1
|
Sever AIM, Alderson TR, Rennella E, Aramini JM, Liu ZH, Harkness RW, Kay LE. Activation of caspase-9 on the apoptosome as studied by methyl-TROSY NMR. Proc Natl Acad Sci U S A 2023; 120:e2310944120. [PMID: 38085782 PMCID: PMC10743466 DOI: 10.1073/pnas.2310944120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023] Open
Abstract
Mitochondrial apoptotic signaling cascades lead to the formation of the apoptosome, a 1.1-MDa heptameric protein scaffold that recruits and activates the caspase-9 protease. Once activated, caspase-9 cleaves and activates downstream effector caspases, triggering the onset of cell death through caspase-mediated proteolysis of cellular proteins. Failure to activate caspase-9 enables the evasion of programmed cell death, which occurs in various forms of cancer. Despite the critical apoptotic function of caspase-9, the structural mechanism by which it is activated on the apoptosome has remained elusive. Here, we used a combination of methyl-transverse relaxation-optimized NMR spectroscopy, protein engineering, and biochemical assays to study the activation of caspase-9 bound to the apoptosome. In the absence of peptide substrate, we observed that both caspase-9 and its isolated protease domain (PD) only very weakly dimerize with dissociation constants in the millimolar range. Methyl-NMR spectra of isotope-labeled caspase-9, within the 1.3-MDa native apoptosome complex or an engineered 480-kDa apoptosome mimic, reveal that the caspase-9 PD remains monomeric after recruitment to the scaffold. Binding to the apoptosome, therefore, organizes caspase-9 PDs so that they can rapidly and extensively dimerize only when substrate is present, providing an important layer in the regulation of caspase-9 activation. Our work highlights the unique role of NMR spectroscopy to structurally characterize protein domains that are flexibly tethered to large scaffolds, even in cases where the molecular targets are in excess of 1 MDa, as in the present example.
Collapse
Affiliation(s)
- Alexander I. M. Sever
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4, Canada
| | - T. Reid Alderson
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Enrico Rennella
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - James M. Aramini
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Zi Hao Liu
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Robert W. Harkness
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Lewis E. Kay
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| |
Collapse
|
2
|
Rennella E, Sahtoe DD, Baker D, Kay LE. Exploiting conformational dynamics to modulate the function of designed proteins. Proc Natl Acad Sci U S A 2023; 120:e2303149120. [PMID: 37094170 PMCID: PMC10161014 DOI: 10.1073/pnas.2303149120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/22/2023] [Indexed: 04/26/2023] Open
Abstract
With the recent success in calculating protein structures from amino acid sequences using artificial intelligence-based algorithms, an important next step is to decipher how dynamics is encoded by the primary protein sequence so as to better predict function. Such dynamics information is critical for protein design, where strategies could then focus not only on sequences that fold into particular structures that perform a given task, but would also include low-lying excited protein states that could influence the function of the designed protein. Herein, we illustrate the importance of dynamics in modulating the function of C34, a designed α/β protein that captures β-strands of target ligands and is a member of a family of proteins designed to sequester β-strands and β hairpins of aggregation-prone molecules that lead to a variety of pathologies. Using a strategy to "see" regions of apo C34 that are invisible to NMR spectroscopy as a result of pervasive conformational exchange, as well as a mutagenesis approach whereby C34 molecules are stabilized into a single conformer, we determine the structures of the predominant conformations that are sampled by C34 and show that these attenuate the affinity for cognate peptide. Subsequently, the observed motion is exploited to develop an allosterically regulated peptide binder whose binding affinity can be controlled through the addition of a second molecule. Our study emphasizes the unique role that NMR can play in directing the design process and in the construction of new molecules with more complex functionality.
Collapse
Affiliation(s)
- Enrico Rennella
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
| | - Danny D. Sahtoe
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
- HHMI, University of Washington, Seattle, WA98195
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
- HHMI, University of Washington, Seattle, WA98195
| | - Lewis E. Kay
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4, Canada
| |
Collapse
|
3
|
Hummel DR, Kaksonen M. Spatio-temporal regulation of endocytic protein assembly by SH3 domains in yeast. Mol Biol Cell 2023; 34:ar19. [PMID: 36696224 PMCID: PMC10011730 DOI: 10.1091/mbc.e22-09-0406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Clathrin-mediated endocytosis is a conserved eukaryotic membrane trafficking pathway that is driven by a sequentially assembled molecular machinery that contains over 60 different proteins. SH3 domains are the most abundant protein-protein interaction domain in this process, but the function of most SH3 domains in protein dynamics remains elusive. Using mutagenesis and live-cell fluorescence microscopy in the budding yeast Saccharomyces cerevisiae, we dissected SH3-mediated regulation of the endocytic pathway. Our data suggest that multiple SH3 domains regulate the actin nucleation-promoting Las17-Vrp1 complex, and that the network of SH3 interactions coordinates both Las17-Vrp1 assembly and dissociation. Furthermore, most endocytic SH3 domain proteins use the SH3 domain for their own recruitment, while a minority use the SH3 domain to recruit other proteins and not themselves. Our results provide a dynamic map of SH3 functions in yeast endocytosis and a framework for SH3 interaction network studies across biology.
Collapse
Affiliation(s)
- Daniel R Hummel
- Department of Biochemistry, University of Geneva, Department of Biochemistry, 1205 Genève, Switzerland
| | - Marko Kaksonen
- Department of Biochemistry, University of Geneva, Department of Biochemistry, 1205 Genève, Switzerland
| |
Collapse
|
4
|
New Inflammatory Marker Associated with Disease Activity in Rheumatoid Arthritis: The Systemic Immune-Inflammation Index. CURRENT HEALTH SCIENCES JOURNAL 2021; 47:553-557. [PMID: 35444819 PMCID: PMC8987472 DOI: 10.12865/chsj.47.04.11] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE This study aimed to discover a new index for disease activity by reviewing the relationship between the Systemic Immune-Inflammation Index and Systemic Inflammation Response Index in rheumatoid arthritis. METHOD A total of 109 patients with rheumatoid arthritis and 31 healthy controls were involved in the study. Based on disease activity score (DAS-28) calculated by the erythrocyte sedimentation rate, rheumatoid arthritis patients were divided into two groups: Group 1 comprised patients in remission (DAS-28<2.6); Group 2 was the active patient group (DAS-28>2.6). The Systemic Immune Inflammation Index and the Systemic Inflammation Response Index compared between the groups. RESULTS The Systemic Immune-Inflammation Index is 666.415±33.00 in the patient group and 596.71±57.64 in the control group, and the difference between the groups is statistically significant (p=0.002). The Systemic Immune-Inflammation Index was 574.69±34.72 in group 1 and 702.25±39.56 in group 2. There was a significant statistical difference between the active and remission patients (p=0.030). The Systemic Inflammation Response Index was not statistically significant between the groups. Different cut-off points were compared to detect the optimal cut-off value for SII. Based on the ROC curve analysis, SII cut-off point of 574.20 showed 56.3% sensitivity and 45.5% specificity and with the Area Under Curve (AUC) 95% was the optimal cut-off point for active RA. CONCLUSION This is the first study to review the Systemic Immune-Inflammation Index in rheumatoid arthritis. The obtained conclusion verified that the Systemic Immune-Inflammation Index could be used as a new tool, showing disease activity.
Collapse
|
5
|
Gerlach GJ, Carrock R, Stix R, Stollar EJ, Ball KA. A disordered encounter complex is central to the yeast Abp1p SH3 domain binding pathway. PLoS Comput Biol 2020; 16:e1007815. [PMID: 32925900 PMCID: PMC7514057 DOI: 10.1371/journal.pcbi.1007815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/24/2020] [Accepted: 08/15/2020] [Indexed: 12/20/2022] Open
Abstract
Protein-protein interactions are involved in a wide range of cellular processes. These interactions often involve intrinsically disordered proteins (IDPs) and protein binding domains. However, the details of IDP binding pathways are hard to characterize using experimental approaches, which can rarely capture intermediate states present at low populations. SH3 domains are common protein interaction domains that typically bind proline-rich disordered segments and are involved in cell signaling, regulation, and assembly. We hypothesized, given the flexibility of SH3 binding peptides, that their binding pathways include multiple steps important for function. Molecular dynamics simulations were used to characterize the steps of binding between the yeast Abp1p SH3 domain (AbpSH3) and a proline-rich IDP, ArkA. Before binding, the N-terminal segment 1 of ArkA is pre-structured and adopts a polyproline II helix, while segment 2 of ArkA (C-terminal) adopts a 310 helix, but is far less structured than segment 1. As segment 2 interacts with AbpSH3, it becomes more structured, but retains flexibility even in the fully engaged state. Binding simulations reveal that ArkA enters a flexible encounter complex before forming the fully engaged bound complex. In the encounter complex, transient nonspecific hydrophobic and long-range electrostatic contacts form between ArkA and the binding surface of SH3. The encounter complex ensemble includes conformations with segment 1 in both the forward and reverse orientation, suggesting that segment 2 may play a role in stabilizing the correct binding orientation. While the encounter complex forms quickly, the slow step of binding is the transition from the disordered encounter ensemble to the fully engaged state. In this transition, ArkA makes specific contacts with AbpSH3 and buries more hydrophobic surface. Simulating the binding between ApbSH3 and ArkA provides insight into the role of encounter complex intermediates and nonnative hydrophobic interactions for other SH3 domains and IDPs in general.
Collapse
Affiliation(s)
- Gabriella J. Gerlach
- Department of Chemistry, Skidmore College, Saratoga Springs, New York, United States
| | - Rachel Carrock
- Department of Chemistry, Skidmore College, Saratoga Springs, New York, United States
| | - Robyn Stix
- Department of Chemistry, Skidmore College, Saratoga Springs, New York, United States
| | - Elliott J. Stollar
- School of Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - K. Aurelia Ball
- Department of Chemistry, Skidmore College, Saratoga Springs, New York, United States
| |
Collapse
|
6
|
Li L, Zhang S, Liu X, Yu R, Li X, Liu M, Zhang H, Zheng X, Wang P, Zhang Z. Magnaporthe oryzae Abp1, a MoArk1 Kinase-Interacting Actin Binding Protein, Links Actin Cytoskeleton Regulation to Growth, Endocytosis, and Pathogenesis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:437-451. [PMID: 30451565 DOI: 10.1094/mpmi-10-18-0281-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The actin cytoskeleton and actin-coupled endocytosis are conserved cellular processes required for the normal growth and pathogenesis of the rice blast fungus Magnaporthe oryzae. We have previously shown that actin regulating kinase MoArk1 regulates actin dynamics and endocytosis to play a key role in virulence of the fungus. To understand the underlying mechanism, we have characterized the actin-binding protein MoAbp1 that interacts with MoArk1 from M. oryzae. The ΔMoabp1 mutant exhibited delayed endocytosis and defects in growth, host penetration, and invasive growth. Consistent with its putative function associated with actin-binding, MoAbp1 regulates the localization of actin patches and plays a role in MoArk1 phosphorylation. In addition, MoAbp1 interacts with MoCap (adenylyl cyclase-associated protein) affecting its normal patch localization pattern and the actin protein MoAct1 through its conserved domains. Taken together, our results support a notion that MoAbp1 functions as a protein scaffold linking MoArk1, MoCap1, and MoAct1 to regulate actin cytoskeleton dynamics critical in growth and pathogenicity of the blast fungus.
Collapse
Affiliation(s)
- Lianwei Li
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| | - Shengpei Zhang
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| | - Xinyu Liu
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| | - Rui Yu
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| | - Xinrui Li
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| | - Muxing Liu
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| | - Haifeng Zhang
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| | - Xiaobo Zheng
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| | - Ping Wang
- 2 Departments of Pediatrics, and Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - Zhengguang Zhang
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| |
Collapse
|
7
|
Mayzel M, Ahlner A, Lundström P, Orekhov VY. Measurement of protein backbone 13CO and 15N relaxation dispersion at high resolution. JOURNAL OF BIOMOLECULAR NMR 2017; 69:1-12. [PMID: 28864905 PMCID: PMC5626786 DOI: 10.1007/s10858-017-0127-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/26/2017] [Indexed: 05/31/2023]
Abstract
Peak overlap in crowded regions of two-dimensional spectra prevents characterization of dynamics for many sites of interest in globular and intrinsically disordered proteins. We present new three-dimensional pulse sequences for measurement of Carr-Purcell-Meiboom-Gill relaxation dispersions at backbone nitrogen and carbonyl positions. To alleviate increase in the measurement time associated with the additional spectral dimension, we use non-uniform sampling in combination with two distinct methods of spectrum reconstruction: compressed sensing and co-processing with multi-dimensional decomposition. The new methodology was validated using disordered protein CD79A from B-cell receptor and an SH3 domain from Abp1p in exchange between its free form and bound to a peptide from the protein Ark1p. We show that, while providing much better resolution, the 3D NUS experiments give the similar accuracy and precision of the dynamic parameters to ones obtained using traditional 2D experiments. Furthermore, we show that jackknife resampling of the spectra yields robust estimates of peak intensities errors, eliminating the need for recording duplicate data points.
Collapse
Affiliation(s)
- Maxim Mayzel
- The Swedish NMR Centre, University of Gothenburg, Box 465, 40530, Göteborg, Sweden
| | - Alexandra Ahlner
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, 58183, Linköping, Sweden
| | - Patrik Lundström
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, 58183, Linköping, Sweden
| | - Vladislav Y Orekhov
- The Swedish NMR Centre, University of Gothenburg, Box 465, 40530, Göteborg, Sweden.
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 465, 40530, Göteborg, Sweden.
| |
Collapse
|
8
|
Wang Q, Waterhouse N, Feyijinmi O, Dominguez MJ, Martinez LM, Sharp Z, Service R, Bothe JR, Stollar EJ. Development and Application of a High Throughput Protein Unfolding Kinetic Assay. PLoS One 2016; 11:e0146232. [PMID: 26745729 PMCID: PMC4706425 DOI: 10.1371/journal.pone.0146232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 12/15/2015] [Indexed: 11/18/2022] Open
Abstract
The kinetics of folding and unfolding underlie protein stability and quantification of these rates provides important insights into the folding process. Here, we present a simple high throughput protein unfolding kinetic assay using a plate reader that is applicable to the studies of the majority of 2-state folding proteins. We validate the assay by measuring kinetic unfolding data for the SH3 (Src Homology 3) domain from Actin Binding Protein 1 (AbpSH3) and its stabilized mutants. The results of our approach are in excellent agreement with published values. We further combine our kinetic assay with a plate reader equilibrium assay, to obtain indirect estimates of folding rates and use these approaches to characterize an AbpSH3-peptide hybrid. Our high throughput protein unfolding kinetic assays allow accurate screening of libraries of mutants by providing both kinetic and equilibrium measurements and provide a means for in-depth ϕ-value analyses.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Physical Sciences, Eastern New Mexico University, Portales, New Mexico, United States of America
| | - Nicklas Waterhouse
- Department of Physical Sciences, Eastern New Mexico University, Portales, New Mexico, United States of America
| | - Olusegun Feyijinmi
- Department of Physical Sciences, Eastern New Mexico University, Portales, New Mexico, United States of America
| | - Matthew J. Dominguez
- Department of Physical Sciences, Eastern New Mexico University, Portales, New Mexico, United States of America
| | - Lisa M. Martinez
- Department of Physical Sciences, Eastern New Mexico University, Portales, New Mexico, United States of America
| | - Zoey Sharp
- Department of Physical Sciences, Eastern New Mexico University, Portales, New Mexico, United States of America
| | - Rachel Service
- Department of Physical Sciences, Eastern New Mexico University, Portales, New Mexico, United States of America
| | - Jameson R. Bothe
- NMRFAM, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Elliott J. Stollar
- Department of Physical Sciences, Eastern New Mexico University, Portales, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
9
|
Ma RS, Li QF, Wang AD, Zhang JH, Liu ZJ, Wu JH, Su XC, Ruan K. Determination of pseudocontact shifts of low-populated excited states by NMR chemical exchange saturation transfer. Phys Chem Chem Phys 2016; 18:13794-8. [DOI: 10.1039/c6cp01127f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Angular and distance restraints for low populated excited conformations are studied using PCS–CEST NMR spectroscopy.
Collapse
Affiliation(s)
- R. S. Ma
- Hefei National Laboratory for Physical Science at the Microscale
- School of Life Sciences
- University of Science and Technology of China
- Hefei
- China
| | - Q. F. Li
- State Key Laboratory of Elemento-Organic Chemistry
- Collatorative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
- China
| | - A. D. Wang
- Hefei National Laboratory for Physical Science at the Microscale
- School of Life Sciences
- University of Science and Technology of China
- Hefei
- China
| | - J. H. Zhang
- Hefei National Laboratory for Physical Science at the Microscale
- School of Life Sciences
- University of Science and Technology of China
- Hefei
- China
| | - Z. J. Liu
- National Center for Protein Science Shanghai
- Shanghai 201210
- China
| | - J. H. Wu
- Hefei National Laboratory for Physical Science at the Microscale
- School of Life Sciences
- University of Science and Technology of China
- Hefei
- China
| | - X. C. Su
- State Key Laboratory of Elemento-Organic Chemistry
- Collatorative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
- China
| | - K. Ruan
- Hefei National Laboratory for Physical Science at the Microscale
- School of Life Sciences
- University of Science and Technology of China
- Hefei
- China
| |
Collapse
|
10
|
Ahlner A, Andresen C, Khan SN, Kay LE, Lundström P. Fractional enrichment of proteins using [2-(13)C]-glycerol as the carbon source facilitates measurement of excited state 13Cα chemical shifts with improved sensitivity. JOURNAL OF BIOMOLECULAR NMR 2015; 62:341-351. [PMID: 25990019 DOI: 10.1007/s10858-015-9948-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/13/2015] [Indexed: 06/04/2023]
Abstract
A selective isotope labeling scheme based on the utilization of [2-(13)C]-glycerol as the carbon source during protein overexpression has been evaluated for the measurement of excited state (13)Cα chemical shifts using Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion (RD) experiments. As expected, the fractional incorporation of label at the Cα positions is increased two-fold relative to labeling schemes based on [2-(13)C]-glucose, effectively doubling the sensitivity of NMR experiments. Applications to a binding reaction involving an SH3 domain from the protein Abp1p and a peptide from the protein Ark1p establish that accurate excited state (13)Cα chemical shifts can be obtained from RD experiments, with errors on the order of 0.06 ppm for exchange rates ranging from 100 to 1000 s(-1), despite the small fraction of (13)Cα-(13)Cβ spin-pairs that are present for many residue types. The labeling approach described here should thus be attractive for studies of exchanging systems using (13)Cα spin probes.
Collapse
Affiliation(s)
- Alexandra Ahlner
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, 58183, Linköping, Sweden
| | | | | | | | | |
Collapse
|
11
|
Abstract
Endocytosis, the process whereby the plasma membrane invaginates to form vesicles, is essential for bringing many substances into the cell and for membrane turnover. The mechanism driving clathrin-mediated endocytosis (CME) involves > 50 different protein components assembling at a single location on the plasma membrane in a temporally ordered and hierarchal pathway. These proteins perform precisely choreographed steps that promote receptor recognition and clustering, membrane remodeling, and force-generating actin-filament assembly and turnover to drive membrane invagination and vesicle scission. Many critical aspects of the CME mechanism are conserved from yeast to mammals and were first elucidated in yeast, demonstrating that it is a powerful system for studying endocytosis. In this review, we describe our current mechanistic understanding of each step in the process of yeast CME, and the essential roles played by actin polymerization at these sites, while providing a historical perspective of how the landscape has changed since the preceding version of the YeastBook was published 17 years ago (1997). Finally, we discuss the key unresolved issues and where future studies might be headed.
Collapse
Affiliation(s)
- Bruce L Goode
- Brandeis University, Department of Biology, Rosenstiel Center, Waltham, Massachusetts 02454
| | - Julian A Eskin
- Brandeis University, Department of Biology, Rosenstiel Center, Waltham, Massachusetts 02454
| | - Beverly Wendland
- The Johns Hopkins University, Department of Biology, Baltimore, Maryland 21218
| |
Collapse
|
12
|
McGraw J, Tatipelli VK, Feyijinmi O, Traore MC, Eangoor P, Lane S, Stollar EJ. A semi-automated method for purification of milligram quantities of proteins on the QIAcube. Protein Expr Purif 2014; 96:48-53. [PMID: 24508590 DOI: 10.1016/j.pep.2014.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/16/2014] [Accepted: 01/27/2014] [Indexed: 11/17/2022]
Abstract
A growing number of studies require the purification of multiple proteins simultaneously and the development of simple economical high-throughput purification methods is essential. We have tested the purification of two related proteins in a variety of conditions to benchmark the semi-automated affinity chromatography method for the QIAcube that we have developed. We find that this new QIAcube method can successfully purify milligram quantities of proteins with minimal user involvement and performs as well as methods based on gravity. The method could easily be adapted to other chromatography resins and should prove to be a versatile method for optimizing protein expression or purification conditions for multiple proteins while obtaining sufficient amounts for subsequent biochemical analyses.
Collapse
Affiliation(s)
- J McGraw
- Eastern New Mexico University, Department of Physical Sciences, Station #33, Portales, NM 88130, United States
| | - V K Tatipelli
- Eastern New Mexico University, Department of Physical Sciences, Station #33, Portales, NM 88130, United States
| | - O Feyijinmi
- Eastern New Mexico University, Department of Physical Sciences, Station #33, Portales, NM 88130, United States
| | - M C Traore
- Eastern New Mexico University, Department of Physical Sciences, Station #33, Portales, NM 88130, United States
| | - P Eangoor
- Eastern New Mexico University, Department of Physical Sciences, Station #33, Portales, NM 88130, United States
| | - S Lane
- Eastern New Mexico University, Department of Physical Sciences, Station #33, Portales, NM 88130, United States
| | - E J Stollar
- Eastern New Mexico University, Department of Physical Sciences, Station #33, Portales, NM 88130, United States.
| |
Collapse
|
13
|
Stollar EJ, Lin H, Davidson AR, Forman-Kay JD. Differential dynamic engagement within 24 SH3 domain: peptide complexes revealed by co-linear chemical shift perturbation analysis. PLoS One 2012; 7:e51282. [PMID: 23251481 PMCID: PMC3520974 DOI: 10.1371/journal.pone.0051282] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/31/2012] [Indexed: 11/18/2022] Open
Abstract
There is increasing evidence for the functional importance of multiple dynamically populated states within single proteins. However, peptide binding by protein-protein interaction domains, such as the SH3 domain, has generally been considered to involve the full engagement of peptide to the binding surface with minimal dynamics and simple methods to determine dynamics at the binding surface for multiple related complexes have not been described. We have used NMR spectroscopy combined with isothermal titration calorimetry to comprehensively examine the extent of engagement to the yeast Abp1p SH3 domain for 24 different peptides. Over one quarter of the domain residues display co-linear chemical shift perturbation (CCSP) behavior, in which the position of a given chemical shift in a complex is co-linear with the same chemical shift in the other complexes, providing evidence that each complex exists as a unique dynamic rapidly inter-converting ensemble. The extent the specificity determining sub-surface of AbpSH3 is engaged as judged by CCSP analysis correlates with structural and thermodynamic measurements as well as with functional data, revealing the basis for significant structural and functional diversity amongst the related complexes. Thus, CCSP analysis can distinguish peptide complexes that may appear identical in terms of general structure and percent peptide occupancy but have significant local binding differences across the interface, affecting their ability to transmit conformational change across the domain and resulting in functional differences.
Collapse
Affiliation(s)
- Elliott J. Stollar
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (EJS); (JFK)
| | - Hong Lin
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Alan R. Davidson
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Julie D. Forman-Kay
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (EJS); (JFK)
| |
Collapse
|
14
|
The importance of conserved features of yeast actin-binding protein 1 (Abp1p): the conditional nature of essentiality. Genetics 2012; 191:1199-211. [PMID: 22661326 DOI: 10.1534/genetics.112.141739] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae Actin-Binding Protein 1 (Abp1p) is a member of the Abp1 family of proteins, which are in diverse organisms including fungi, nematodes, flies, and mammals. All proteins in this family possess an N-terminal Actin Depolymerizing Factor Homology (ADF-H) domain, a central Proline-Rich Region (PRR), and a C-terminal SH3 domain. In this study, we employed sequence analysis to identify additional conserved features of the family, including sequences rich in proline, glutamic acid, serine, and threonine amino acids (PEST), which are found in all family members examined, and two motifs, Conserved Fungal Motifs 1 and 2 (CFM1 and CFM2), that are conserved in fungi. We also discovered that, similar to its mammalian homologs, Abp1p is phosphorylated in its PRR. This phosphorylation is mediated by the Cdc28p and Pho85p kinases, and it protects Abp1p from proteolysis mediated by the conserved PEST sequences. We provide evidence for an intramolecular interaction between the PRR region and SH3 domain that may be affected by phosphorylation. Although deletion of CFM1 alone caused no detectable phenotype in any genetic backgrounds or conditions tested, deletion of this motif resulted in a significant reduction of growth when it was combined with a deletion of the ADF-H domain. Importantly, this result demonstrates that deletion of highly conserved domains on its own may produce no phenotype unless the domains are assayed in conjunction with deletions of other functionally important elements within the same protein. Detection of this type of intragenic synthetic lethality provides an important approach for understanding the function of individual protein domains or motifs.
Collapse
|
15
|
Stanger K, Gorelik M, Davidson AR. Yeast adaptor protein, Nbp2p, is conserved regulator of fungal Ptc1p phosphatases and is involved in multiple signaling pathways. J Biol Chem 2012; 287:22133-41. [PMID: 22570491 DOI: 10.1074/jbc.m112.348052] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Nbp2p is an Src homology 3 (SH3) domain-containing yeast protein that is involved in a variety of cellular processes. This small adaptor protein binds to a number of different proteins through its SH3 domain, and a region N-terminal to the SH3 domain binds to the protein phosphatase, Ptc1p. Despite its involvement in a large number of physical and genetic interactions, the only well characterized function of Nbp2p is to recruit Ptc1p to the high osmolarity glycerol pathway, which results in down-regulation of this pathway. In this study, we have discovered that Nbp2p orthologues exist in all Ascomycete and Basidiomycete fungal genomes and that all possess an SH3 domain and a conserved novel Ptc1p binding motif. The ubiquitous occurrence of these two features, which we have shown are both critical for Nbp2p function in Saccharomyces cerevisiae, implies that a conserved role of Nbp2p in all of these fungal species is the targeting of Ptc1p to proteins recognized by the SH3 domain. We also show that in a manner analogous to its role in the high osmolarity glycerol pathway, Nbp2p functions in the down-regulation of the cell wall integrity pathway through SH3 domain-mediated interaction with Bck1p, a component kinase of this pathway. Based on functional studies on the Schizosaccharomyces pombe and Neurospora crassa Nbp2p orthologues and the high conservation of the Nbp2p binding site in Bck1p orthologues, this function of Nbp2p appears to be conserved across Ascomycetes. Our results also clearly imply a function for the Nbp2p-Ptc1p complex other cellular processes.
Collapse
Affiliation(s)
- Karen Stanger
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
16
|
Baldwin AJ, Kay LE. Measurement of the signs of methyl 13C chemical shift differences between interconverting ground and excited protein states by R(1ρ): an application to αB-crystallin. JOURNAL OF BIOMOLECULAR NMR 2012; 53:1-12. [PMID: 22476760 DOI: 10.1007/s10858-012-9617-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 01/10/2012] [Indexed: 05/31/2023]
Abstract
Carr-Purcell-Meiboom-Gill relaxation dispersion (CPMG RD) NMR spectroscopy has emerged as a powerful tool for quantifying the kinetics and thermodynamics of millisecond time-scale exchange processes involving the interconversion between a visible ground state and one or more minor, sparsely populated invisible 'excited' conformational states. Recently it has also become possible to determine atomic resolution structural models of excited states using a wide array of CPMG RD approaches. Analysis of CPMG RD datasets provides the magnitudes of the chemical shift differences between the ground and excited states, Δϖ, but not the sign. In order to obtain detailed structural insights from, for example, excited state chemical shifts and residual dipolar coupling measurements, these signs are required. Here we present an NMR experiment for obtaining signs of (13)C chemical shift differences of (13)CH(3) methyl groups using weak field off-resonance R(1ρ) relaxation measurements. The accuracy of the method is established by using an exchanging system where the invisible, excited state can be converted to the visible, ground state by altering sample conditions so that the signs of Δϖ values obtained from the spin-lock approach can be validated against those measured directly. Further, the spin-lock experiments are compared with the established H(S/M)QC approach for measuring signs of chemical shift differences and the relative strengths of each method are discussed. In the case of the 650 kDa human αB-crystallin complex where there are large transverse relaxation differences between ground and excited state spins the R(1ρ) method is shown to be superior to more 'traditional' experiments for sign determination.
Collapse
Affiliation(s)
- Andrew J Baldwin
- Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | | |
Collapse
|
17
|
Hepper I, Schymeinsky J, Weckbach LT, Jakob SM, Frommhold D, Sixt M, Laschinger M, Sperandio M, Walzog B. The Mammalian Actin-Binding Protein 1 Is Critical for Spreading and Intraluminal Crawling of Neutrophils under Flow Conditions. THE JOURNAL OF IMMUNOLOGY 2012; 188:4590-601. [DOI: 10.4049/jimmunol.1100878] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
18
|
The mammalian actin-binding protein 1 (mAbp1): a novel molecular player in leukocyte biology. Trends Cell Biol 2011; 21:247-55. [DOI: 10.1016/j.tcb.2010.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 11/21/2010] [Accepted: 12/02/2010] [Indexed: 11/18/2022]
|
19
|
Bouvignies G, Hansen DF, Vallurupalli P, Kay LE. Divided-Evolution-Based Pulse Scheme for Quantifying Exchange Processes in Proteins: Powerful Complement to Relaxation Dispersion Experiments. J Am Chem Soc 2011; 133:1935-45. [DOI: 10.1021/ja109589y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guillaume Bouvignies
- Departments of Molecular Genetics, Biochemistry, and Chemistry, The University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - D. Flemming Hansen
- Departments of Molecular Genetics, Biochemistry, and Chemistry, The University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Pramodh Vallurupalli
- Departments of Molecular Genetics, Biochemistry, and Chemistry, The University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Lewis E. Kay
- Departments of Molecular Genetics, Biochemistry, and Chemistry, The University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
20
|
Auer R, Hansen DF, Neudecker P, Korzhnev DM, Muhandiram DR, Konrat R, Kay LE. Measurement of signs of chemical shift differences between ground and excited protein states: a comparison between H(S/M)QC and R1rho methods. JOURNAL OF BIOMOLECULAR NMR 2010; 46:205-216. [PMID: 20033258 DOI: 10.1007/s10858-009-9394-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 12/01/2009] [Indexed: 05/28/2023]
Abstract
Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion NMR spectroscopy has emerged as a powerful tool for quantifying the kinetics and thermodynamics of millisecond exchange processes between a major, populated ground state and one or more minor, low populated and often invisible 'excited' conformers. Analysis of CPMG data-sets also provides the magnitudes of the chemical shift difference(s) between exchanging states (|Deltavarpi|), that inform on the structural properties of the excited state(s). The sign of Deltavarpi is, however, not available from CPMG data. Here we present one-dimensional NMR experiments for measuring the signs of (1)H(N) and (13)C(alpha) Deltavarpi values using weak off-resonance R (1rho ) relaxation measurements, extending the spin-lock approach beyond previous applications focusing on the signs of (15)N and (1)H(alpha) shift differences. The accuracy of the method is established by using an exchanging system where the invisible, excited state can be converted to the visible, ground state by altering conditions so that the signs of Deltavarpi values obtained from the spin-lock approach can be validated with those measured directly. Further, the spin-lock experiments are compared with the established H(S/M)QC approach for measuring the signs of chemical shift differences. For the Abp1p and Fyn SH3 domains considered here it is found that while H(S/M)QC measurements provide signs for more residues than the spin-lock data, the two different methodologies are complementary, so that combining both approaches frequently produces signs for more residues than when the H(S/M)QC method is used alone.
Collapse
Affiliation(s)
- Renate Auer
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus-Vienna-Biocenter 5, 1030, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
21
|
Baldwin AJ, Hansen DF, Vallurupalli P, Kay LE. Measurement of methyl axis orientations in invisible, excited states of proteins by relaxation dispersion NMR spectroscopy. J Am Chem Soc 2009; 131:11939-48. [PMID: 19627152 DOI: 10.1021/ja903896p] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Few detailed studies of transiently populated conformations of biological molecules have emerged despite the fact that such states are often important to processes such as protein folding, enzyme catalysis, molecular recognition and binding. A major limitation has been the lack of experimental tools to study these often invisible, short-lived conformers. Recent advances in relaxation dispersion NMR spectroscopy are changing this paradigm with the potential to generate high resolution structural information which is necessary for a rigorous characterization of these states. In this study, we present an experimental method for establishing the relative orientations of methyl groups in invisible, excited states of proteins by measuring methyl (1)H-(13)C residual dipolar couplings (RDCs). In our approach, four two-dimensional spectra are acquired at a pair of static magnetic fields. Each spectrum contains one of the four isolated multiplet components of a coupled methyl carbon, whose signal intensities, modulated by the pulsing frequency of a Carr-Purcell-Meiboom-Gill (CPMG) element, are sensitive to both chemical shift and RDC differences between exchanging states. In addition, data sets from a CPMG experiment which monitors the decay of in-phase methyl (13)C magnetization are recorded, that are sensitive only to the differences in chemical shifts between the states. Using our methodology, RDC values obtained from an invisible state in an exchanging system are shown to be in good agreement with the corresponding values measured under conditions where the invisible state is stabilized to become the highly populated ground state. The approach allows the measurement of anisotropic restraints at methyl positions in excited states and complements previously developed experiments focusing on the protein backbone.
Collapse
Affiliation(s)
- Andrew J Baldwin
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | | | |
Collapse
|
22
|
Lundström P, Vallurupalli P, Hansen DF, Kay LE. Isotope labeling methods for studies of excited protein states by relaxation dispersion NMR spectroscopy. Nat Protoc 2009; 4:1641-8. [PMID: 19876024 DOI: 10.1038/nprot.2009.118] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The utility of nuclear magnetic resonance (NMR) spectroscopy as a tool for the study of biomolecular structure and dynamics has benefited from the development of facile labeling methods that incorporate NMR active probes at key positions in the molecule. Here we describe a protocol for the labeling of proteins that facilitates their study using a technique that is sensitive to millisecond conformational exchange processes. The samples necessary for an analysis of exchange dynamics are discussed, using the Abp1p SH3 domain from Saccharomyces cerevisiae as an example. For this system, the time frame for production of each sample, including in vitro refolding, is about 80 h. The samples so produced facilitate the measurement of accurate chemical shifts of low populated, invisible conformers that are part of the exchange pathway. The accuracy of the methodology has been established experimentally and the chemical shifts that are obtained provide important restraints in structure calculations of the excited state.
Collapse
Affiliation(s)
- Patrik Lundström
- Division of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | | | | | | |
Collapse
|
23
|
Stollar EJ, Garcia B, Chong PA, Rath A, Lin H, Forman-Kay JD, Davidson AR. Structural, functional, and bioinformatic studies demonstrate the crucial role of an extended peptide binding site for the SH3 domain of yeast Abp1p. J Biol Chem 2009; 284:26918-27. [PMID: 19590096 DOI: 10.1074/jbc.m109.028431] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SH3 domains, which are among the most frequently occurring protein interaction modules in nature, bind to peptide targets ranging in length from 7 to more than 25 residues. Although the bulk of studies on the peptide binding properties of SH3 domains have focused on interactions with relatively short peptides (less than 10 residues), a number of domains have been recently shown to require much longer sequences for optimal binding affinity. To gain greater insight into the binding mechanism and biological importance of interactions between an SH3 domain and extended peptide sequences, we have investigated interactions of the yeast Abp1p SH3 domain (AbpSH3) with several physiologically relevant 17-residue target peptide sequences. To obtain a molecular model for AbpSH3 interactions, we solved the structure of the AbpSH3 bound to a target peptide from the yeast actin patch kinase, Ark1p. Peptide target complexes from binding partners Scp1p and Sjl2p were also characterized, revealing that the AbpSH3 uses a common extended interface for interaction with these peptides, despite K(d) values for these peptides ranging from 0.3 to 6 mum. Mutagenesis studies demonstrated that residues across the whole 17-residue binding site are important both for maximal in vitro binding affinity and for in vivo function. Sequence conservation analysis revealed that both the AbpSH3 and its extended target sequences are highly conserved across diverse fungal species as well as higher eukaryotes. Our data imply that the AbpSH3 must bind extended target sites to function efficiently inside the cell.
Collapse
Affiliation(s)
- Elliott J Stollar
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | | | |
Collapse
|
24
|
Lundström P, Lin H, Kay LE. Measuring 13Cbeta chemical shifts of invisible excited states in proteins by relaxation dispersion NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2009; 44:139-155. [PMID: 19448976 DOI: 10.1007/s10858-009-9321-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 04/20/2009] [Indexed: 05/26/2023]
Abstract
A labeling scheme is introduced that facilitates the measurement of accurate (13)C(beta) chemical shifts of invisible, excited states of proteins by relaxation dispersion NMR spectroscopy. The approach makes use of protein over-expression in a strain of E. coli in which the TCA cycle enzyme succinate dehydrogenase is knocked out, leading to the production of samples with high levels of (13)C enrichment (30-40%) at C(beta) side-chain carbon positions for 15 of the amino acids with little (13)C label at positions one bond removed (approximately 5%). A pair of samples are produced using [1-(13)C]-glucose/NaH(12)CO(3) or [2-(13)C]-glucose as carbon sources with isolated and enriched (>30%) (13)C(beta) positions for 11 and 4 residues, respectively. The efficacy of the labeling procedure is established by NMR spectroscopy. The utility of such samples for measurement of (13)C(beta) chemical shifts of invisible, excited states in exchange with visible, ground conformations is confirmed by relaxation dispersion studies of a protein-ligand binding exchange reaction in which the extracted chemical shift differences from dispersion profiles compare favorably with those obtained directly from measurements on ligand free and fully bound protein samples.
Collapse
Affiliation(s)
- Patrik Lundström
- Molecular Biotechnology/IFM, Linköping University, 581 83, Linköping, Sweden
| | | | | |
Collapse
|
25
|
Lundström P, Hansen DF, Vallurupalli P, Kay LE. Accurate measurement of alpha proton chemical shifts of excited protein states by relaxation dispersion NMR spectroscopy. J Am Chem Soc 2009; 131:1915-26. [PMID: 19152327 DOI: 10.1021/ja807796a] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carr-Purcell-Meiboom-Gill relaxation dispersion NMR spectroscopy can provide detailed information about low populated, invisible states of protein molecules, including backbone chemical shifts of the invisible conformer and bond vector orientations that can be used as structural constraints. Notably, the measurement of 1Halpha chemical shifts in excited protein states has not been possible to date because, in the absence of suitable labeling, the homonuclear proton scalar coupling network in side chains of proteins leads to a significant degradation in the performance of proton-based relaxation dispersion experiments. Here we have overcome this problem through a labeling scheme in which proteins are prepared with U-2H glucose and 50% D2O/50% H2O that results in deuteration levels of between 50-88% at the Cbeta carbon. Effects from residual 1Halpha-1Hbeta scalar couplings can be suppressed through a new NMR experiment that is presented here. The utility of the methodology is demonstrated on a ligand binding exchanging system and it is shown that 1Halpha chemical shifts extracted from dispersion profiles are, on average, accurate to 0.03 ppm, an order of magnitude better than they can be predicted from structure using a database approach. The ability to measure 1Halpha chemical shifts of invisible conformers is particularly important because such shifts are sensitive to both secondary and tertiary structure. Thus, the methodology presented is a valuable addition to a growing list of experiments for characterizing excited protein states that are difficult to study using the traditional techniques of structural biology.
Collapse
Affiliation(s)
- Patrik Lundström
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | | | | | | |
Collapse
|
26
|
Roberts-Galbraith RH, Chen JS, Wang J, Gould KL. The SH3 domains of two PCH family members cooperate in assembly of the Schizosaccharomyces pombe contractile ring. ACTA ACUST UNITED AC 2009; 184:113-27. [PMID: 19139265 PMCID: PMC2615086 DOI: 10.1083/jcb.200806044] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Schizosaccharomyces pombe cdc15 homology (PCH) family members participate in many cellular processes by bridging the plasma membrane and cytoskeleton. Their F-BAR domains bind and curve membranes, whereas other domains, typically SH3 domains, are expected to provide cytoskeletal links. We tested this prevailing model of functional division in the founding member of the family, Cdc15, which is essential for cytokinesis in S. pombe, and in the related PCH protein, Imp2. We find that the distinct functions of Imp2 and Cdc15 are SH3 domain independent. However, the Cdc15 and Imp2 SH3 domains share an essential role in recruiting proteins to the contractile ring, including Pxl1 and Fic1. Together, Pxl1 and Fic1, a previously uncharacterized C2 domain protein, add structural integrity to the contractile ring and prevent it from fragmenting during division. Our data indicate that the F-BAR proteins Cdc15 and Imp2 contribute to a single biological process with both distinct and overlapping functions.
Collapse
|
27
|
Lundström P, Hansen DF, Kay LE. Measurement of carbonyl chemical shifts of excited protein states by relaxation dispersion NMR spectroscopy: comparison between uniformly and selectively (13)C labeled samples. JOURNAL OF BIOMOLECULAR NMR 2008; 42:35-47. [PMID: 18762869 DOI: 10.1007/s10858-008-9260-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 07/18/2008] [Accepted: 07/18/2008] [Indexed: 05/26/2023]
Abstract
Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion nuclear magnetic resonance (NMR) spectroscopy has emerged as a powerful method for quantifying chemical shifts of excited protein states. For many applications of the technique that involve the measurement of relaxation rates of carbon magnetization it is necessary to prepare samples with isolated (13)C spins so that experiments do not suffer from magnetization transfer between coupled carbon spins that would otherwise occur during the CPMG pulse train. In the case of (13)CO experiments however the large separation between (13)CO and (13)C(alpha) chemical shifts offers hope that robust (13)CO dispersion profiles can be recorded on uniformly (13)C labeled samples, leading to the extraction of accurate (13)CO chemical shifts of the invisible, excited state. Here we compare such chemical shifts recorded on samples that are selectively labeled, prepared using [1-(13)C]-pyruvate and NaH(13)CO(3,) or uniformly labeled, generated from (13)C-glucose. Very similar (13)CO chemical shifts are obtained from analysis of CPMG experiments recorded on both samples, and comparison with chemical shifts measured using a second approach establishes that the shifts measured from relaxation dispersion are very accurate.
Collapse
Affiliation(s)
- Patrik Lundström
- Department of Medical Genetics, The University of Toronto, Toronto, ON, Canada, M5S 1A8
| | | | | |
Collapse
|
28
|
Vallurupalli P, Hansen DF, Kay LE. Structures of invisible, excited protein states by relaxation dispersion NMR spectroscopy. Proc Natl Acad Sci U S A 2008; 105:11766-71. [PMID: 18701719 PMCID: PMC2575287 DOI: 10.1073/pnas.0804221105] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Indexed: 11/18/2022] Open
Abstract
Molecular function is often predicated on excursions between ground states and higher energy conformers that can play important roles in ligand binding, molecular recognition, enzyme catalysis, and protein folding. The tools of structural biology enable a detailed characterization of ground state structure and dynamics; however, studies of excited state conformations are more difficult because they are of low population and may exist only transiently. Here we describe an approach based on relaxation dispersion NMR spectroscopy in which structures of invisible, excited states are obtained from chemical shifts and residual anisotropic magnetic interactions. To establish the utility of the approach, we studied an exchanging protein (Abp1p SH3 domain)-ligand (Ark1p peptide) system, in which the peptide is added in only small amounts so that the ligand-bound form is invisible. From a collection of (15)N, (1)HN, (13)C(alpha), and (13)CO chemical shifts, along with (1)HN-(15)N, (1)H(alpha)-(13)C(alpha), and (1)HN-(13)CO residual dipolar couplings and (13)CO residual chemical shift anisotropies, all pertaining to the invisible, bound conformer, the structure of the bound state is determined. The structure so obtained is cross-validated by comparison with (1)HN-(15)N residual dipolar couplings recorded in a second alignment medium. The methodology described opens up the possibility for detailed structural studies of invisible protein conformers at a level of detail that has heretofore been restricted to applications involving visible ground states of proteins.
Collapse
Affiliation(s)
- Pramodh Vallurupalli
- Departments of Molecular Genetics, Biochemistry, and Chemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - D. Flemming Hansen
- Departments of Molecular Genetics, Biochemistry, and Chemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Lewis E. Kay
- Departments of Molecular Genetics, Biochemistry, and Chemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
| |
Collapse
|
29
|
Hansen DF, Vallurupalli P, Kay LE. Using relaxation dispersion NMR spectroscopy to determine structures of excited, invisible protein states. JOURNAL OF BIOMOLECULAR NMR 2008; 41:113-20. [PMID: 18574698 DOI: 10.1007/s10858-008-9251-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 05/26/2008] [Indexed: 05/12/2023]
Abstract
Currently the main focus of structural biology is the determination of static three-dimensional representations of biomolecules that for the most part correspond to low energy (ground state) conformations. However, it is becoming increasingly well recognized that higher energy structures often play important roles in function as well. Because these conformers are populated to only low levels and are often only transiently formed their study is not amenable to many of the tools of structural biology. In this perspective we discuss the role of CPMG-based relaxation dispersion NMR spectroscopy in characterizing these low populated, invisible states. It is shown that robust methods for measuring both backbone chemical shifts and residual anisotropic interactions in the excited state are in place and that these data provide valuable restraints for structural studies of invisible conformers.
Collapse
Affiliation(s)
- D Flemming Hansen
- Departments of Molecular Genetics, Biochemistry and Chemistry, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
30
|
Hansen DF, Vallurupalli P, Kay LE. Quantifying two-bond 1HN-13CO and one-bond 1H(alpha)-13C(alpha) dipolar couplings of invisible protein states by spin-state selective relaxation dispersion NMR spectroscopy. J Am Chem Soc 2008; 130:8397-405. [PMID: 18528998 DOI: 10.1021/ja801005n] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Relaxation dispersion NMR spectroscopy has become a valuable probe of millisecond dynamic processes in biomolecules that exchange between a ground (observable) state and one or more excited (invisible) conformers, in part because chemical shifts of the excited state(s) can be obtained that provide insight into the conformations that are sampled. Here we present a pair of experiments that provide additional structural information in the form of residual dipolar couplings of the excited state. The new experiments record (1)H spin-state selective (13)CO and (13)C(alpha) dispersion profiles under conditions of partial alignment in a magnetic field from which two-bond (1)HN-(13)CO and one-bond (1)H(alpha)-(13)C(alpha) residual dipolar couplings of the invisible conformer can be extracted. These new dipolar couplings complement orientational restraints that are provided through measurement of (1)HN-(15)N residual dipolar couplings and changes in (13)CO chemical shifts upon alignment that have been measured previously for the excited-state since the interactions probed here are not collinear with those previously investigated. An application to a protein-ligand binding reaction is presented, and the accuracies of the extracted excited-state dipolar couplings are established. A combination of residual dipolar couplings and chemical shifts as measured by relaxation dispersion will facilitate a quantitative description of excited protein states.
Collapse
Affiliation(s)
- D Flemming Hansen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | | | | |
Collapse
|
31
|
Hansen DF, Vallurupalli P, Lundström P, Neudecker P, Kay LE. Probing chemical shifts of invisible states of proteins with relaxation dispersion NMR spectroscopy: how well can we do? J Am Chem Soc 2008; 130:2667-75. [PMID: 18237174 DOI: 10.1021/ja078337p] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carr-Purcell-Meiboom-Gill relaxation dispersion NMR spectroscopy has evolved into a powerful approach for the study of low populated, invisible conformations of biological molecules. One of the powerful features of the experiment is that chemical shift differences between the exchanging conformers can be obtained, providing structural information about invisible excited states. Through the development of new labeling approaches and NMR experiments it is now possible to measure backbone 13C(alpha) and 13CO relaxation dispersion profiles in proteins without complications from 13C-13C couplings. Such measurements are presented here, along with those that probe exchange using 15N and 1HN nuclei. A key experimental design has been the choice of an exchanging system where excited-state chemical shifts were known from independent measurement. Thus it is possible to evaluate quantitatively the accuracy of chemical shift differences obtained in dispersion experiments and to establish that in general very accurate values can be obtained. The experimental work is supplemented by computations that suggest that similarly accurate shifts can be measured in many cases for systems with exchange rates and populations that fall within the range of those that can be quantified by relaxation dispersion. The accuracy of the extracted chemical shifts opens up the possibility of obtaining quantitative structural information of invisible states of the sort that is now available from chemical shifts recorded on ground states of proteins.
Collapse
Affiliation(s)
- D Flemming Hansen
- Department of Medical Genetics, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | | | | | | | | |
Collapse
|
32
|
Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
33
|
Vallurupalli P, Hansen DF, Stollar E, Meirovitch E, Kay LE. Measurement of bond vector orientations in invisible excited states of proteins. Proc Natl Acad Sci U S A 2007; 104:18473-7. [PMID: 18006656 PMCID: PMC2141801 DOI: 10.1073/pnas.0708296104] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Indexed: 11/18/2022] Open
Abstract
The focus of structural biology is on studies of the highly populated, ground states of biological molecules; states that are only sparsely and transiently populated are more difficult to probe because they are invisible to most structural methods. Yet, such states can play critical roles in biochemical processes such as ligand binding, enzyme catalysis, and protein folding. A description of these states in terms of structure and dynamics is, therefore, of great importance. Here, we present a method, based on relaxation dispersion NMR spectroscopy of weakly aligned molecules in a magnetic field, that can provide such a description by direct measurement of backbone amide bond vector orientations in transient, low populated states that are not observable directly. Such information, obtained through the measurement of residual dipolar couplings, has until now been restricted to proteins that produce observable spectra. The methodology is applied and validated in a study of the binding of a target peptide to an SH3 domain from the yeast protein Abp1p and subsequently used in an application to protein folding of a mutational variant of the Fyn SH3 domain where (1)H-(15)N dipolar couplings of the invisible unfolded state of the domain are obtained. The approach, which can be used to obtain orientational restraints at other sites in proteins as well, promises to significantly extend the available information necessary for providing a site-specific characterization of structural properties of transient, low populated states that have to this point remained recalcitrant to detailed analysis.
Collapse
Affiliation(s)
- Pramodh Vallurupalli
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|