1
|
Lim J, Kim W, Kim J, Lee J. Telomeric repeat evolution in the phylum Nematoda revealed by high-quality genome assemblies and subtelomere structures. Genome Res 2023; 33:1947-1957. [PMID: 37918961 PMCID: PMC10760449 DOI: 10.1101/gr.278124.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
Telomeres are composed of tandem arrays of telomeric-repeat motifs (TRMs) and telomere-binding proteins (TBPs), which are responsible for ensuring end-protection and end-replication of chromosomes. TRMs are highly conserved owing to the sequence specificity of TBPs, although significant alterations in TRM have been observed in several taxa, except Nematoda. We used public whole-genome sequencing data sets to analyze putative TRMs of 100 nematode species and determined that three distinct branches included specific novel TRMs, suggesting that evolutionary alterations in TRMs occurred in Nematoda. We focused on one of the three branches, the Panagrolaimidae family, and performed a de novo assembly of four high-quality draft genomes of the canonical (TTAGGC) and novel TRM (TTAGAC) isolates; the latter genomes revealed densely clustered arrays of the novel TRM. We then comprehensively analyzed the subtelomeric regions of the genomes to infer how the novel TRM evolved. We identified DNA damage-repair signatures in subtelomeric sequences that were representative of consequences of telomere maintenance mechanisms by alternative lengthening of telomeres. We propose a hypothetical scenario in which TTAGAC-containing units are clustered in subtelomeric regions and pre-existing TBPs capable of binding both canonical and novel TRMs aided the evolution of the novel TRM in the Panagrolaimidae family.
Collapse
Affiliation(s)
- Jiseon Lim
- Department of Biological Sciences, Seoul National University, Gwanak-gu, Seoul 08826, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Wonjoo Kim
- Department of Biological Sciences, Seoul National University, Gwanak-gu, Seoul 08826, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Jun Kim
- Department of Biological Sciences, Seoul National University, Gwanak-gu, Seoul 08826, South Korea;
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, South Korea
- Department of Convergent Bioscience and Informatics, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, South Korea
| | - Junho Lee
- Department of Biological Sciences, Seoul National University, Gwanak-gu, Seoul 08826, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
2
|
van Schendel R, Romeijn R, Buijs H, Tijsterman M. Preservation of lagging strand integrity at sites of stalled replication by Pol α-primase and 9-1-1 complex. SCIENCE ADVANCES 2021; 7:eabf2278. [PMID: 34138739 PMCID: PMC8133754 DOI: 10.1126/sciadv.abf2278] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/31/2021] [Indexed: 05/03/2023]
Abstract
During genome duplication, the replication fork encounters a plethora of obstacles in the form of damaged bases, DNA-cross-linked proteins, and secondary structures. How cells protect DNA integrity at sites of stalled replication is currently unknown. Here, by engineering "primase deserts" into the Caenorhabditis elegans genome close to replication-impeding G-quadruplexes, we show that de novo DNA synthesis downstream of the blocked fork suppresses DNA loss. We next identify the pol α-primase complex to limit deletion mutagenesis, a conclusion substantiated by whole-genome analysis of animals carrying mutated POLA2/DIV-1. We subsequently identify a new role for the 9-1-1 checkpoint clamp in protecting Okazaki fragments from resection by EXO1. Together, our results provide a mechanistic model for controlling the fate of replication intermediates at sites of stalled replication.
Collapse
Affiliation(s)
- Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| | - Ron Romeijn
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| | - Helena Buijs
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands.
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| |
Collapse
|
3
|
Gartner A, Engebrecht J. DNA repair, recombination, and damage signaling. Genetics 2021; 220:6522877. [PMID: 35137093 PMCID: PMC9097270 DOI: 10.1093/genetics/iyab178] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/10/2021] [Indexed: 01/09/2023] Open
Abstract
DNA must be accurately copied and propagated from one cell division to the next, and from one generation to the next. To ensure the faithful transmission of the genome, a plethora of distinct as well as overlapping DNA repair and recombination pathways have evolved. These pathways repair a large variety of lesions, including alterations to single nucleotides and DNA single and double-strand breaks, that are generated as a consequence of normal cellular function or by external DNA damaging agents. In addition to the proteins that mediate DNA repair, checkpoint pathways have also evolved to monitor the genome and coordinate the action of various repair pathways. Checkpoints facilitate repair by mediating a transient cell cycle arrest, or through initiation of cell suicide if DNA damage has overwhelmed repair capacity. In this chapter, we describe the attributes of Caenorhabditis elegans that facilitate analyses of DNA repair, recombination, and checkpoint signaling in the context of a whole animal. We review the current knowledge of C. elegans DNA repair, recombination, and DNA damage response pathways, and their role during development, growth, and in the germ line. We also discuss how the analysis of mutational signatures in C. elegans is helping to inform cancer mutational signatures in humans.
Collapse
Affiliation(s)
- Anton Gartner
- Department for Biological Sciences, IBS Center for Genomic Integrity, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea,Corresponding author: (A.G.); (J.E.)
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA,Corresponding author: (A.G.); (J.E.)
| |
Collapse
|
4
|
Dargahi D, Baillie D, Pio F. Bioinformatics analysis identify novel OB fold protein coding genes in C. elegans. PLoS One 2013; 8:e62204. [PMID: 23638006 PMCID: PMC3636199 DOI: 10.1371/journal.pone.0062204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 03/20/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The C. elegans genome has been extensively annotated by the WormBase consortium that uses state of the art bioinformatics pipelines, functional genomics and manual curation approaches. As a result, the identification of novel genes in silico in this model organism is becoming more challenging requiring new approaches. The Oligonucleotide-oligosaccharide binding (OB) fold is a highly divergent protein family, in which protein sequences, in spite of having the same fold, share very little sequence identity (5-25%). Therefore, evidence from sequence-based annotation may not be sufficient to identify all the members of this family. In C. elegans, the number of OB-fold proteins reported is remarkably low (n=46) compared to other evolutionary-related eukaryotes, such as yeast S. cerevisiae (n=344) or fruit fly D. melanogaster (n=84). Gene loss during evolution or differences in the level of annotation for this protein family, may explain these discrepancies. METHODOLOGY/PRINCIPAL FINDINGS This study examines the possibility that novel OB-fold coding genes exist in the worm. We developed a bioinformatics approach that uses the most sensitive sequence-sequence, sequence-profile and profile-profile similarity search methods followed by 3D-structure prediction as a filtering step to eliminate false positive candidate sequences. We have predicted 18 coding genes containing the OB-fold that have remarkably partially been characterized in C. elegans. CONCLUSIONS/SIGNIFICANCE This study raises the possibility that the annotation of highly divergent protein fold families can be improved in C. elegans. Similar strategies could be implemented for large scale analysis by the WormBase consortium when novel versions of the genome sequence of C. elegans, or other evolutionary related species are being released. This approach is of general interest to the scientific community since it can be used to annotate any genome.
Collapse
Affiliation(s)
- Daryanaz Dargahi
- Molecular Biology and Biochemistry Department, Simon Fraser University, Burnaby, British Columbia, Canada
| | - David Baillie
- Molecular Biology and Biochemistry Department, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Frederic Pio
- Molecular Biology and Biochemistry Department, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
5
|
Shtessel L, Lowden MR, Cheng C, Simon M, Wang K, Ahmed S. Caenorhabditis elegans POT-1 and POT-2 repress telomere maintenance pathways. G3 (BETHESDA, MD.) 2013; 3:305-13. [PMID: 23390606 PMCID: PMC3564990 DOI: 10.1534/g3.112.004440] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 12/11/2012] [Indexed: 12/23/2022]
Abstract
Telomeres are composed of simple tandem DNA repeats that protect the ends of linear chromosomes from replicative erosion or inappropriate DNA damage response mechanisms. The mammalian Protection Of Telomeres (POT1) protein interacts with single-stranded telomeric DNA and can exert positive and negative effects on telomere length. Of four distinct POT1 homologs in the roundworm Caenorhabditis elegans, deficiency for POT-1 or POT-2 resulted in progressive telomere elongation that occurred because both proteins negatively regulate telomerase. We created a POT-1::mCherry fusion protein that forms discrete foci at C. elegans telomeres, independent of POT-2, allowing for live analysis of telomere dynamics. Transgenic pot-1::mCherry repressed telomerase in pot-1 mutants. Animals deficient for pot-1, but not pot-2, displayed mildly enhanced telomere erosion rates in the absence of the telomerase reverse transcriptase, trt-1. However, trt-1; pot-1 double mutants exhibited delayed senescence in comparison to trt-1 animals, and senescence was further delayed in trt-1; pot-2; pot-1 triple mutants, some of which survived robustly in the absence of telomerase. Our results indicate that POT-1 and POT-2 play independent roles in suppressing a telomerase-independent telomere maintenance pathway but may function together to repress telomerase.
Collapse
Affiliation(s)
- Ludmila Shtessel
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599-3280
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280
| | - Mia Rochelle Lowden
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599-3280
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280
| | - Chen Cheng
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599-3280
| | - Matt Simon
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599-3280
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280
| | - Kyle Wang
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599-3280
| | - Shawn Ahmed
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599-3280
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280
| |
Collapse
|
6
|
Cheng C, Shtessel L, Brady MM, Ahmed S. Caenorhabditis elegans POT-2 telomere protein represses a mode of alternative lengthening of telomeres with normal telomere lengths. Proc Natl Acad Sci U S A 2012. [PMID: 22547822 DOI: 10.1073/pnas.lll9191109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
Canonical telomere repeats at chromosome termini can be maintained by a telomerase-independent pathway termed alternative lengthening of telomeres (ALT). Human cancers that survive via ALT can exhibit long and heterogeneous telomeres, although many telomerase-negative tumors possess telomeres of normal length. Here, we report that Caenorhabditis elegans telomerase mutants that survived via ALT possessed either long or normal telomere lengths. Most ALT strains displayed end-to-end chromosome fusions, suggesting that critical telomere shortening occurred before or concomitant with ALT. ALT required the 9-1-1 DNA damage response complex and its clamp loader, HPR-17. Deficiency for the POT-2 telomere binding protein promoted ALT in telomerase mutants, overcame the requirement for the 9-1-1 complex in ALT, and promoted ALT with normal telomere lengths. We propose that telomerase-deficient human tumors with normal telomere lengths could represent a mode of ALT that is facilitated by telomere capping protein dysfunction.
Collapse
Affiliation(s)
- Chen Cheng
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
7
|
Caenorhabditis elegans POT-2 telomere protein represses a mode of alternative lengthening of telomeres with normal telomere lengths. Proc Natl Acad Sci U S A 2012; 109:7805-10. [PMID: 22547822 DOI: 10.1073/pnas.1119191109] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Canonical telomere repeats at chromosome termini can be maintained by a telomerase-independent pathway termed alternative lengthening of telomeres (ALT). Human cancers that survive via ALT can exhibit long and heterogeneous telomeres, although many telomerase-negative tumors possess telomeres of normal length. Here, we report that Caenorhabditis elegans telomerase mutants that survived via ALT possessed either long or normal telomere lengths. Most ALT strains displayed end-to-end chromosome fusions, suggesting that critical telomere shortening occurred before or concomitant with ALT. ALT required the 9-1-1 DNA damage response complex and its clamp loader, HPR-17. Deficiency for the POT-2 telomere binding protein promoted ALT in telomerase mutants, overcame the requirement for the 9-1-1 complex in ALT, and promoted ALT with normal telomere lengths. We propose that telomerase-deficient human tumors with normal telomere lengths could represent a mode of ALT that is facilitated by telomere capping protein dysfunction.
Collapse
|
8
|
Bailly AP, Freeman A, Hall J, Déclais AC, Alpi A, Lilley DMJ, Ahmed S, Gartner A. The Caenorhabditis elegans homolog of Gen1/Yen1 resolvases links DNA damage signaling to DNA double-strand break repair. PLoS Genet 2010; 6:e1001025. [PMID: 20661466 PMCID: PMC2908289 DOI: 10.1371/journal.pgen.1001025] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 06/14/2010] [Indexed: 11/30/2022] Open
Abstract
DNA double-strand breaks (DSBs) can be repaired by homologous recombination (HR), which can involve Holliday junction (HJ) intermediates that are ultimately resolved by nucleolytic enzymes. An N-terminal fragment of human GEN1 has recently been shown to act as a Holliday junction resolvase, but little is known about the role of GEN-1 in vivo. Holliday junction resolution signifies the completion of DNA repair, a step that may be coupled to signaling proteins that regulate cell cycle progression in response to DNA damage. Using forward genetic approaches, we identified a Caenorhabditis elegans dual function DNA double-strand break repair and DNA damage signaling protein orthologous to the human GEN1 Holliday junction resolving enzyme. GEN-1 has biochemical activities related to the human enzyme and facilitates repair of DNA double-strand breaks, but is not essential for DNA double-strand break repair during meiotic recombination. Mutational analysis reveals that the DNA damage-signaling function of GEN-1 is separable from its role in DNA repair. GEN-1 promotes germ cell cycle arrest and apoptosis via a pathway that acts in parallel to the canonical DNA damage response pathway mediated by RPA loading, CHK1 activation, and CEP-1/p53–mediated apoptosis induction. Furthermore, GEN-1 acts redundantly with the 9-1-1 complex to ensure genome stability. Our study suggests that GEN-1 might act as a dual function Holliday junction resolvase that may coordinate DNA damage signaling with a late step in DNA double-strand break repair. Coordination of DNA repair with cell cycle progression and apoptosis is a central task of the DNA damage response machinery. A key intermediate of recombinational repair and meiotic recombination, first proposed in 1964, involves four-stranded DNA structures. These intermediates have to be resolved upon completion of DNA repair to allow for proper chromosome segregation. Using forward genetics, we identified a Caenorhabditis elegans dual function DNA double-strand break repair and DNA damage signaling protein orthologous to the human GEN1 Holliday junction resolving enzyme. GEN-1 facilitates repair of DNA double-strand breaks, but is not essential for DNA double-strand break repair during meiotic recombination. The DNA damage signaling function of GEN-1 is separable from its role in DNA repair. Unexpectedly, GEN-1 defines a DNA damage-signaling pathway that acts in parallel to the canonical pathway mediated by CHK-1 phosphorylation and CEP-1/p53. Thus, an enzyme that can resolve Holliday junctions may directly couple a late step in DNA repair to a pathway that regulates cell cycle progression in response to DNA damage.
Collapse
Affiliation(s)
- Aymeric P. Bailly
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | - Alasdair Freeman
- Cancer Research United Kingdom Nucleic Acid Structure Research Group, University of Dundee, Dundee, United Kingdom
| | - Julie Hall
- Department of Genetics and Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Anne-Cécile Déclais
- Cancer Research United Kingdom Nucleic Acid Structure Research Group, University of Dundee, Dundee, United Kingdom
| | - Arno Alpi
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | - David M. J. Lilley
- Cancer Research United Kingdom Nucleic Acid Structure Research Group, University of Dundee, Dundee, United Kingdom
| | - Shawn Ahmed
- Department of Genetics and Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Anton Gartner
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Khair L, Chang YT, Subramanian L, Russell P, Nakamura TM. Roles of the checkpoint sensor clamp Rad9-Rad1-Hus1 (911)-complex and the clamp loaders Rad17-RFC and Ctf18-RFC in Schizosaccharomyces pombe telomere maintenance. Cell Cycle 2010; 9:2237-48. [PMID: 20505337 DOI: 10.4161/cc.9.11.11920] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
While telomeres must provide mechanisms to prevent DNA repair and DNA damage checkpoint factors from fusing chromosome ends and causing permanent cell cycle arrest, these factors associate with functional telomeres and play critical roles in the maintenance of telomeres. Previous studies have established that Tel1 (ATM) and Rad3 (ATR) kinases play redundant but essential roles for telomere maintenance in fission yeast. In addition, the Rad9-Rad1-Hus1 (911) and Rad17-RFC complexes work downstream of Rad3 (ATR) in fission yeast telomere maintenance. Here, we investigated how 911, Rad17-RFC and another RFC-like complex Ctf18-RFC contribute to telomere maintenance in fission yeast cells lacking Tel1 and carrying a novel hypomorphic allele of rad3 (DBD-rad3), generated by the fusion between the DNA binding domain (DBD) of the fission yeast telomere capping protein Pot1 and Rad3. Our investigations have uncovered a surprising redundancy for Rad9 and Hus1 in allowing Rad1 to contribute to telomere maintenance in DBD-rad3 tel1 cells. In addition, we found that Rad17-RFC and Ctf18-RFC carry out redundant telomere maintenance functions in DBD-rad3 tel1 cells. Since checkpoint sensor proteins are highly conserved, genetic redundancies uncovered here may be relevant to telomere maintenance and detection of DNA damage in other eukaryotes.
Collapse
Affiliation(s)
- Lyne Khair
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
10
|
Subramanian L, Nakamura TM. To fuse or not to fuse: how do checkpoint and DNA repair proteins maintain telomeres? FRONT BIOSCI-LANDMRK 2010; 15:1105-18. [PMID: 20515744 PMCID: PMC2880829 DOI: 10.2741/3664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DNA damage checkpoint and DNA repair mechanisms play critical roles in the stable maintenance of genetic information. Various forms of DNA damage that arise inside cells due to common errors in normal cellular processes, such as DNA replication, or due to exposure to various DNA damaging agents, must be quickly detected and repaired by checkpoint signaling and repair factors. Telomeres, the natural ends of linear chromosomes, share many features with undesired "broken" DNA, and are recognized and processed by various DNA damage checkpoint and DNA repair proteins. However, their modes of action at telomeres must be altered from their actions at other DNA damage sites to avoid telomere fusions and permanent cell cycle arrest. Interestingly, accumulating evidence indicates that DNA damage checkpoint and DNA repair proteins are essential for telomere maintenance. In this article, we review our current knowledge on various mechanisms by which DNA damage checkpoint and DNA repair proteins are modulated at telomeres and how they might contribute to telomere maintenance in eukaryotes.
Collapse
Affiliation(s)
- Lakxmi Subramanian
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | |
Collapse
|
11
|
Abstract
Although now dogma, the idea that nonvertebrate organisms such as yeast, worms, and flies could inform, and in some cases even revolutionize, our understanding of oncogenesis in humans was not immediately obvious. Aided by the conservative nature of evolution and the persistence of a cohort of devoted researchers, the role of model organisms as a key tool in solving the cancer problem has, however, become widely accepted. In this review, we focus on the nematode Caenorhabditis elegans and its diverse and sometimes surprising contributions to our understanding of the tumorigenic process. Specifically, we discuss findings in the worm that address a well-defined set of processes known to be deregulated in cancer cells including cell cycle progression, growth factor signaling, terminal differentiation, apoptosis, the maintenance of genome stability, and developmental mechanisms relevant to invasion and metastasis.
Collapse
Affiliation(s)
- Natalia V. Kirienko
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| | - Kumaran Mani
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| | - David S. Fay
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| |
Collapse
|
12
|
Meier B, Barber LJ, Liu Y, Shtessel L, Boulton SJ, Gartner A, Ahmed S. The MRT-1 nuclease is required for DNA crosslink repair and telomerase activity in vivo in Caenorhabditis elegans. EMBO J 2009; 28:3549-63. [PMID: 19779462 DOI: 10.1038/emboj.2009.278] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 08/24/2009] [Indexed: 12/26/2022] Open
Abstract
The telomerase reverse transcriptase adds de novo DNA repeats to chromosome termini. Here we define Caenorhabditis elegans MRT-1 as a novel factor required for telomerase-mediated telomere replication and the DNA-damage response. MRT-1 is composed of an N-terminal domain homologous to the second OB-fold of POT1 telomere-binding proteins and a C-terminal SNM1 family nuclease domain, which confer single-strand DNA-binding and processive 3'-to-5' exonuclease activity, respectively. Furthermore, telomerase activity in vivo depends on a functional MRT-1 OB-fold. We show that MRT-1 acts in the same telomere replication pathway as telomerase and the 9-1-1 DNA-damage response complex. MRT-1 is dispensable for DNA double-strand break repair, but functions with the 9-1-1 complex to promote DNA interstrand cross-link (ICL) repair. Our data reveal MRT-1 as a dual-domain protein required for telomerase function and ICL repair, which raises the possibility that telomeres and ICL lesions may share a common feature that plays a critical role in de novo telomere repeat addition.
Collapse
Affiliation(s)
- Bettina Meier
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Taming the tiger by the tail: modulation of DNA damage responses by telomeres. EMBO J 2009; 28:2174-87. [PMID: 19629039 PMCID: PMC2722249 DOI: 10.1038/emboj.2009.176] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 06/03/2009] [Indexed: 11/09/2022] Open
Abstract
Telomeres are by definition stable and inert chromosome ends, whereas internal chromosome breaks are potent stimulators of the DNA damage response (DDR). Telomeres do not, as might be expected, exclude DDR proteins from chromosome ends but instead engage with many DDR proteins. However, the most powerful DDRs, those that might induce chromosome fusion or cell-cycle arrest, are inhibited at telomeres. In budding yeast, many DDR proteins that accumulate most rapidly at double strand breaks (DSBs), have important functions in physiological telomere maintenance, whereas DDR proteins that arrive later tend to have less important functions. Considerable diversity in telomere structure has evolved in different organisms and, perhaps reflecting this diversity, different DDR proteins seem to have distinct roles in telomere physiology in different organisms. Drawing principally on studies in simple model organisms such as budding yeast, in which many fundamental aspects of the DDR and telomere biology have been established; current views on how telomeres harness aspects of DDR pathways to maintain telomere stability and permit cell-cycle division are discussed.
Collapse
|
14
|
Abstract
Multiple mechanisms ensure genome maintenance through DNA damage repair, suppression of transposition, and telomere length regulation. The mortal germline (Mrt) mutants in Caenorhabditis elegans are defective in maintaining genome integrity, resulting in a progressive loss of fertility over many generations. Here I show that the high incidence of males (him)-15 locus, defined by the deficiency eDf25, is allelic to rfs-1, the sole rad-51 paralog group member in C. elegans. The rfs-1/eDf25 mutant displays a Mrt phenotype and mutant animals manifest features of chromosome fusions prior to the onset of sterility. Unlike other Mrt genes, rfs-1 manifests fluctuations in telomere lengths and functions independently of telomerase. These data suggest that rfs-1 is a novel regulator of genome stability.
Collapse
|
15
|
Grandin N, Charbonneau M. Protection against chromosome degradation at the telomeres. Biochimie 2008; 90:41-59. [PMID: 17764802 DOI: 10.1016/j.biochi.2007.07.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 07/17/2007] [Indexed: 10/23/2022]
Abstract
Telomeres, the ends of linear chromosomes, contain repeated TG-rich sequences which, in dividing cells, must be constantly replenished in order to avoid chromosome erosion and, hence, genomic instability. Moreover, unprotected telomeres are prone to end-to-end fusions. Telomerase, a specialized reverse transcriptase with a built-in RNA template, or, in the absence of telomerase, alternative pathways of telomere maintenance are required for continuous cell proliferation in actively dividing cells as well as in cancerous cells emerging in deregulated somatic tissues. The challenge is to keep these free DNA ends masked from the nucleolytic attacks that will readily operate on any DNA double-strand break in the cell, while also allowing the recruitment of telomerase at intervals. Specialized telomeric proteins, as well as DNA repair and checkpoint proteins with a dual role in telomere maintenance and DNA damage signaling/repair, protect the telomere ends from degradation and some of them also function in telomerase recruitment or other aspects of telomere length homeostasis. Phosphorylation of some telomeric proteins by checkpoint protein kinases appears to represent a mode of regulation of telomeric mechanisms. Finally, recent studies have allowed starting to understand the coupling between progression of the replication forks through telomeric regions and the subsequent telomere replication by telomerase, as well as retroaction of telomerase in cis on the firing of nearby replication origins.
Collapse
Affiliation(s)
- Nathalie Grandin
- UMR CNRS no. 5239, Ecole Normale Supérieure de Lyon, IFR128 BioSciences Gerland-Lyon Sud, 46, allée d'Italie, 69364 Lyon, France
| | | |
Collapse
|