2 receptor (D2R) plays a critical role in the proper functioning of neuronal circuits through the downstream activation of both G-protein- and β-arrestin-dependent signaling pathways. Understanding the signaling pathways downstream of D2R is critical for developing effective therapies with which to treat dopamine (DA)-related disorders such as Parkinson's disease and schizophrenia. Extensive studies have focused on the regulation of D2R-mediated extracellular-signal-regulated kinase (ERK) 1/2 signaling; however, the manner in which ERKs are activated upon the stimulation of a specific signaling pathway of D2R remains unclear. The present study conducted a variety of experimental techniques, including loss-of-function experiments, site-directed mutagenesis, and the determination of protein interactions, in order to investigate the mechanisms underlying β-arrestin-biased signaling-pathway-mediated ERK activation. We found that the stimulation of the D2R β-arrestin signaling pathway caused Mdm2, an E3 ubiquitin ligase, to move from the nucleus to the cytoplasm and interact with tyrosine phosphorylated G-protein-coupled receptor kinase 2 (GRK2), which was facilitated by Src, a non-receptor tyrosine kinase. This interaction led to the ubiquitination of GRK2, which then moved to the plasma membrane and interacted with activated D2R, followed by the phosphorylation of D2R as well as the mediation of ERK activation. In conclusion, Mdm2-mediated GRK2 ubiquitination, which is selectively triggered by the stimulation of the D2R β-arrestin signaling pathway, is necessary for GRK2 membrane translocation and its interaction with D2R, which in turn mediates downstream ERK signaling. This study is primarily novel and provides essential information with which to better understand the detailed mechanisms of D2R-dependent signaling.
Collapse
Affiliation(s)
- Haiping Liu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Haixiang Ma
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Xingyue Zeng
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Chengyan Wu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Srijan Acharya
- Mitchell Cancer Institute, School of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Sarabjeet Kour Sudan
- Mitchell Cancer Institute, School of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Xiaohan Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Madera S, Izzo F, Chervo MF, Dupont A, Chiauzzi VA, Bruni S, Petrillo E, Merin SS, De Martino M, Montero D, Levit C, Lebersztein G, Anfuso F, Roldán Deamicis A, Mercogliano MF, Proietti CJ, Schillaci R, Elizalde PV, Cordo Russo RI. Halting ErbB-2 isoforms retrograde transport to the nucleus as a new theragnostic approach for triple-negative breast cancer. Cell Death Dis 2022; 13:447. [PMID: 35534460 PMCID: PMC9084267 DOI: 10.1038/s41419-022-04855-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/14/2022]
Abstract
Triple-negative breast cancer (TNBC) is clinically defined by the absence of estrogen and progesterone receptors and the lack of membrane overexpression or gene amplification of receptor tyrosine kinase ErbB-2/HER2. Due to TNBC heterogeneity, clinical biomarkers and targeted therapies for this disease remain elusive. We demonstrated that ErbB-2 is localized in the nucleus (NErbB-2) of TNBC cells and primary tumors, from where it drives growth. We also discovered that TNBC expresses both wild-type ErbB-2 (WTErbB-2) and alternative ErbB-2 isoform c (ErbB-2c). Here, we revealed that the inhibitors of the retrograde transport Retro-2 and its cyclic derivative Retro-2.1 evict both WTErbB-2 and ErbB-2c from the nucleus of BC cells and tumors. Using BC cells from several molecular subtypes, as well as normal breast cells, we demonstrated that Retro-2 specifically blocks proliferation of BC cells expressing NErbB-2. Importantly, Retro-2 eviction of both ErbB-2 isoforms from the nucleus resulted in a striking growth abrogation in multiple TNBC preclinical models, including tumor explants and xenografts. Our mechanistic studies in TNBC cells revealed that Retro-2 induces a differential accumulation of WTErbB-2 at the early endosomes and the plasma membrane, and of ErbB-2c at the Golgi, shedding new light both on Retro-2 action on endogenous protein cargoes undergoing retrograde transport, and on the biology of ErbB-2 splicing variants. In addition, we revealed that the presence of a functional signal peptide and a nuclear export signal (NES), both located at the N-terminus of WTErbB-2, and absent in ErbB-2c, accounts for the differential subcellular distribution of ErbB-2 isoforms upon Retro-2 treatment. Our present discoveries provide evidence for the rational repurposing of Retro-2 as a novel therapeutic agent for TNBC.
Collapse
Affiliation(s)
- Santiago Madera
- Laboratory of Molecular Mechanisms of Carcinogenesis and Molecular Endocrinology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Franco Izzo
- New York Genome Center, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - María F Chervo
- Laboratory of Molecular Mechanisms of Carcinogenesis and Molecular Endocrinology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Agustina Dupont
- Laboratory of Molecular Mechanisms of Carcinogenesis and Molecular Endocrinology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Violeta A Chiauzzi
- Laboratory of Molecular Mechanisms of Carcinogenesis and Molecular Endocrinology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Sofia Bruni
- Laboratory of Molecular Mechanisms of Carcinogenesis and Molecular Endocrinology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Ezequiel Petrillo
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), C1428EHA, Buenos Aires, Argentina
| | - Sharon S Merin
- Laboratory of Molecular Mechanisms of Carcinogenesis and Molecular Endocrinology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Mara De Martino
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Diego Montero
- Laboratory of Molecular Mechanisms of Carcinogenesis and Molecular Endocrinology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Claudio Levit
- Servicio de Ginecología, Sanatorio Sagrado Corazón, Buenos Aires, Argentina
| | | | - Fabiana Anfuso
- Servicio de Ginecología, Sanatorio Sagrado Corazón, Buenos Aires, Argentina
| | - Agustina Roldán Deamicis
- Laboratory of Molecular Mechanisms of Carcinogenesis and Molecular Endocrinology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - María F Mercogliano
- Laboratory of Molecular Mechanisms of Carcinogenesis and Molecular Endocrinology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Cecilia J Proietti
- Laboratory of Molecular Mechanisms of Carcinogenesis and Molecular Endocrinology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Roxana Schillaci
- Laboratory of Molecular Mechanisms of Carcinogenesis and Molecular Endocrinology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Patricia V Elizalde
- Laboratory of Molecular Mechanisms of Carcinogenesis and Molecular Endocrinology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina.
| | - Rosalía I Cordo Russo
- Laboratory of Molecular Mechanisms of Carcinogenesis and Molecular Endocrinology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Gulotta MR, De Simone G, John J, Perricone U, Brancale A. A Computer-Based Methodology to Design Non-Standard Peptides Potentially Able to Prevent HOX-PBX1-Associated Cancer Diseases. Int J Mol Sci 2021; 22:5670. [PMID: 34073517 PMCID: PMC8198631 DOI: 10.3390/ijms22115670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
In the last decades, HOX proteins have been extensively studied due to their pivotal role in transcriptional events. HOX proteins execute their activity by exploiting a cooperative binding to PBX proteins and DNA. Therefore, an increase or decrease in HOX activity has been associated with both solid and haematological cancer diseases. Thus, inhibiting HOX-PBX interaction represents a potential strategy to prevent these malignancies, as demonstrated by the patented peptide HTL001 that is being studied in clinical trials. In this work, a computational study is described to identify novel potential peptides designed by employing a database of non-natural amino acids. For this purpose, residue scanning of the HOX minimal active sequence was performed to select the mutations to be further processed. According to these results, the peptides were point-mutated and used for Molecular Dynamics (MD) simulations in complex with PBX1 protein and DNA to evaluate complex binding stability. MM-GBSA calculations of the resulting MD trajectories were exploited to guide the selection of the most promising mutations that were exploited to generate twelve combinatorial peptides. Finally, the latter peptides in complex with PBX1 protein and DNA were exploited to run MD simulations and the ΔGbinding average values of the complexes were calculated. Thus, the analysis of the results highlighted eleven combinatorial peptides that will be considered for further assays.
Collapse
Affiliation(s)
- Maria Rita Gulotta
- Molecular Informatics Unit, Fondazione Ri.MED, Via Filippo Marini 14, 90128 Palermo, Italy; (G.D.S.); (U.P.)
| | - Giada De Simone
- Molecular Informatics Unit, Fondazione Ri.MED, Via Filippo Marini 14, 90128 Palermo, Italy; (G.D.S.); (U.P.)
| | - Justin John
- NRN Tech LTD, Henstaff Court, Llantrisant Road, Groesfaen CF72 8NG, UK;
| | - Ugo Perricone
- Molecular Informatics Unit, Fondazione Ri.MED, Via Filippo Marini 14, 90128 Palermo, Italy; (G.D.S.); (U.P.)
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK;
| |
Collapse
|
5
|
Chavali S, Singh AK, Santhanam B, Babu MM. Amino acid homorepeats in proteins. Nat Rev Chem 2020; 4:420-434. [PMID: 37127972 DOI: 10.1038/s41570-020-0204-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2020] [Indexed: 12/16/2022]
Abstract
Amino acid homorepeats, or homorepeats, are polypeptide segments found in proteins that contain stretches of identical amino acid residues. Although abnormal homorepeat expansions are linked to pathologies such as neurodegenerative diseases, homorepeats are prevalent in eukaryotic proteomes, suggesting that they are important for normal physiology. In this Review, we discuss recent advances in our understanding of the biological functions of homorepeats, which range from facilitating subcellular protein localization to mediating interactions between proteins across diverse cellular pathways. We explore how the functional diversity of homorepeat-containing proteins could be linked to the ability of homorepeats to adopt different structural conformations, an ability influenced by repeat composition, repeat length and the nature of flanking sequences. We conclude by highlighting how an understanding of homorepeats will help us better characterize and develop therapeutics against the human diseases to which they contribute.
Collapse
Affiliation(s)
- Sreenivas Chavali
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India.
| | - Anjali K Singh
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Balaji Santhanam
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
- Department of Structural Biology and Center for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - M Madan Babu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.
- Department of Structural Biology and Center for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
6
|
Van de Walle P, Geens E, Baggerman G, José Naranjo-Galindo F, Askjaer P, Schoofs L, Temmerman L. CEH-60/PBX regulates vitellogenesis and cuticle permeability through intestinal interaction with UNC-62/MEIS in Caenorhabditis elegans. PLoS Biol 2019; 17:e3000499. [PMID: 31675356 PMCID: PMC6824563 DOI: 10.1371/journal.pbio.3000499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/08/2019] [Indexed: 11/18/2022] Open
Abstract
The onset of sexual maturity involves dramatic changes in physiology and gene expression in many animals. These include abundant yolk protein production in egg-laying species, an energetically costly process under extensive transcriptional control. Here, we used the model organism Caenorhabditis elegans to provide evidence for the spatiotemporally defined interaction of two evolutionarily conserved transcription factors, CEH-60/PBX and UNC-62/MEIS, acting as a gateway to yolk protein production. Via proteomics, bimolecular fluorescence complementation (BiFC), and biochemical and functional readouts, we show that this interaction occurs in the intestine of animals at the onset of sexual maturity and suffices to support the reproductive program. Our electron micrographs and functional assays provide evidence that intestinal PBX/MEIS cooperation drives another process that depends on lipid mobilization: the formation of an impermeable epicuticle. Without this lipid-rich protective layer, mutant animals are hypersensitive to exogenous oxidative stress and are poor partners for mating. Dedicated communication between the hypodermis and intestine in C. elegans likely supports these physiological outcomes, and we propose a fundamental role for the conserved PBX/MEIS interaction in multicellular signaling networks that rely on lipid homeostasis.
Collapse
Affiliation(s)
- Pieter Van de Walle
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Ellen Geens
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Geert Baggerman
- Centre for Proteomics (CFP), University of Antwerp, Antwerpen, Belgium
- VITO, Mol, Belgium
| | | | - Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), Universidad Pablo de Olavide, Seville, Spain
| | - Liliane Schoofs
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
- * E-mail:
| |
Collapse
|
7
|
Cooperation of axial and sex specific information controls Drosophila female genitalia growth by regulating the Decapentaplegic pathway. Dev Biol 2019; 454:145-155. [DOI: 10.1016/j.ydbio.2019.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 01/18/2023]
|
8
|
Joo S, Wang MH, Lui G, Lee J, Barnas A, Kim E, Sudek S, Worden AZ, Lee JH. Common ancestry of heterodimerizing TALE homeobox transcription factors across Metazoa and Archaeplastida. BMC Biol 2018; 16:136. [PMID: 30396330 PMCID: PMC6219170 DOI: 10.1186/s12915-018-0605-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/25/2018] [Indexed: 12/22/2022] Open
Abstract
Background Complex multicellularity requires elaborate developmental mechanisms, often based on the versatility of heterodimeric transcription factor (TF) interactions. Homeobox TFs in the TALE superclass are deeply embedded in the gene regulatory networks that orchestrate embryogenesis. Knotted-like homeobox (KNOX) TFs, homologous to animal MEIS, have been found to drive the haploid-to-diploid transition in both unicellular green algae and land plants via heterodimerization with other TALE superclass TFs, demonstrating remarkable functional conservation of a developmental TF across lineages that diverged one billion years ago. Here, we sought to delineate whether TALE-TALE heterodimerization is ancestral to eukaryotes. Results We analyzed TALE endowment in the algal radiations of Archaeplastida, ancestral to land plants. Homeodomain phylogeny and bioinformatics analysis partitioned TALEs into two broad groups, KNOX and non-KNOX. Each group shares previously defined heterodimerization domains, plant KNOX-homology in the KNOX group and animal PBC-homology in the non-KNOX group, indicating their deep ancestry. Protein-protein interaction experiments showed that the TALEs in the two groups all participated in heterodimerization. Conclusions Our study indicates that the TF dyads consisting of KNOX/MEIS and PBC-containing TALEs must have evolved early in eukaryotic evolution. Based on our results, we hypothesize that in early eukaryotes, the TALE heterodimeric configuration provided transcription-on switches via dimerization-dependent subcellular localization, ensuring execution of the haploid-to-diploid transition only when the gamete fusion is correctly executed between appropriate partner gametes. The TALE switch then diversified in the several lineages that engage in a complex multicellular organization. Electronic supplementary material The online version of this article (10.1186/s12915-018-0605-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sunjoo Joo
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Ming Hsiu Wang
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Gary Lui
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Jenny Lee
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Andrew Barnas
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Eunsoo Kim
- Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA
| | - Sebastian Sudek
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Jae-Hyeok Lee
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
9
|
Morgan R, El-Tanani M, Hunter KD, Harrington KJ, Pandha HS. Targeting HOX/PBX dimers in cancer. Oncotarget 2018; 8:32322-32331. [PMID: 28423659 PMCID: PMC5458287 DOI: 10.18632/oncotarget.15971] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/23/2017] [Indexed: 12/30/2022] Open
Abstract
The HOX and PBX gene families encode transcription factors that have key roles in establishing the identity of cells and tissues in early development. Over the last 20 years it has become apparent that they are also dysregulated in a wide range of solid and haematological malignancies and have a predominantly pro-oncogenic function. A key mode of transcriptional regulation by HOX and PBX proteins is through their interaction as a heterodimer or larger complex that enhances their binding affinity and specificity for DNA, and there is growing evidence that this interaction is a potential therapeutic target in malignancies that include prostate, breast, renal, ovarian and lung cancer, melanoma, myeloma, and acute myeloid leukaemia. This review summarizes the roles of HOX and PBX genes in cancer and assesses the therapeutic potential of HOX/PBX dimer inhibition, including the availability of biomarkers for its application in precision medicine.
Collapse
Affiliation(s)
- Richard Morgan
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, UK
| | - Mohamed El-Tanani
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, UK
| | - Keith D Hunter
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Kevin J Harrington
- Targeted Therapy Team, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK
| | - Hardev S Pandha
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
10
|
Constraints and consequences of the emergence of amino acid repeats in eukaryotic proteins. Nat Struct Mol Biol 2017; 24:765-777. [PMID: 28805808 DOI: 10.1038/nsmb.3441] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/23/2017] [Indexed: 12/21/2022]
Abstract
Proteins with amino acid homorepeats have the potential to be detrimental to cells and are often associated with human diseases. Why, then, are homorepeats prevalent in eukaryotic proteomes? In yeast, homorepeats are enriched in proteins that are essential and pleiotropic and that buffer environmental insults. The presence of homorepeats increases the functional versatility of proteins by mediating protein interactions and facilitating spatial organization in a repeat-dependent manner. During evolution, homorepeats are preferentially retained in proteins with stringent proteostasis, which might minimize repeat-associated detrimental effects such as unregulated phase separation and protein aggregation. Their presence facilitates rapid protein divergence through accumulation of amino acid substitutions, which often affect linear motifs and post-translational-modification sites. These substitutions may result in rewiring protein interaction and signaling networks. Thus, homorepeats are distinct modules that are often retained in stringently regulated proteins. Their presence facilitates rapid exploration of the genotype-phenotype landscape of a population, thereby contributing to adaptation and fitness.
Collapse
|
11
|
Wehler P, Niopek D, Eils R, Di Ventura B. Optogenetic Control of Nuclear Protein Import in Living Cells Using Light-Inducible Nuclear Localization Signals (LINuS). ACTA ACUST UNITED AC 2016; 8:131-145. [PMID: 27258691 DOI: 10.1002/cpch.4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Many biological processes are regulated by the timely import of specific proteins into the nucleus. The ability to spatiotemporally control the nuclear import of proteins of interest therefore allows study of their role in a given biological process as well as controlling this process in space and time. The light-inducible nuclear localization signal (LINuS) was developed based on a natural plant photoreceptor that reversibly triggers the import of proteins of interest into the nucleus with blue light. Each LINuS is a small, genetically encoded domain that is fused to the protein of interest at the N or C terminus. These protocols describe how to carry out initial microscopy-based screening to assess which LINuS variant works best with a protein of interest. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Pierre Wehler
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg, Germany
| | - Dominik Niopek
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg, Germany
- Department of Bioinformatics and Functional Genomics, Institute for Pharmacy and Biotechnology
- Department of Theoretical Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Roland Eils
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg, Germany
- Department of Bioinformatics and Functional Genomics, Institute for Pharmacy and Biotechnology
- Department of Theoretical Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Barbara Di Ventura
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
12
|
Di Lascio S, Belperio D, Benfante R, Fornasari D. Alanine Expansions Associated with Congenital Central Hypoventilation Syndrome Impair PHOX2B Homeodomain-mediated Dimerization and Nuclear Import. J Biol Chem 2016; 291:13375-93. [PMID: 27129232 PMCID: PMC4933246 DOI: 10.1074/jbc.m115.679027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Indexed: 11/30/2022] Open
Abstract
Heterozygous mutations of the human PHOX2B gene, a key regulator of autonomic nervous system development, lead to congenital central hypoventilation syndrome (CCHS), a neurodevelopmental disorder characterized by a failure in the autonomic control of breathing. Polyalanine expansions in the 20-residues region of the C terminus of PHOX2B are the major mutations responsible for CCHS. Elongation of the alanine stretch in PHOX2B leads to a protein with altered DNA binding, transcriptional activity, and nuclear localization and the possible formation of cytoplasmic aggregates; furthermore, the findings of various studies support the idea that CCHS is not due to a pure loss of function mechanism but also involves a dominant negative effect and/or toxic gain of function for PHOX2B mutations. Because PHOX2B forms homodimers and heterodimers with its paralogue PHOX2A in vitro, we tested the hypothesis that the dominant negative effects of the mutated proteins are due to non-functional interactions with the wild-type protein or PHOX2A using a co-immunoprecipitation assay and the mammalian two-hybrid system. Our findings show that PHOX2B forms homodimers and heterodimerizes weakly with mutated proteins, exclude the direct involvement of the polyalanine tract in dimer formation, and indicate that mutated proteins retain partial ability to form heterodimers with PHOX2A. Moreover, in this study, we investigated the effects of the longest polyalanine expansions on the homeodomain-mediated nuclear import, and our data clearly show that the expanded C terminus interferes with this process. These results provide novel insights into the effects of the alanine tract expansion on PHOX2B folding and activity.
Collapse
Affiliation(s)
- Simona Di Lascio
- From the Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129 Milan, Italy and
| | - Debora Belperio
- From the Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129 Milan, Italy and
| | - Roberta Benfante
- From the Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129 Milan, Italy and the National Research Council (CNR) Neuroscience Institute, 20129 Milan, Italy
| | - Diego Fornasari
- From the Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129 Milan, Italy and the National Research Council (CNR) Neuroscience Institute, 20129 Milan, Italy
| |
Collapse
|
13
|
Merabet S, Galliot B. The TALE face of Hox proteins in animal evolution. Front Genet 2015; 6:267. [PMID: 26347770 PMCID: PMC4539518 DOI: 10.3389/fgene.2015.00267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 07/31/2015] [Indexed: 01/22/2023] Open
Abstract
Hox genes are major regulators of embryonic development. One of their most conserved functions is to coordinate the formation of specific body structures along the anterior-posterior (AP) axis in Bilateria. This architectural role was at the basis of several morphological innovations across bilaterian evolution. In this review, we traced the origin of the Hox patterning system by considering the partnership with PBC and Meis proteins. PBC and Meis belong to the TALE-class of homeodomain-containing transcription factors and act as generic cofactors of Hox proteins for AP axis patterning in Bilateria. Recent data indicate that Hox proteins acquired the ability to interact with their TALE partners in the last common ancestor of Bilateria and Cnidaria. These interactions relied initially on a short peptide motif called hexapeptide (HX), which is present in Hox and non-Hox protein families. Remarkably, Hox proteins can also recruit the TALE cofactors by using specific PBC Interaction Motifs (SPIMs). We describe how a functional Hox/TALE patterning system emerged in eumetazoans through the acquisition of SPIMs. We anticipate that interaction flexibility could be found in other patterning systems, being at the heart of the astonishing morphological diversity observed in the animal kingdom.
Collapse
Affiliation(s)
- Samir Merabet
- Centre National de Recherche Scientifique, Institut de Génomique Fonctionnelle de Lyon Lyon, France ; Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon Lyon, France
| | - Brigitte Galliot
- Department of Genetics and Evolution, Faculty of Science, Institute of Genetics and Genomics in Geneva, University of Geneva Geneva, Switzerland
| |
Collapse
|
14
|
Pan TT, Jia WD, Yao QY, Sun QK, Ren WH, Huang M, Ma J, Li JS, Ma JL, Yu JH, Ge YS, Liu WB, Zhang CH, Xu GL. Overexpression of HOXA13 as a potential marker for diagnosis and poor prognosis of hepatocellular carcinoma. TOHOKU J EXP MED 2015; 234:209-19. [PMID: 25341685 DOI: 10.1620/tjem.234.209] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
HOXA13 is a member of homeobox genes that encode transcription factors regulating embryonic development and cell fate. Abnormal HOXA13 expression was reported in hepatocellular carcinoma (HCC), but its correlation with tumor angiogenesis and prognosis still remain unclear. This study was aimed to uncover the expression, diagnostic and prognostic significance of HOXA13 in HCC. Immunohistochemistry was performed to detect HOXA13 expression in HCC and corresponding paracarcinomatous tissues from 90 patients. Enzyme-linked immunosorbent assay was used to detect serum HOXA13 in 90 HCC patients and 20 healthy volunteers. Receiver operating characteristics was analyzed to calculate diagnostic accuracy of serum HOXA13, alpha-fetoprotein (AFP) and their combination. Immunoreactivity of HOXA13 was detected in 72.2% of HCC, and 12.2% of adjacent non-cancerous samples. HOXA13 expression was significantly associated with tumor size, microvascular invasion, pathological grade, tumor capsula status, AFP level, tumor-node-metastasis stage and positively correlated with VEGF (p < 0.001) and microvessel density (p < 0.001). The combination of serum HOXA13 and AFP had a markedly higher area under the curve than HOXA13 alone. HOXA13 expression was associated with unfavorable overall survival (OS) (p < 0.001) and disease-free survival (DFS) (p < 0.001). Multivariate analysis indicated that patients with HOXA13-expressing tumors had a significantly shorter OS (p = 0.030) and DFS (p = 0.005) than those with HOXA13-negative tumors. Thus, HOXA13 expression possibly plays an important role in tumor angiogenesis, progression and prognosis of HCC. Moreover, we demonstrate that serum HOXA13 may serve as a biomarker for early HCC diagnosing and predicting outcome.
Collapse
|
15
|
Joy T, Hirono K, Doe CQ. The RanGEF Bj1 promotes prospero nuclear export and neuroblast self-renewal. Dev Neurobiol 2014; 75:485-93. [PMID: 25312250 PMCID: PMC4397115 DOI: 10.1002/dneu.22237] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/03/2014] [Accepted: 10/09/2014] [Indexed: 11/08/2022]
Abstract
Drosophila larval neuroblasts are a model system for studying stem cell self-renewal and differentiation. Here, we report a novel role for the Drosophila gene Bj1 in promoting larval neuroblast self-renewal. Bj1 is the guanine-nucleotide exchange factor for Ran GTPase, which regulates nuclear import/export. Bj1 transcripts are highly enriched in larval brain neuroblasts (in both central brain and optic lobe), while Bj1 protein is detected in both neuroblasts and their neuronal progeny. Loss of Bj1 using both mutants or RNAi causes a progressive loss of larval neuroblasts, showing that Bj1 is required to maintain neuroblast numbers. Loss of Bj1 does not result in neuroblast apoptosis, but rather leads to abnormal nuclear accumulation of the differentiation factor Prospero, and premature neuroblast differentiation. We conclude that the Bj1 RanGEF promotes Prospero nuclear export and neuroblast self-renewal.
Collapse
Affiliation(s)
- Tasha Joy
- Institute of Molecular Biology, Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, Oregon, 97403
| | | | | |
Collapse
|
16
|
Wernet MF, Desplan C. Homothorax and Extradenticle alter the transcription factor network in Drosophila ommatidia at the dorsal rim of the retina. Development 2014; 141:918-28. [PMID: 24496628 DOI: 10.1242/dev.103127] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A narrow band of ommatidia in the dorsal periphery of the Drosophila retina called the dorsal rim area (DRA) act as detectors for polarized light. The transcription factor Homothorax (Hth) is expressed in DRA inner photoreceptors R7 and R8 and is both necessary and sufficient to induce the DRA fate, including specialized morphology and unique Rhodopsin expression. Hth expression is the result of Wingless (Wg) pathway activity at the eye margins and restriction to the dorsal eye by the selector genes of the Iroquois complex (Iro-C). However, how the DRA is limited to exactly one or two ommatidial rows is not known. Although several factors regulating the Drosophila retinal mosaic are expressed in DRA ommatidia, the role of Hth in this transcriptional network is uncharacterized. Here we show that Hth functions together with its co-factor Extradenticle (Exd) to repress the R8-specific factor Senseless (Sens) in DRA R8 cells, allowing expression of an ultraviolet-sensitive R7 Rhodopsin (Rh3). Furthermore, Hth/Exd act in concert with the transcriptional activators Orthodenticle (Otd) and Spalt (Sal), to activate expression of Rh3 in the DRA. The resulting monochromatic coupling of Rh3 between R7 and R8 in DRA ommatidia is important for comparing celestial e-vector orientation rather than wavelengths. Finally, we show that Hth expression expands to many ommatidial rows in regulatory mutants of optomotorblind (omb), a transcription factor transducing Wg signaling at the dorsal and ventral eye poles. Therefore, locally restricted recruitment of the DRA-specific factor Hth alters the transcriptional network that regulates Rhodopsin expression across ommatidia.
Collapse
Affiliation(s)
- Mathias F Wernet
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Place, New York, NY 10003, USA
| | | |
Collapse
|
17
|
Longobardi E, Penkov D, Mateos D, De Florian G, Torres M, Blasi F. Biochemistry of the tale transcription factors PREP, MEIS, and PBX in vertebrates. Dev Dyn 2014; 243:59-75. [PMID: 23873833 PMCID: PMC4232920 DOI: 10.1002/dvdy.24016] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 06/19/2013] [Accepted: 07/05/2013] [Indexed: 12/22/2022] Open
Abstract
TALE (three amino acids loop extension) homeodomain transcription factors are required in various steps of embryo development, in many adult physiological functions, and are involved in important pathologies. This review focuses on the PREP, MEIS, and PBX sub-families of TALE factors and aims at giving information on their biochemical properties, i.e., structure, interactors, and interaction surfaces. Members of the three sets of protein form dimers in which the common partner is PBX but they can also directly interact with other proteins forming higher-order complexes, in particular HOX. Finally, recent advances in determining the genome-wide DNA-binding sites of PREP1, MEIS1, and PBX1, and their partial correspondence with the binding sites of some HOX proteins, are reviewed. These studies have generated a few general rules that can be applied to all members of the three gene families. PREP and MEIS recognize slightly different consensus sequences: PREP prefers to bind to promoters and to have PBX as a DNA-binding partner; MEIS prefers HOX as partner, and both PREP and MEIS drive PBX to their own binding sites. This outlines the clear individuality of the PREP and MEIS proteins, the former mostly devoted to basic cellular functions, the latter more to developmental functions.
Collapse
Affiliation(s)
- E Longobardi
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Milano, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Slattery M, Voutev R, Ma L, Nègre N, White KP, Mann RS. Divergent transcriptional regulatory logic at the intersection of tissue growth and developmental patterning. PLoS Genet 2013; 9:e1003753. [PMID: 24039600 PMCID: PMC3764184 DOI: 10.1371/journal.pgen.1003753] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/10/2013] [Indexed: 12/19/2022] Open
Abstract
The Yorkie/Yap transcriptional coactivator is a well-known regulator of cellular proliferation in both invertebrates and mammals. As a coactivator, Yorkie (Yki) lacks a DNA binding domain and must partner with sequence-specific DNA binding proteins in the nucleus to regulate gene expression; in Drosophila, the developmental regulators Scalloped (Sd) and Homothorax (Hth) are two such partners. To determine the range of target genes regulated by these three transcription factors, we performed genome-wide chromatin immunoprecipitation experiments for each factor in both the wing and eye-antenna imaginal discs. Strong, tissue-specific binding patterns are observed for Sd and Hth, while Yki binding is remarkably similar across both tissues. Binding events common to the eye and wing are also present for Sd and Hth; these are associated with genes regulating cell proliferation and “housekeeping” functions, and account for the majority of Yki binding. In contrast, tissue-specific binding events for Sd and Hth significantly overlap enhancers that are active in the given tissue, are enriched in Sd and Hth DNA binding sites, respectively, and are associated with genes that are consistent with each factor's previously established tissue-specific functions. Tissue-specific binding events are also significantly associated with Polycomb targeted chromatin domains. To provide mechanistic insights into tissue-specific regulation, we identify and characterize eye and wing enhancers of the Yki-targeted bantam microRNA gene and demonstrate that they are dependent on direct binding by Hth and Sd, respectively. Overall these results suggest that both Sd and Hth use distinct strategies – one shared between tissues and associated with Yki, the other tissue-specific, generally Yki-independent and associated with developmental patterning – to regulate distinct gene sets during development. The Hippo tumor suppressor pathway controls proliferation in a tissue-nonspecific fashion in Drosophila epithelial progenitor tissues via the transcriptional coactivator Yorkie (Yki). However, despite the tissue-nonspecific role that Yki plays in tissue growth, the transcription factors that recruit Yki to DNA, most notably Scalloped (Sd) and Homothorax (Hth), are important regulators of developmental patterning with many tissue-specific functions. Thus, these three transcriptional regulators – Yki, Sd, and Hth – provide a model for exploring the properties of protein-DNA interactions that regulate both tissue-shared and tissue-specific functions. With this goal in mind, we identified the positions in the fly genome that are bound by Yki, Sd, and Hth in the progenitors of the wing and eye-antenna structures of the fly. These data not only provide a global view of the Yki gene regulatory network, they reveal an unusual amount of tissue specificity in the genomic regions targeted by Sd and Hth, but not Yki. The data also reveal that tissue-specific binding is very likely to overlap tissue-specific enhancer regions, provide important clues for how tissue-specific Sd and Hth binding occurs, and support the idea that gene regulatory networks are plastic, with spatial differences in binding significantly impacting network structures.
Collapse
Affiliation(s)
- Matthew Slattery
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
- Institute for Genomics and Systems Biology and Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Roumen Voutev
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
| | - Lijia Ma
- Institute for Genomics and Systems Biology and Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Nicolas Nègre
- Institute for Genomics and Systems Biology and Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Université de Montpellier 2 and INRA, UMR1333 DGIMI, Montpellier, France
| | - Kevin P. White
- Institute for Genomics and Systems Biology and Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Richard S. Mann
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
19
|
Palmieri C, Riccardi E. Immunohistochemical expression of HOXA-13 in normal, hyperplastic and neoplastic canine prostatic tissue. J Comp Pathol 2013; 149:417-23. [PMID: 23809907 DOI: 10.1016/j.jcpa.2013.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/28/2013] [Accepted: 05/07/2013] [Indexed: 01/24/2023]
Abstract
Homeobox genes are known to be examples of the intimate relationship between embryogenesis and tumourigenesis. Specifically, the HOXA13 gene plays a fundamental role in the development of the urogenital tract and external genitalia and in prostate organogenesis. There are no reports on the expression of HOXA13 in normal, hyperplastic or neoplastic canine prostate tissue or in other types of tumours. Six normal, 16 hyperplastic and 12 neoplastic canine prostates were examined microscopically and immunohistochemically with a polyclonal antibody specific for human HOXA13. An immunohistochemical score was generated. HOXA13 was expressed in the cytoplasm of epithelial cells in normal, hyperplastic and neoplastic prostates. The percentage of immunolabelled cells in all prostatic carcinomas (PCs) was greatly increased, with a score of 85.3 (±5.25) compared with normal (2 ± 0.71) and hyperplastic prostates (6.08 ± 2.21). The increase in HOXA13 expression in canine PCs suggests the involvement of this transcription factor in carcinogenesis and promotion of tumour growth.
Collapse
Affiliation(s)
- C Palmieri
- School of Veterinary Science, University of Queensland, Gatton Campus, Gatton 4343, Queensland, Australia.
| | | |
Collapse
|
20
|
Hughes S, Brabin C, Appleford PJ, Woollard A. CEH-20/Pbx and UNC-62/Meis function upstream of rnt-1/Runx to regulate asymmetric divisions of the C. elegans stem-like seam cells. Biol Open 2013; 2:718-27. [PMID: 23862020 PMCID: PMC3711040 DOI: 10.1242/bio.20134549] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/14/2013] [Indexed: 12/16/2022] Open
Abstract
Caenorhabditis elegans seam cells divide in the stem-like mode throughout larval development, with the ability to both self-renew and produce daughters that differentiate. Seam cells typically divide asymmetrically, giving rise to an anterior daughter that fuses with the hypodermis and a posterior daughter that proliferates further. Previously we have identified rnt-1 (a homologue of the mammalian cancer-associated stem cell regulator Runx) as being an important regulator of seam development, acting to promote proliferation; rnt-1 mutants have fewer seam cells whereas overexpressing rnt-1 causes seam cell hyperplasia. We isolated the interacting CEH-20/Pbx and UNC-62/Meis TALE-class transcription factors during a genome-wide RNAi screen for novel regulators of seam cell number. Animals lacking wild type CEH-20 or UNC-62 display seam cell hyperplasia, largely restricted to the anterior of the worm, whereas double mutants have many additional seam cells along the length of the animal. The cellular basis of the hyperplasia involves the symmetrisation of normally asymmetric seam cell divisions towards the proliferative stem-like fate. The hyperplasia is completely suppressed in rnt-1 mutants, and rnt-1 is upregulated in ceh-20 and unc-62 mutants, suggesting that CEH-20 and UNC-62 function upstream of rnt-1 to limit proliferative potential to the appropriate daughter cell. In further support of this we find that CEH-20 is asymmetrically localised in seam daughters following an asymmetric division, being predominantly restricted to anterior nuclei whose fate is to differentiate. Thus, ceh-20 and unc-62 encode crucial regulators of seam cell division asymmetry, acting via rnt-1 to regulate the balance between proliferation and differentiation.
Collapse
Affiliation(s)
- Samantha Hughes
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU , UK
| | | | | | | |
Collapse
|
21
|
Moon SM, Ahn MY, Kwon SM, Kim SA, Ahn SG, Yoon JH. Homeobox C5 expression is associated with the progression of 4-nitroquinoline 1-oxide-induced rat tongue carcinogenesis. J Oral Pathol Med 2012; 41:470-6. [DOI: 10.1111/j.1600-0714.2012.01133.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Noro B, Lelli K, Sun L, Mann RS. Competition for cofactor-dependent DNA binding underlies Hox phenotypic suppression. Genes Dev 2011; 25:2327-32. [PMID: 22085961 DOI: 10.1101/gad.175539.111] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hox transcription factors exhibit an evolutionarily conserved functional hierarchy, termed phenotypic suppression, in which the activity of posterior Hox proteins dominates over more anterior Hox proteins. Using directly regulated Hox targeted reporter genes in Drosophila, we show that posterior Hox proteins suppress the activities of anterior ones by competing for cofactor-dependent DNA binding. Furthermore, we map a motif in the posterior Hox protein Abdominal-A (AbdA) that is required for phenotypic suppression and facilitates cooperative DNA binding with the Hox cofactor Extradenticle (Exd). Together, these results suggest that Hox-specific motifs endow posterior Hox proteins with the ability to dominate over more anterior ones via a cofactor-dependent DNA-binding mechanism.
Collapse
Affiliation(s)
- Barbara Noro
- Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York 10032, USA
| | | | | | | |
Collapse
|
23
|
Variable motif utilization in homeotic selector (Hox)-cofactor complex formation controls specificity. Proc Natl Acad Sci U S A 2011; 108:21122-7. [PMID: 22160705 DOI: 10.1073/pnas.1114118109] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homeotic selector (Hox) proteins often bind DNA cooperatively with cofactors such as Extradenticle (Exd) and Homothorax (Hth) to achieve functional specificity in vivo. Previous studies identified the Hox YPWM motif as an important Exd interaction motif. Using a comparative approach, we characterize the contribution of this and additional conserved sequence motifs to the regulation of specific target genes for three Drosophila Hox proteins. We find that Sex combs reduced (Scr) uses a simple interaction mechanism, where a single tryptophan-containing motif is necessary for Exd-dependent DNA-binding and in vivo functions. Abdominal-A (AbdA) is more complex, using multiple conserved motifs in a context-dependent manner. Lastly, Ultrabithorax (Ubx) is the most flexible, in that it uses multiple conserved motifs that function in parallel to regulate target genes in vivo. We propose that using different binding mechanisms with the same cofactor may be one strategy to achieve functional specificity in vivo.
Collapse
|
24
|
Singh A, Tare M, Puli OR, Kango-Singh M. A glimpse into dorso-ventral patterning of the Drosophila eye. Dev Dyn 2011; 241:69-84. [PMID: 22034010 DOI: 10.1002/dvdy.22764] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2011] [Indexed: 12/15/2022] Open
Abstract
During organogenesis in all multi-cellular organisms, axial patterning is required to transform a single layer organ primordium into a three-dimensional organ. The Drosophila eye model serves as an excellent model to study axial patterning. Dorso-ventral (DV) axis determination is the first lineage restriction event during axial patterning of the Drosophila eye. The early Drosophila eye primordium has a default ventral fate, and the dorsal eye fate is established by onset of dorsal selector gene pannier (pnr) expression in a group of cells on the dorsal eye margin. The boundary between dorsal and ventral compartments called the equator is the site for Notch (N) activation, which triggers cell proliferation and differentiation. This review will focus on (1) chronology of events during DV axis determination; (2) how early division of eye into dorsal and ventral compartments contributes towards the growth and patterning of the fly retina, and (3) functions of DV patterning genes.
Collapse
Affiliation(s)
- Amit Singh
- Department of Biology, University of Dayton, Dayton, Ohio 45469, USA.
| | | | | | | |
Collapse
|
25
|
Singh A, Tare M, Kango-Singh M, Son WS, Cho KO, Choi KW. Opposing interactions between homothorax and Lobe define the ventral eye margin of Drosophila eye. Dev Biol 2011; 359:199-208. [PMID: 21920354 DOI: 10.1016/j.ydbio.2011.08.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/22/2011] [Accepted: 08/28/2011] [Indexed: 11/19/2022]
Abstract
Patterning in multi-cellular organisms involves progressive restriction of cell fates by generation of boundaries to divide an organ primordium into smaller fields. We have employed the Drosophila eye model to understand the genetic circuitry responsible for defining the boundary between the eye and the head cuticle on the ventral margin. The default state of the early eye is ventral and depends on the function of Lobe (L) and the Notch ligand Serrate (Ser). We identified homothorax (hth) as a strong enhancer of the L mutant phenotype of loss of ventral eye. Hth is a MEIS class gene with a highly conserved Meis-Hth (MH) domain and a homeodomain (HD). Hth is known to bind Extradenticle (Exd) via its MH domain for its nuclear translocation. Loss-of-function of hth, a negative regulator of eye, results in ectopic ventral eye enlargements. This phenotype is complementary to the L mutant phenotype of loss-of-ventral eye. However, if L and hth interact during ventral eye development remains unknown. Here we show that (i) L acts antagonistically to hth, (ii) Hth is upregulated in the L mutant background, and (iii) MH domain of Hth is required for its genetic interaction with L, while its homeodomain is not, (iv) in L mutant background ventral eye suppression function of Hth involves novel MH domain-dependent factor(s), and (v) nuclear localization of Exd is not sufficient to mediate the Hth function in the L mutant background. Further, Exd is not a critical rate-limiting factor for the Hth function. Thus, optimum levels of L and Hth are required to define the boundary between the developing eye and head cuticle on the ventral margin.
Collapse
Affiliation(s)
- Amit Singh
- Department of Biology, University of Dayton, OH 45469, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Ando M, Totani Y, Walldorf U, Furukubo-Tokunaga K. TALE-class homeodomain transcription factors, homothorax and extradenticle, control dendritic and axonal targeting of olfactory projection neurons in the Drosophila brain. Dev Biol 2011; 358:122-36. [PMID: 21801717 DOI: 10.1016/j.ydbio.2011.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 07/06/2011] [Accepted: 07/13/2011] [Indexed: 12/31/2022]
Abstract
Precise neuronal connectivity in the nervous system depends on specific axonal and dendritic targeting of individual neurons. In the Drosophila brain, olfactory projection neurons convey odor information from the antennal lobe to higher order brain centers such as the mushroom body and the lateral horn. Here, we show that Homothorax (Hth), a TALE-class homeodomain transcription factor, is expressed in many of the antennal lobe neurons including projection neurons and local interneurons. In addition, HTH is expressed in the progenitors of the olfactory projection neurons, and the activity of hth is required for the generation of the lateral but not for the anterodorsal and ventral lineages. MARCM analyses show that the hth is essential for correct dendritic targeting of projection neurons in the antennal lobe. Moreover, the activity of hth is required for axonal fasciculation, correct routing and terminal branching of the projection neurons. We also show that another TALE-class homeodomain protein, Extradenticle (Exd), is required for the dendritic and axonal development of projection neurons. Mutation of exd causes projection neuron defects that are reminiscent of the phenotypes caused by the loss of the hth activity. Double immunostaining experiments show that Hth and Exd are coexpressed in olfactory projection neurons and their progenitors, and that the expressions of Hth and Exd require the activity of each other gene. These results thus demonstrate the functional importance of the TALE-class homeodomain proteins in cell-type specification and precise wiring of the Drosophila olfactory network.
Collapse
Affiliation(s)
- Mai Ando
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | | | | | | |
Collapse
|
27
|
Ye W, Lin W, Tartakoff AM, Tao T. Karyopherins in nuclear transport of homeodomain proteins during development. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1654-62. [PMID: 21256166 DOI: 10.1016/j.bbamcr.2011.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 12/08/2010] [Accepted: 01/09/2011] [Indexed: 01/12/2023]
Abstract
Homeodomain proteins are crucial transcription factors for cell differentiation, cell proliferation and organ development. Interestingly, their homeodomain signature structure is important for both their DNA-binding and their nucleocytoplasmic trafficking. The accurate nucleocytoplasmic distribution of these proteins is essential for their functions. We summarize information on (a) the roles of karyopherins for import and export of homeoproteins, (b) the regulation of their nuclear transport during development, and (c) the corresponding complexity of homeoprotein nucleocytoplasmic transport signals. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.
Collapse
Affiliation(s)
- Wenduo Ye
- Xiamen University School of Life Sciences, Xiamen, Fujian 361005, China
| | | | | | | |
Collapse
|
28
|
Karlsson D, Baumgardt M, Thor S. Segment-specific neuronal subtype specification by the integration of anteroposterior and temporal cues. PLoS Biol 2010; 8:e1000368. [PMID: 20485487 PMCID: PMC2867937 DOI: 10.1371/journal.pbio.1000368] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 04/01/2010] [Indexed: 11/18/2022] Open
Abstract
To address the question of how neuronal diversity is achieved throughout the CNS, this study provides evidence of modulation of neural progenitor cell “output” along the body axis by integration of local anteroposterior and temporal cues. The generation of distinct neuronal subtypes at different axial levels relies upon both anteroposterior and temporal cues. However, the integration between these cues is poorly understood. In the Drosophila central nervous system, the segmentally repeated neuroblast 5–6 generates a unique group of neurons, the Apterous (Ap) cluster, only in thoracic segments. Recent studies have identified elaborate genetic pathways acting to control the generation of these neurons. These insights, combined with novel markers, provide a unique opportunity for addressing how anteroposterior and temporal cues are integrated to generate segment-specific neuronal subtypes. We find that Pbx/Meis, Hox, and temporal genes act in three different ways. Posteriorly, Pbx/Meis and posterior Hox genes block lineage progression within an early temporal window, by triggering cell cycle exit. Because Ap neurons are generated late in the thoracic 5–6 lineage, this prevents generation of Ap cluster cells in the abdomen. Thoracically, Pbx/Meis and anterior Hox genes integrate with late temporal genes to specify Ap clusters, via activation of a specific feed-forward loop. In brain segments, “Ap cluster cells” are present but lack both proper Hox and temporal coding. Only by simultaneously altering Hox and temporal gene activity in all segments can Ap clusters be generated throughout the neuroaxis. This study provides the first detailed analysis, to our knowledge, of an identified neuroblast lineage along the entire neuroaxis, and confirms the concept that lineal homologs of truncal neuroblasts exist throughout the developing brain. We furthermore provide the first insight into how Hox/Pbx/Meis anteroposterior and temporal cues are integrated within a defined lineage, to specify unique neuronal identities only in thoracic segments. This study reveals a surprisingly restricted, yet multifaceted, function of both anteroposterior and temporal cues with respect to lineage control and cell fate specification. An animal's nervous system contains a wide variety of neuronal subtypes generated from neural progenitor (“stem”) cells, which generate different types of neurons at different axial positions and time points. Hence, the generation and specification of unique neuronal subtypes is dependent upon the integration of both spatial and temporal cues within distinct stem cells. The nature of this integration is poorly understood. We have addressed this issue in the Drosophila neuroblast 5–6 lineage. This stem cell is generated in all 18 segments of the central nervous system, stretching from the brain down to the abdomen of the fly, but a larger lineage containing a well-defined set of cells—the Apterous (Ap) cluster—is generated only in thoracic segments. We show that segment-specific generation of the Ap cluster neurons is achieved by the integration of the anteroposterior and temporal cues in several different ways. Generation of the Ap neurons in abdominal segments is prevented by anteroposterior cues stopping the cell cycle in the stem cell at an early stage. In brain segments, late-born neurons are generated, but are differently specified due to the presence of different anteroposterior and temporal cues. Finally, in thoracic segments, the temporal and spatial cues integrate on a highly limited set of target genes to specify the Ap cluster neurons.
Collapse
Affiliation(s)
- Daniel Karlsson
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
| | - Magnus Baumgardt
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
| | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
- * E-mail:
| |
Collapse
|
29
|
Pillay LM, Forrester AM, Erickson T, Berman JN, Waskiewicz AJ. The Hox cofactors Meis1 and Pbx act upstream of gata1 to regulate primitive hematopoiesis. Dev Biol 2010; 340:306-17. [PMID: 20123093 DOI: 10.1016/j.ydbio.2010.01.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 01/26/2010] [Accepted: 01/26/2010] [Indexed: 01/29/2023]
Abstract
During vertebrate development, the initial wave of hematopoiesis produces cells that help to shape the developing circulatory system and oxygenate the early embryo. The differentiation of primitive erythroid and myeloid cells occurs within a short transitory period, and is subject to precise molecular regulation by a hierarchical cascade of transcription factors. The TALE-class homeodomain transcription factors Meis and Pbx function to regulate embryonic hematopoiesis, but it is not known where Meis and Pbx proteins participate in the hematopoietic transcription factor cascade. To address these questions, we have ablated Meis1 and Pbx proteins in zebrafish, and characterized their molecular effects on known markers of primitive hematopoiesis. Embryos lacking Meis1 and Pbx exhibit a severe reduction in the expression of gata1, the earliest marker of erythroid cell fate, and fail to produce visible circulating blood cells. Concomitant with a loss of gata1, Meis1- and Pbx-depleted embryos exhibit downregulated embryonic hemoglobin (hbae3) expression, and possess increased numbers of pu.1-positive myeloid cells. gata1-overexpression rescues hbae3 expression in Pbx-depleted; meis1-morphant embryos, placing Pbx and Meis1 upstream of gata1 in the erythropoietic transcription factor hierarchy. Our study conclusively demonstrates that Meis1 and Pbx act to specify the erythropoietic cell lineage and inhibit myelopoiesis.
Collapse
Affiliation(s)
- Laura M Pillay
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | | | | | | | |
Collapse
|
30
|
Jiang Y, Shi H, Liu J. Two Hox cofactors, the Meis/Hth homolog UNC-62 and the Pbx/Exd homolog CEH-20, function together during C. elegans postembryonic mesodermal development. Dev Biol 2009; 334:535-46. [PMID: 19643105 DOI: 10.1016/j.ydbio.2009.07.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/14/2009] [Accepted: 07/20/2009] [Indexed: 01/12/2023]
Abstract
The TALE homeodomain-containing PBC and MEIS proteins play multiple roles during metazoan development. Mutations in these proteins can cause various disorders, including cancer. In this study, we examined the roles of MEIS proteins in mesoderm development in C. elegans using the postembryonic mesodermal M lineage as a model system. We found that the MEIS protein UNC-62 plays essential roles in regulating cell fate specification and differentiation in the M lineage. Furthermore, UNC-62 appears to function together with the PBC protein CEH-20 in regulating these processes. Both unc-62 and ceh-20 have overlapping expression patterns within and outside of the M lineage, and they share physical and regulatory interactions. In particular, we found that ceh-20 is genetically required for the promoter activity of unc-62, providing evidence for another layer of regulatory interactions between MEIS and PBC proteins.
Collapse
Affiliation(s)
- Yuan Jiang
- Department of Molecular Biology and Genetics, Cornell University, 439 Biotechnology Building, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
31
|
Gu ZD, Shen LY, Wang H, Chen XM, Li Y, Ning T, Chen KN. HOXA13 promotes cancer cell growth and predicts poor survival of patients with esophageal squamous cell carcinoma. Cancer Res 2009; 69:4969-73. [PMID: 19491265 DOI: 10.1158/0008-5472.can-08-4546] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Homeobox genes are known to be classic examples of the intimate relationship between embryogenesis and tumorigenesis. Here, we investigated whether inhibition of HOXA13, a member of the homeobox genes, was sufficient to affect the proliferation of esophageal cancer cells in vitro and in vivo, and studied the association between HOXA13 expression and survival of patients with esophageal squamous cell carcinoma (ESCC). HOXA13 expression was permanently knocked down using an RNA interference technique, and cell strain with stable knockdown of HOXA13 protein was established. Colony formation assay showed that the number of colonies in HOXA13 protein-deficient cells was significantly less than that of control cells (P < 0.01). Tumor growth in nude mice showed that the weight and volume of tumors from the HOXA13 knockdown cells was significantly less than that from the control cells (P < 0.01). Then, HOXA13 expression in ESCC specimens and paired noncancerous mucosa was detected by immunohistochemistry, and overexpression of HOXA13 was found to be more pronounced in ESCCs than paired noncancerous mucosa (P < 0.05). Furthermore, the association of HOXA13 expression and disease-free survival time was analyzed in 155 ESCC cases. The median survival time of patients expressing HOXA13 was significantly shorter than HOXA13-negative patients (P = 0.0006). Multivariate analysis indicated that tumor-node-metastasis (TNM) stage and HOXA13 expression were independent predictors of disease-free survival time of patients with ESCC. Our results showed that HOXA13 expression enhanced tumor growth in vitro and in vivo, and was a negative independent predictor of disease-free survival of patients with ESCC.
Collapse
Affiliation(s)
- Zhen-Dong Gu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery I, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing, PR China
| | | | | | | | | | | | | |
Collapse
|
32
|
Rutjens B, Bao D, van Eck-Stouten E, Brand M, Smeekens S, Proveniers M. Shoot apical meristem function in Arabidopsis requires the combined activities of three BEL1-like homeodomain proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:641-54. [PMID: 19175771 DOI: 10.1111/j.1365-313x.2009.03809.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In plants, most of the above-ground body is formed post-embryonically by the continuous organogenic potential of the shoot apical meristem (SAM). Proper function of the SAM requires maintenance of a delicate balance between the depletion of stem cell daughters into developing primordia and proliferation of the central stem cell population. Here we show that initiation and maintenance of the Arabidopsis SAM, including that of floral meristems, requires the combinatorial action of three members of the BELL-family of TALE homeodomain proteins, ARABIDOPSIS THALIANA HOMEOBOX 1 (ATH1), PENNYWISE (PNY) and POUND-FOOLISH (PNF). All three proteins interact with the KNOX TALE homeodomain protein STM, and combined lesions in ATH1, PNY and PNF result in a phenocopy of stm mutations. Therefore, we propose that ath1 pny pnf meristem defects result from loss of combinatorial BELL-STM control. Further, we demonstrate that heterodimerization-controlled cellular localization of BELL and KNOX proteins involves a CRM1/exportin-1-mediated nuclear exclusion mechanism that is probably generic to control the activity of BELL and KNOX combinations. We conclude that in animals and plants corresponding mechanisms regulate the activity of TALE homeodomain proteins through controlled nuclear-cytosolic distribution of these proteins.
Collapse
Affiliation(s)
- Bas Rutjens
- Department of Biology, Utrecht University, The Netherlands
| | | | | | | | | | | |
Collapse
|
33
|
Trithorax, Hox, and TALE-class homeodomain proteins ensure cell survival through repression of the BH3-only gene egl-1. Dev Biol 2009; 329:374-85. [PMID: 19254707 DOI: 10.1016/j.ydbio.2009.02.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 02/05/2009] [Accepted: 02/18/2009] [Indexed: 12/21/2022]
Abstract
Mutations that aberrantly activate trithorax-group proteins, Hox transcription factors and TALE-class Hox cofactors promote leukemogenesis, but their target genes critical for leukemogenesis remain largely unknown. Through genetic analyses in C. elegans, we find that the trithorax-group gene lin-59 and the TALE-class Hox cofactor unc-62 are required for survival of the VC motor neurons. With the goal of providing a model for how aberrantly active Hox complexes might promote leukemia, we elucidate the mechanism through which these new inhibitors of programmed cell death act: lin-59 maintains transcription of the Hox gene lin-39, while unc-62 promotes nuclear localization of the TALE-class Hox cofactor ceh-20. A LIN-39/CEH-20 complex binds the promoter of the pro-apoptotic BH3-only gene egl-1, repressing its transcription and ensuring survival of the VC neurons. In the absence of this regulatory mechanism, egl-1 is transcribed and the VC neurons die. Furthermore, ectopic expression of the Hox gene lin-39, as occurs for human Hox genes in leukemia, is sufficient to block death of some cells. This work identifies BH3-only pro-apoptotic genes as targets of Hox-mediated repression and suggests that aberrant activation of Hox networks may promote leukemia in part by inhibiting apoptosis.
Collapse
|
34
|
Mann RS, Lelli KM, Joshi R. Hox specificity unique roles for cofactors and collaborators. Curr Top Dev Biol 2009; 88:63-101. [PMID: 19651302 DOI: 10.1016/s0070-2153(09)88003-4] [Citation(s) in RCA: 265] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hox proteins are well known for executing highly specific functions in vivo, but our understanding of the molecular mechanisms underlying gene regulation by these fascinating proteins has lagged behind. The premise of this review is that an understanding of gene regulation-by any transcription factor-requires the dissection of the cis-regulatory elements that they act upon. With this goal in mind, we review the concepts and ideas regarding gene regulation by Hox proteins and apply them to a curated list of directly regulated Hox cis-regulatory elements that have been validated in the literature. Our analysis of the Hox-binding sites within these elements suggests several emerging generalizations. We distinguish between Hox cofactors, proteins that bind DNA cooperatively with Hox proteins and thereby help with DNA-binding site selection, and Hox collaborators, proteins that bind in parallel to Hox-targeted cis-regulatory elements and dictate the sign and strength of gene regulation. Finally, we summarize insights that come from examining five X-ray crystal structures of Hox-cofactor-DNA complexes. Together, these analyses reveal an enormous amount of flexibility into how Hox proteins function to regulate gene expression, perhaps providing an explanation for why these factors have been central players in the evolution of morphological diversity in the animal kingdom.
Collapse
Affiliation(s)
- Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | | | |
Collapse
|
35
|
Lee JH, Lin H, Joo S, Goodenough U. Early sexual origins of homeoprotein heterodimerization and evolution of the plant KNOX/BELL family. Cell 2008; 133:829-40. [PMID: 18510927 DOI: 10.1016/j.cell.2008.04.028] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 04/03/2008] [Accepted: 04/21/2008] [Indexed: 11/30/2022]
Abstract
Developmental mechanisms that yield multicellular diversity are proving to be well conserved within lineages, generating interest in their origins in unicellular ancestors. We report that molecular regulation of the haploid-diploid transition in Chlamydomonas, a unicellular green soil alga, shares common ancestry with differentiation pathways in land plants. Two homeoproteins, Gsp1 and Gsm1, contributed by gametes of plus and minus mating types respectively, physically interact and translocate from the cytosol to the nucleus upon gametic fusion, initiating zygote development. Their ectopic expression activates zygote development in vegetative cells and, in a diploid background, the resulting zygotes undergo a normal meiosis. Gsm1/Gsp1 dyads share sequence homology with and are functionally related to KNOX/BELL dyads regulating stem-cell (meristem) specification in land plants. We propose that combinatorial homeoprotein-based transcriptional control, a core feature of the fungal/animal radiation, may have originated in a sexual context and enabled the evolution of land-plant body plans.
Collapse
Affiliation(s)
- Jae-Hyeok Lee
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | | | | | | |
Collapse
|