1
|
Patarroyo C, Lucca F, Dupas S, Restrepo S. Reconstructing the Global Migration History of Phytophthora infestans Toward Colombia. PHYTOPATHOLOGY 2024; 114:2151-2161. [PMID: 38888504 DOI: 10.1094/phyto-05-24-0163-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The evolution of new variants of plant pathogens is one of the biggest challenges to controlling and managing plant diseases. Of the forces driving these evolutionary processes, global migration events are particularly important for widely distributed diseases such as potato late blight, caused by the oomycete Phytophthora infestans. However, little is known about its migration routes outside North America and Europe. This work used genotypic data from population studies to elucidate the migration history originating the Colombian P. infestans population. For this purpose, a dataset of 1,706 P. infestans genotypes was recollected, representing North and South America, Europe, and Asia. Descriptive analysis and historical records from North America and Europe were used to propose three global migration hypotheses, differing on the origin of the disease (Mexico or Peru) and the hypothesis that it returned to South America from Europe. These scenarios were tested using approximate Bayesian computation. According to this analysis, the most probable scenario (posterior probability = 0.631) was the one proposing a Peruvian origin for P. infestans, an initial migration toward Colombia and Mexico, and a later event from Mexico to the United States and then to Europe and Asia, with no return to northern South America. In Colombia, the scenario considering a single migration from Peru and posterior migrations within Colombia was the most probable, with a posterior probability of 0.640. The obtained results support the hypothesis of a Peruvian origin for P. infestans followed by rare colonization events worldwide.
Collapse
Affiliation(s)
- Camilo Patarroyo
- Department of Biological Sciences, Universidad de los Andes, Bogotá 111711, Colombia
- UMR EGCE (Evolution, Génome, Comportement et Ecologie), Université Paris-Sud-CNRS-IRD, Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Florencia Lucca
- National Institute of Agricultural Technology, Potato Research Group, Experimental Agricultural Station, Balcarce 7620, República Argentina
| | - Stéphane Dupas
- UMR EGCE (Evolution, Génome, Comportement et Ecologie), Université Paris-Sud-CNRS-IRD, Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Silvia Restrepo
- Department of Biological Sciences, Universidad de los Andes, Bogotá 111711, Colombia
- Boyce Thompson Institute, Ithaca, NY 14853, U.S.A
| |
Collapse
|
2
|
Binder M, Zinger E, Hadany L, Ohad N. Transgenerational effects of stress on reproduction strategy in the mixed mating plant Lamium amplexicaule. BMC PLANT BIOLOGY 2024; 24:794. [PMID: 39169281 PMCID: PMC11340105 DOI: 10.1186/s12870-024-05458-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 07/26/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND The theory of Condition Dependent Sex predicts that - everything else being equal - less fit individuals would outcross at higher rates compared with fitter ones. Here we used the mixed mating plant Lamium amplexicaule, capable of producing both self-pollinating closed flowers (CL), alongside open flowers (CH) that allow cross pollination to test it. We investigated the effects of abiotic stress - salt solution irrigation - on the flowering patterns of plants and their offspring. We monitored several flowering and vegetative parameters, including the number and distribution of flowers, CH fraction, and plant size. RESULTS We found that stressed plants show an increased tendency for self-pollination and a deficit in floral and vegetative development. However, when parentally primed, stressed plants show a milder response. Un-stressed offspring of stressed parents show reversed responses and exhibit an increased tendency to outcross, and improve floral and vegetative development. CONCLUSIONS In summary, we found that stress affects the reproduction strategy in the plants that experienced the stress and in subsequent offspring through F2 generation. Our results provide experimental evidence supporting a transgenerational extension to the theories of fitness associate sex and dispersal, where an individual's tendency for sex and dispersal may depend on the stress experienced by its parents.
Collapse
Affiliation(s)
- Mor Binder
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Eyal Zinger
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Lilach Hadany
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Nir Ohad
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
3
|
Slowinski SP, Gresham JD, Cui ER, Haspel K, Lively CM, Morran LT. Outcrossing in Caenorhabditis elegans increases in response to food limitation. Ecol Evol 2024; 14:e11166. [PMID: 38516572 PMCID: PMC10954511 DOI: 10.1002/ece3.11166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 02/05/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Theory predicts that organisms should diversify their offspring when faced with a stressful environment. This prediction has received empirical support across diverse groups of organisms and stressors. For example, when encountered by Caenorhabditis elegans during early development, food limitation (a common environmental stressor) induces the nematodes to arrest in a developmental stage called dauer and to increase their propensity to outcross when they are subsequently provided with food and enabled to develop to maturity. Here we tested whether food limitation first encountered during late development/early adulthood can also induce increased outcrossing propensity in C. elegans. Previously well-fed C. elegans increased their propensity to outcross when challenged with food limitation during the final larval stage of development and into early adulthood, relative to continuously well-fed (control) nematodes. Our results thus support previous research demonstrating that the stress of food limitation can induce increased outcrossing propensity in C. elegans. Furthermore, our results expand on previous work by showing that food limitation can still increase outcrossing propensity even when it is not encountered until late development, and this can occur independently of the developmental and gene expression changes associated with dauer.
Collapse
Affiliation(s)
- Samuel P. Slowinski
- Department of BiologyIndiana UniversityBloomingtonIndianaUSA
- Department BiologyUniversity of MarylandCollege ParkMarylandUSA
| | | | - Eric R. Cui
- Department of BiologyIndiana UniversityBloomingtonIndianaUSA
| | | | | | | |
Collapse
|
4
|
Otake Y, Yamamichi M, Hirata Y, Odagiri H, Yoshida T. Different photoperiodic responses in diapause induction can promote the maintenance of genetic diversity via the storage effect in Daphnia pulex. Proc Biol Sci 2024; 291:20231860. [PMID: 38351804 PMCID: PMC10865009 DOI: 10.1098/rspb.2023.1860] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024] Open
Abstract
Understanding mechanisms that promote the maintenance of biodiversity (genetic and species diversity) has been a central topic in evolution and ecology. Previous studies have revealed that diapause can contribute to coexistence of competing genotypes or species in fluctuating environments via the storage effect. However, they tended to focus on differences in reproductive success (e.g. seed yield) and diapause termination (e.g. germination) timing. Here we tested whether different photoperiodic responses in diapause induction can promote coexistence of two parthenogenetic (asexual) genotypes of Daphnia pulex in Lake Fukami-ike, Japan. Through laboratory experiments, we confirmed that short day length and low food availability induced the production of diapausing eggs. Furthermore, we found that one genotype tended to produce diapausing eggs in broader environmental conditions than the other. Terminating parthenogenetic reproduction earlier decreases total clonal production, but the early diapausing genotype becomes advantageous by assuring reproduction in 'short' years where winter arrival is earlier than usual. Empirically parameterized theoretical analyses suggested that different photoperiodic responses can promote coexistence via the storage effect with fluctuations of the growing season length. Therefore, timing of diapause induction may be as important as diapause termination timing for promoting the maintenance of genetic diversity in fluctuating environments.
Collapse
Affiliation(s)
- Yurie Otake
- Department of General Systems Studies, The University of Tokyo, Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Masato Yamamichi
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Yuka Hirata
- Department of General Systems Studies, The University of Tokyo, Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Haruka Odagiri
- Department of General Systems Studies, The University of Tokyo, Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Takehito Yoshida
- Department of General Systems Studies, The University of Tokyo, Komaba, Meguro, Tokyo, 153-8902, Japan
- Research Institute for Humanity and Nature, Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8047, Japan
| |
Collapse
|
5
|
Rybnikov SR, Frenkel Z, Hübner S, Weissman DB, Korol AB. Modeling the evolution of recombination plasticity: A prospective review. Bioessays 2023; 45:e2200237. [PMID: 37246937 DOI: 10.1002/bies.202200237] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/30/2023]
Abstract
Meiotic recombination is one of the main sources of genetic variation, a fundamental factor in the evolutionary adaptation of sexual eukaryotes. Yet, the role of variation in recombination rate and other recombination features remains underexplored. In this review, we focus on the sensitivity of recombination rates to different extrinsic and intrinsic factors. We briefly present the empirical evidence for recombination plasticity in response to environmental perturbations and/or poor genetic background and discuss theoretical models developed to explain how such plasticity could have evolved and how it can affect important population characteristics. We highlight a gap between the evidence, which comes mostly from experiments with diploids, and theory, which typically assumes haploid selection. Finally, we formulate open questions whose solving would help to outline conditions favoring recombination plasticity. This will contribute to answering the long-standing question of why sexual recombination exists despite its costs, since plastic recombination may be evolutionary advantageous even in selection regimes rejecting any non-zero constant recombination.
Collapse
Affiliation(s)
- Sviatoslav R Rybnikov
- Institute of Evolution, University of Haifa, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Zeev Frenkel
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Sariel Hübner
- Galilee Research Institute (MIGAL), Tel-Hai College, Kiryat Shmona, Israel
| | | | - Abraham B Korol
- Institute of Evolution, University of Haifa, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| |
Collapse
|
6
|
Miklós M, Laczkó L, Sramkó G, Barta Z, Tökölyi J. Seasonal variation of genotypes and reproductive plasticity in a facultative clonal freshwater invertebrate animal ( Hydra oligactis) living in a temperate lake. Ecol Evol 2022; 12:e9096. [PMID: 35845371 PMCID: PMC9280439 DOI: 10.1002/ece3.9096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/24/2022] Open
Abstract
Facultative sexual organisms combine sexual and asexual reproduction within a single life cycle, often switching between reproductive modes depending on environmental conditions. These organisms frequently inhabit variable seasonal environments, where favorable periods alternate with unfavorable periods, generating temporally varying selection pressures that strongly influence life history decisions and hence population dynamics. Due to the rapidly accelerating changes in our global environment today, understanding the population dynamics and genetic changes in facultative sexual populations inhabiting seasonal environments is critical to assess and prepare for additional challenges that will affect such ecosystems. In this study, we aimed at obtaining insights into the seasonal population dynamics of the facultative sexual freshwater cnidarian Hydra oligactis through a combination of restriction site-associated sequencing (RAD-Seq) genotyping and the collection of phenotypic data on the reproductive strategy of field-collected hydra strains in a standard laboratory environment. We reliably detected 42 MlGs from the 121 collected hydra strains. Most of MLGs (N = 35, 83.3%) were detected in only one season. Five MLGs (11.9%) were detected in two seasons, one (2.4%) in three seasons and one (2.4%) in all four seasons. We found no significant genetic change during the 2 years in the study population. Clone lines were detected between seasons and even years, suggesting that clonal lineages can persist for a long time in a natural population. We also found that distinct genotypes differ in sexual reproduction frequency, but these differences did not affect whether genotypes reappeared across samplings. Our study provides key insights into the biology of natural hydra populations, while also contributing to understanding the population biology of facultative sexual species inhabiting freshwater ecosystems.
Collapse
Affiliation(s)
- Máté Miklós
- MTA‐DE “Momentum” Ecology, Evolution and Developmental Biology Research Group, Department of Evolutionary ZoologyUniversity of DebrecenDebrecenHungary
- Juhász‐Nagy Pál Doctoral School of Biology and Environmental SciencesUniversity of DebrecenDebrecenHungary
| | - Levente Laczkó
- Juhász‐Nagy Pál Doctoral School of Biology and Environmental SciencesUniversity of DebrecenDebrecenHungary
- MTA‐DE “Lendület” Evolutionary Phylogenomics Research GroupDebrecenHungary
- Department of BotanyUniversity of DebrecenDebrecenHungary
| | - Gábor Sramkó
- MTA‐DE “Lendület” Evolutionary Phylogenomics Research GroupDebrecenHungary
- Department of BotanyUniversity of DebrecenDebrecenHungary
| | - Zoltán Barta
- MTA‐DE Behavioral Ecology Research Group, Department of Evolutionary ZoologyUniversity of DebrecenDebrecenHungary
| | - Jácint Tökölyi
- MTA‐DE “Momentum” Ecology, Evolution and Developmental Biology Research Group, Department of Evolutionary ZoologyUniversity of DebrecenDebrecenHungary
| |
Collapse
|
7
|
Barnard-Kubow KB, Becker D, Murray CS, Porter R, Gutierrez G, Erickson P, Nunez JCB, Voss E, Suryamohan K, Ratan A, Beckerman A, Bergland AO. Genetic Variation in Reproductive Investment Across an Ephemerality Gradient in Daphnia pulex. Mol Biol Evol 2022; 39:msac121. [PMID: 35642301 PMCID: PMC9198359 DOI: 10.1093/molbev/msac121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Species across the tree of life can switch between asexual and sexual reproduction. In facultatively sexual species, the ability to switch between reproductive modes is often environmentally dependent and subject to local adaptation. However, the ecological and evolutionary factors that influence the maintenance and turnover of polymorphism associated with facultative sex remain unclear. We studied the ecological and evolutionary dynamics of reproductive investment in the facultatively sexual model species, Daphnia pulex. We found that patterns of clonal diversity, but not genetic diversity varied among ponds consistent with the predicted relationship between ephemerality and clonal structure. Reconstruction of a multi-year pedigree demonstrated the coexistence of clones that differ in their investment into male production. Mapping of quantitative variation in male production using lab-generated and field-collected individuals identified multiple putative quantitative trait loci (QTL) underlying this trait, and we identified a plausible candidate gene. The evolutionary history of these QTL suggests that they are relatively young, and male limitation in this system is a rapidly evolving trait. Our work highlights the dynamic nature of the genetic structure and composition of facultative sex across space and time and suggests that quantitative genetic variation in reproductive strategy can undergo rapid evolutionary turnover.
Collapse
Affiliation(s)
- Karen B Barnard-Kubow
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Department of Biology, James Madison University, Harrisonburg, VA, USA
| | - Dörthe Becker
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, UK
- Department of Biology, University of Marburg, Marburg, Germany
| | - Connor S Murray
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Robert Porter
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Grace Gutierrez
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | | | - Joaquin C B Nunez
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Erin Voss
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Department of Integrative Biology, UC Berkeley, Berkeley, CA, USA
| | | | - Aakrosh Ratan
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Andrew Beckerman
- School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, UK
| | - Alan O Bergland
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
8
|
Lever J, Drapes S, Hall MD, Booksmythe I. Condition-dependent sexual reproduction is driven by benefits, not costs of sex. Behav Ecol 2021. [DOI: 10.1093/beheco/arab103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Facultative sexual organisms must allocate resources to both asexual and sexual reproduction. Optimal patterns of investment in sex depend on the relative costs and benefits of each reproductive mode, and may consequently be context- and condition-dependent. Two proposed explanations for the observed variation in investment in sex among facultative sexual lineages invoke alternative condition-dependent scenarios. Under the fitness-associated sex hypothesis, sex is predicted when individuals are in poor condition or experience stressful environments. Under the resource-demanding sex hypothesis, sex is only affordable to individuals in good condition experiencing favourable environments. Direct tests of these contrasting hypotheses are rare; moreover, investment in different components of sexual reproduction responds differently to cues promoting sex, and may be subject to different energetic constraints. Using genotypes of facultative sexual Daphnia carinata that differ in their level of investment in sex, we manipulated resource availability while accounting for day length (a seasonal cue for sex) to evaluate these hypotheses. The sexual response to day length depended on resource availability: increased day lengths and reduced food availability increased the production of sexual eggs, and relative investment in males, in a manner consistent with the fitness-associated sex hypothesis. The pattern of condition-dependence was specific to each component of reproductive investment – while male production covaried with asexual fecundity across genotypes, increased sexual egg production was associated with reduced asexual reproduction. Our results suggest that investment in sex is determined largely by its context-dependent advantages, and that this investment is not moderated by immediate costs to asexual reproduction.
Collapse
Affiliation(s)
- Jessica Lever
- School of Biological Sciences, Monash University, Melbourne, Victoria 3183, Australia
| | - Sally Drapes
- School of BioSciences, Melbourne University, Parkville, Victoria 3010, Australia
| | - Matthew D Hall
- School of Biological Sciences, Monash University, Melbourne, Victoria 3183, Australia
| | - Isobel Booksmythe
- School of Biological Sciences, Monash University, Melbourne, Victoria 3183, Australia
| |
Collapse
|
9
|
Hays CG, Hanley TC, Hughes AR, Truskey SB, Zerebecki RA, Sotka EE. Local Adaptation in Marine Foundation Species at Microgeographic Scales. THE BIOLOGICAL BULLETIN 2021; 241:16-29. [PMID: 34436968 DOI: 10.1086/714821] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
AbstractNearshore foundation species in coastal and estuarine systems (e.g., salt marsh grasses, mangroves, seagrasses, corals) drive the ecological functions of ecosystems and entire biomes by creating physical structure that alters local abiotic conditions and influences species interactions and composition. The resilience of foundation species and the ecosystem functions they provide depends on their phenotypic and genetic responses to spatial and temporal shifts in environmental conditions. In this review, we explore what is known about the causes and consequences of adaptive genetic differentiation in marine foundation species over spatial scales shorter than dispersal capabilities (i.e., microgeographic scales). We describe the strength of coupling field and laboratory experiments with population genetic techniques to illuminate patterns of local adaptation, and we illustrate this approach by using several foundation species. Among the major themes that emerge from our review include (1) adaptive differentiation of marine foundation species repeatedly evolves along vertical (i.e., elevation or depth) gradients, and (2) mating system and phenology may facilitate this differentiation. Microgeographic adaptation is an understudied mechanism potentially underpinning the resilience of many sessile marine species, and this evolutionary mechanism likely has particularly important consequences for the ecosystem functions provided by foundation species.
Collapse
|
10
|
Miklós M, Laczkó L, Sramkó G, Sebestyén F, Barta Z, Tökölyi J. Phenotypic plasticity rather than genotype drives reproductive choices in Hydra populations. Mol Ecol 2021; 30:1206-1222. [PMID: 33465828 DOI: 10.1111/mec.15810] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 12/23/2020] [Accepted: 01/08/2021] [Indexed: 12/16/2022]
Abstract
Facultative clonality is associated with complex life cycles where sexual and asexual forms can be exposed to contrasting selection pressures. Facultatively clonal animals often have distinct developmental capabilities that depend on reproductive mode (e.g., negligible senescence and exceptional regeneration ability in asexual individuals, which are lacking in sexual individuals). Understanding how these differences in life history strategies evolved is hampered by limited knowledge of the population structure underlying sexual and asexual forms in nature. Here we studied genetic differentiation of coexisting sexual and asexual Hydra oligactis polyps, a freshwater cnidarian where reproductive mode-dependent life history patterns are observed. We collected asexual and sexual polyps from 13 Central European water bodies and used restriction-site associated DNA sequencing to infer population structure. We detected high relatedness among populations and signs that hydras might spread with resting eggs through zoochory. We found no genetic structure with respect to mode of reproduction (asexual vs. sexual). On the other hand, clear evidence was found for phenotypic plasticity in mode of reproduction, as polyps inferred to be clones differed in reproductive mode. Moreover, we detected two cases of apparent sex change (males and females found within the same clonal lineages) in this species with supposedly stable sexes. Our study describes population genetic structure in Hydra for the first time, highlights the role of phenotypic plasticity in generating patterns of life history variation, and contributes to understanding the evolution of reproductive mode-dependent life history variation in coexisting asexual and sexual forms.
Collapse
Affiliation(s)
- Máté Miklós
- MTA-DE Behavioral Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary.,Juhász-Nagy Pál Doctoral School of Biology and Environmental Sciences, University of Debrecen, Debrecen, Hungary
| | - Levente Laczkó
- Juhász-Nagy Pál Doctoral School of Biology and Environmental Sciences, University of Debrecen, Debrecen, Hungary.,MTA-DE "Lendület" Evolutionary Phylogenomics Research Group, Debrecen, Hungary.,Department of Botany, University of Debrecen, Debrecen, Hungary
| | - Gábor Sramkó
- MTA-DE "Lendület" Evolutionary Phylogenomics Research Group, Debrecen, Hungary.,Department of Botany, University of Debrecen, Debrecen, Hungary
| | - Flóra Sebestyén
- MTA-DE Behavioral Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary.,Juhász-Nagy Pál Doctoral School of Biology and Environmental Sciences, University of Debrecen, Debrecen, Hungary
| | - Zoltán Barta
- MTA-DE Behavioral Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary
| | - Jácint Tökölyi
- MTA-DE Behavioral Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
11
|
Vasylenko L, Feldman MW, Livnat A. The power of randomization by sex in multilocus genetic evolution. Biol Direct 2020; 15:26. [PMID: 33225949 PMCID: PMC7682110 DOI: 10.1186/s13062-020-00277-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/14/2020] [Indexed: 01/28/2023] Open
Abstract
Background Many hypotheses have been proposed for how sexual reproduction may facilitate an increase in the population mean fitness, such as the Fisher-Muller theory, Muller’s ratchet and others. According to the recently proposed mixability theory, however, sexual recombination shifts the focus of natural selection away from favoring particular genetic combinations of high fitness towards favoring alleles that perform well across different genetic combinations. Mixability theory shows that, in finite populations, because sex essentially randomizes genetic combinations, if one allele performs better than another across the existing combinations of alleles, that allele will likely also perform better overall across a vast space of untested potential genotypes. However, this superiority has been established only for a single-locus diploid model. Results We show that, in both haploids and diploids, the power of randomization by sex extends to the multilocus case, and becomes substantially stronger with increasing numbers of loci. In addition, we make an explicit comparison between the sexual and asexual cases, showing that sexual recombination is the cause of the randomization effect. Conclusions That the randomization effect applies to the multilocus case and becomes stronger with increasing numbers of loci suggests that it holds under realistic conditions. One may expect, therefore, that in nature the ability of an allele to perform well in interaction with existing genetic combinations is indicative of how well it will perform in a far larger space of potential combinations that have not yet materialized and been tested. Randomization plays a similar role in a statistical test, where it allows one to draw an inference from the outcome of the test in a small sample about its expected outcome in a larger space of possibilities—i.e., to generalize. Our results are relevant to recent theories examining evolution as a learning process. Reviewers This article was reviewed by David Ardell and Brian Golding.
Collapse
Affiliation(s)
- Liudmyla Vasylenko
- Department of Evolutionary and Environmental Biology and Institute of Evolution, University of Haifa, 199 Aba Khoushy Ave, Haifa, 3498838, Israel
| | - Marcus W Feldman
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, 94305-5020, CA, USA
| | - Adi Livnat
- Department of Evolutionary and Environmental Biology and Institute of Evolution, University of Haifa, 199 Aba Khoushy Ave, Haifa, 3498838, Israel.
| |
Collapse
|
12
|
Aubier TG, Galipaud M, Erten EY, Kokko H. Transmissible cancers and the evolution of sex under the Red Queen hypothesis. PLoS Biol 2020; 18:e3000916. [PMID: 33211684 PMCID: PMC7676742 DOI: 10.1371/journal.pbio.3000916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
The predominance of sexual reproduction in eukaryotes remains paradoxical in evolutionary theory. Of the hypotheses proposed to resolve this paradox, the 'Red Queen hypothesis' emphasises the potential of antagonistic interactions to cause fluctuating selection, which favours the evolution and maintenance of sex. Whereas empirical and theoretical developments have focused on host-parasite interactions, the premises of the Red Queen theory apply equally well to any type of antagonistic interactions. Recently, it has been suggested that early multicellular organisms with basic anticancer defences were presumably plagued by antagonistic interactions with transmissible cancers and that this could have played a pivotal role in the evolution of sex. Here, we dissect this argument using a population genetic model. One fundamental aspect distinguishing transmissible cancers from other parasites is the continual production of cancerous cell lines from hosts' own tissues. We show that this influx dampens fluctuating selection and therefore makes the evolution of sex more difficult than in standard Red Queen models. Although coevolutionary cycling can remain sufficient to select for sex under some parameter regions of our model, we show that the size of those regions shrinks once we account for epidemiological constraints. Altogether, our results suggest that horizontal transmission of cancerous cells is unlikely to cause fluctuating selection favouring sexual reproduction. Nonetheless, we confirm that vertical transmission of cancerous cells can promote the evolution of sex through a separate mechanism, known as similarity selection, that does not depend on coevolutionary fluctuations.
Collapse
Affiliation(s)
- Thomas G. Aubier
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Matthias Galipaud
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - E. Yagmur Erten
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Kokko H. When Synchrony Makes the Best of Both Worlds Even Better: How Well Do We Really Understand Facultative Sex? Am Nat 2019; 195:380-392. [PMID: 32017623 DOI: 10.1086/706812] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Biological diversity abounds in potential study topics. Studies of model systems have their advantages, but reliance on a few well-understood cases may create false impressions of what biological phenomena are the norm. Here I focus on facultative sex, which is often hailed as offering the best of both worlds, in that rare sex offers benefits almost equal to obligate sex and avoids paying most of the demographic costs. How well do we understand when and why this form of sexual reproduction is expected to prevail? I show several gaps in the theoretical literature and, by contrasting asynchronous with synchronous sex, highlight the need to link sex theories to the theoretical underpinnings of bet hedging, on the one hand, and to mate limitation considerations, on the other. Condition-dependent sex and links between sex with dispersal or dormancy appear understudied. While simplifications are justifiable as a simple assumption structure enhances analytical tractability, much remains to be done to incorporate key features of real sex to the main theoretical edifice.
Collapse
|
14
|
Gerber N, Kokko H. Abandoning the ship using sex, dispersal or dormancy: multiple escape routes from challenging conditions. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0424. [PMID: 30150222 DOI: 10.1098/rstb.2017.0424] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2018] [Indexed: 12/21/2022] Open
Abstract
Natural populations often experience environments that vary across space and over time, leading to spatio-temporal variation of the fitness of a genotype. If local conditions are poor, organisms can disperse in space (physical movement) or time (dormancy, diapause). Facultatively sexual organisms can switch between asexual and sexual reproduction, and thus have a third option available to deal with maladaptedness: they can engage in sexual reproduction in unfavourable conditions (an 'abandon-ship' response). Sexual reproduction in facultatively sexual organisms is often coupled with dispersal and/or dormancy, while bet-hedging theory at first sight predicts sex, dispersal and dormancy to covary negatively, as they represent different escape mechanisms that could substitute for each other. Here we briefly review the observed links between sex, dormancy and dispersal, and model the expected covariation patterns of dispersal, dormancy and the reproductive mode in the context of local adaptation to spatio-temporally fluctuating environments. The correlations between sex, dormancy and dispersal evolve differently within species versus across species. Various risk-spreading strategies are not completely interchangeable, as each has dynamic consequences that can feed back into the profitability of others. Our results shed light on the discrepancy between previous theoretical predictions on covarying risk-spreading traits and help explain why sex often associates with other means of escaping unfavourable situations.This article is part of the theme issue 'Linking local adaptation with the evolution of sex differences'.
Collapse
Affiliation(s)
- Nina Gerber
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland .,Department of Biological and Environmental Science, Centre of Excellence in Biological Interactions, University of Jyväskylä, Jyväskylän yliopisto, Finland
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
15
|
Aggarwal DD, Rybnikov S, Cohen I, Frenkel Z, Rashkovetsky E, Michalak P, Korol AB. Desiccation-induced changes in recombination rate and crossover interference in Drosophila melanogaster: evidence for fitness-dependent plasticity. Genetica 2019; 147:291-302. [PMID: 31240599 DOI: 10.1007/s10709-019-00070-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 06/18/2019] [Indexed: 12/31/2022]
Abstract
Meiotic recombination is evolutionarily ambiguous, as being associated with both benefits and costs to its bearers, with the resultant dependent on a variety of conditions. While existing theoretical models explain the emergence and maintenance of recombination, some of its essential features remain underexplored. Here we focus on one such feature, recombination plasticity, and test whether recombination response to stress is fitness-dependent. We compare desiccation stress effects on recombination rate and crossover interference in chromosome 3 between desiccation-sensitive and desiccation-tolerant Drosophila lines. We show that relative to desiccation-tolerant genotypes, desiccation-sensitive genotypes exhibit a significant segment-specific increase in single- and double-crossover frequencies across the pericentromeric region of chromosome 3. Significant changes (relaxation) in crossover interference were found for the interval pairs flanking the centromere and extending to the left arm of the chromosome. These results indicate that desiccation is a recombinogenic factor and that desiccation-induced changes in both recombination rate and crossover interference are fitness-dependent, with a tendency of less fitted individuals to produce more variable progeny. Such dependence may play an important role in the regulation of genetic variation in populations experiencing environmental challenges.
Collapse
Affiliation(s)
- Dau Dayal Aggarwal
- Institute of Evolution, University of Haifa, 3498838, Haifa, Israel.,Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Sviatoslav Rybnikov
- Institute of Evolution, University of Haifa, 3498838, Haifa, Israel.,Department of Evolutionary and Environmental Biology, University of Haifa, 3498838, Haifa, Israel
| | - Irit Cohen
- Institute of Evolution, University of Haifa, 3498838, Haifa, Israel.,Department of Evolutionary and Environmental Biology, University of Haifa, 3498838, Haifa, Israel
| | - Zeev Frenkel
- Department of Mathematics and Computational Science, Ariel University, 40700, Ariel, Israel
| | | | - Pawel Michalak
- Institute of Evolution, University of Haifa, 3498838, Haifa, Israel.,Edward Via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA.,Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, 24060, USA
| | - Abraham B Korol
- Institute of Evolution, University of Haifa, 3498838, Haifa, Israel. .,Department of Evolutionary and Environmental Biology, University of Haifa, 3498838, Haifa, Israel.
| |
Collapse
|
16
|
Vasylenko L, Feldman MW, Papadimitriou C, Livnat A. Sex: The power of randomization. Theor Popul Biol 2019; 129:41-53. [PMID: 30638926 DOI: 10.1016/j.tpb.2018.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 10/11/2018] [Accepted: 11/01/2018] [Indexed: 10/27/2022]
Abstract
In evolutionary biology, randomness has been perceived as a force that, in and of itself, is capable of inventing: mutation creates new genetic information at random across the genome which leads to phenotypic change, which is then subject to selection. However, in science in general and in computer science in particular, the widespread use of randomness takes a different form. Here, randomization allows for the breaking of pattern, as seen for example in its removal of biases (patterns) by random sampling or random assignment to conditions. Combined with various forms of evaluation, this breaking of pattern becomes an extraordinarily powerful tool, as also seen in many randomized algorithms in computer science. Here we show that this power of randomness is harnessed in nature by sex and recombination. In a finite population, and under the assumption of interactions between genetic variants, sex and recombination allow selection to test how well an allele will perform in a sample of combinations of interacting genetic partners drawn at random from all possible such combinations; consequently, even a small number of tests of genotypes such as takes place in a finite population favors alleles that will most likely perform well in a vast number of yet unrealized genetic combinations. This power of randomization is not manifest in asexual populations.
Collapse
Affiliation(s)
- Liudmyla Vasylenko
- Department of Evolutionary and Environmental Biology and Institute of Evolution, University of Haifa, 3498838, Israel
| | | | | | - Adi Livnat
- Department of Evolutionary and Environmental Biology and Institute of Evolution, University of Haifa, 3498838, Israel.
| |
Collapse
|
17
|
Bian Z, Ni Y, Xu JR, Liu H. A-to-I mRNA editing in fungi: occurrence, function, and evolution. Cell Mol Life Sci 2019; 76:329-340. [PMID: 30302531 PMCID: PMC11105437 DOI: 10.1007/s00018-018-2936-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/27/2018] [Accepted: 10/03/2018] [Indexed: 12/17/2022]
Abstract
A-to-I RNA editing is an important post-transcriptional modification that converts adenosine (A) to inosine (I) in RNA molecules via hydrolytic deamination. Although editing of mRNAs catalyzed by adenosine deaminases acting on RNA (ADARs) is an evolutionarily conserved mechanism in metazoans, organisms outside the animal kingdom lacking ADAR orthologs were thought to lack A-to-I mRNA editing. However, recent discoveries of genome-wide A-to-I mRNA editing during the sexual stage of the wheat scab fungus Fusarium graminearum, model filamentous fungus Neurospora crassa, Sordaria macrospora, and an early diverging filamentous ascomycete Pyronema confluens indicated that A-to-I mRNA editing is likely an evolutionarily conserved feature in filamentous ascomycetes. More importantly, A-to-I mRNA editing has been demonstrated to play crucial roles in different sexual developmental processes and display distinct tissue- or development-specific regulation. Contrary to that in animals, the majority of fungal RNA editing events are non-synonymous editing, which were shown to be generally advantageous and favored by positive selection. Many non-synonymous editing sites are conserved among different fungi and have potential functional and evolutionary importance. Here, we review the recent findings about the occurrence, regulation, function, and evolution of A-to-I mRNA editing in fungi.
Collapse
Affiliation(s)
- Zhuyun Bian
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Yajia Ni
- State Key Laboratory of Crop Stress Biology for Arid Areas, Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
18
|
Costantini D, Borremans B. The linear no-threshold model is less realistic than threshold or hormesis-based models: An evolutionary perspective. Chem Biol Interact 2018; 301:26-33. [PMID: 30342016 DOI: 10.1016/j.cbi.2018.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/30/2022]
Abstract
The linear no-threshold (LNT) risk model is the current human health risk assessment paradigm. This model states that adverse stochastic biological responses to high levels of a stressor can be used to estimate the response to low or moderate levels of that stressor. In recent years the validity of the LNT risk model has increasingly been questioned because of the recurring observation that an organism's response to high stressor doses differs from that to low doses. This raises important questions about the biological and evolutionary validity of the LNT model. In this review we reiterate that the LNT model as applied to stochastic biological effects of low and moderate stressor levels has less biological validity than threshold or, particularly, hormetic models. In so doing, we rely heavily on literature from disciplines like ecophysiology or evolutionary ecology showing how exposure to moderate amounts of stress can have severe impacts on phenotype and organism reproductive fitness. We present a mathematical model that illustrates and explores the hypothetical conditions that make a particular kind of hormesis (conditioning hormesis) ecologically and evolutionarily plausible.
Collapse
Affiliation(s)
- David Costantini
- UMR 7221 CNRS/MNHN, Muséum National d'Histoire Naturelle, Sorbonne Universités, 7 rue Cuvier, 75005, Paris, France; Behavioural Ecology & Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Benny Borremans
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 610 Charles E. Young Dr. South, Los Angeles, 90095, United States; Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BIOSTAT), Hasselt University, Agoralaan gebouw D, 3590, Diepenbeek, Belgium
| |
Collapse
|
19
|
Zilio G, Moesch L, Bovet N, Sarr A, Koella JC. The effect of parasite infection on the recombination rate of the mosquito Aedes aegypti. PLoS One 2018; 13:e0203481. [PMID: 30300349 PMCID: PMC6177114 DOI: 10.1371/journal.pone.0203481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/21/2018] [Indexed: 12/29/2022] Open
Abstract
Sexual reproduction and meiotic recombination generate new genetic combinations and may thereby help an individual infected by a parasite to protect its offspring from being infected. While this idea is often used to understand the evolutionary forces underlying the maintenance of sex and recombination, it also suggests that infected individuals should increase plastically their rate of recombination. We tested the latter idea with the mosquito Aedes aegypti and asked whether females infected by the microsporidian Vavraia culicis were more likely to have recombinant offspring than uninfected females. To measure the rate of recombination over a chromosome we analysed combinations of microsatellites on chromosome 3 in infected and uninfected females, in the (uninfected) males they copulated with and in their offspring. As predicted, the infected females were more likely to have recombinant offspring than the uninfected ones. These results show the ability of a female to diversify her offspring in response to parasitic infection by plastically increasing her recombination rate.
Collapse
Affiliation(s)
- Giacomo Zilio
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Lea Moesch
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Department of Environmental Systems Science, ETHZ, Zurich, Switzerland
| | - Nathalie Bovet
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Anouk Sarr
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Jacob C. Koella
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
20
|
Seudre O, Namias A, Gardella O, Da Silva G, Gouyon PH, López-Villavicencio M. Why outcross? The abandon-ship hypothesis in a facultative outcrossing/selfing fungal species. Fungal Genet Biol 2018; 120:1-8. [PMID: 30179667 DOI: 10.1016/j.fgb.2018.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/20/2018] [Accepted: 08/30/2018] [Indexed: 11/17/2022]
Abstract
Most species able to reproduce both sexually and asexually (facultative sexual species) invest more in sexual reproduction in stressful environment conditions. According to the abandon-ship hypothesis, plasticity for investment in sexual reproduction may have been selected in these species, allowing unfit genotypes to generate progeny carrying new advantageous allelic combinations. We tested this hypothesis in Aspergillus nidulans, a fungus able to reproduce asexually, or sexually, by outcrossing and/or haploid selfing (i.e. fusion of genetically identical haploid nuclei, causing immediate genome-wide homozygosity). We crossed various strains of A. nidulans in a non-stressful environment and a stressful environment containing a non-lethal dose of fungicide. Without stress, crosses preferentially generated haploselfed fruiting bodies, whereas stressful conditions significantly increased the outcrossing rate. Our results strongly support the abandon-ship hypothesis and suggest that, for parents with low fitness, the costs of investing in sexual reproduction may be compensated by the production of fitter progeny carrying beneficial allele combinations. Similarly, the progeny generated by outcrossing was less fit than that produced by haploid selfing in non-stressful environments, but fitter in stressful conditions, suggesting that outcrossing may have short-term advantages in stressful environments in A. nidulans.
Collapse
Affiliation(s)
- Océane Seudre
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE. CP 75005, 57 rue Cuvier, 75005 Paris, France
| | - Alice Namias
- Département de Biologie, Ecole Normale Supérieure, PSL Research University, 75005 Paris, France
| | - Olivia Gardella
- Facultad de Agronomía, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Guillaume Da Silva
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE. CP 75005, 57 rue Cuvier, 75005 Paris, France
| | - Pierre-Henri Gouyon
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE. CP 75005, 57 rue Cuvier, 75005 Paris, France
| | - Manuela López-Villavicencio
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE. CP 75005, 57 rue Cuvier, 75005 Paris, France.
| |
Collapse
|
21
|
Generation of variation and a modified mean fitness principle: Necessity is the mother of genetic invention. Theor Popul Biol 2018; 123:1-8. [DOI: 10.1016/j.tpb.2018.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 02/05/2023]
|
22
|
Rybnikov SR, Frenkel ZM, Korol AB. What drives the evolution of condition-dependent recombination in diploids? Some insights from simulation modelling. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0460. [PMID: 29109223 DOI: 10.1098/rstb.2016.0460] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2017] [Indexed: 12/15/2022] Open
Abstract
While the evolutionary advantages of non-zero recombination rates have prompted diverse theoretical explanations, the evolution of essential recombination features remains underexplored. We focused on one such feature, the condition dependence of recombination, viewed as the variation in within-generation sensitivity of recombination to external (environment) and/or internal (genotype) conditions. Limited empirical evidence for its existence comes mainly from diploids, whereas theoretical models show that it only easily evolves in haploids. The evolution of condition-dependent recombination can be explained by its advantage for the selected system (indirect effect), or by benefits to modifier alleles, ensuring this strategy regardless of effects on the selected system (direct effect). We considered infinite panmictic populations of diploids exposed to a cyclical two-state environment. Each organism had three selected loci. Examining allele dynamics at a fourth, selectively neutral recombination modifier locus, we frequently observed that a modifier allele conferring condition-dependent recombination between the selected loci displaced the allele conferring the optimal constant recombination rate. Our simulations also confirm the results of theoretical studies showing that condition-dependent recombination cannot evolve in diploids on the basis of direct fitness-dependent effects alone. Therefore, the evolution of condition-dependent recombination in diploids can be driven by indirect effects alone, i.e. by modifier effects on the selected system.This article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'.
Collapse
Affiliation(s)
| | - Zeev M Frenkel
- Institute of Evolution, University of Haifa, Haifa, Israel
| | | |
Collapse
|
23
|
Gerber N, Kokko H, Ebert D, Booksmythe I. Daphnia invest in sexual reproduction when its relative costs are reduced. Proc Biol Sci 2018; 285:20172176. [PMID: 29343596 PMCID: PMC5805931 DOI: 10.1098/rspb.2017.2176] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/11/2017] [Indexed: 11/12/2022] Open
Abstract
The timing of sex in facultatively sexual organisms is critical to fitness, due to the differing demographic consequences of sexual versus asexual reproduction. In addition to the costs of sex itself, an association of sex with the production of dormant life stages also influences the optimal use of sex, especially in environments where resting eggs are essential to survive unfavourable conditions. Here we document population dynamics and the occurrence of sexual reproduction in natural populations of Daphnia magna across their growing season. The frequency of sexually reproducing females and males increased with population density and with decreasing asexual clutch sizes. The frequency of sexually reproducing females additionally increased as population growth rates decreased. Consistent with population dynamic models showing that the opportunity cost of sexual reproduction (foregoing contribution to current population growth) diminishes as populations approach carrying capacity, we found that investment in sexual reproduction was highest when asexual population growth was low or negative. Our results support the idea that the timing of sex is linked with periods when the relative cost of sex is reduced due to low potential asexual growth at high population densities. Thus, a combination of ecological and demographic factors affect the optimal timing of sexual reproduction, allowing D. magna to balance the necessity of sex against its costs.
Collapse
Affiliation(s)
- Nina Gerber
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Tvärminne Zoological Station, J.A. Palmenintie 260, 10900 Hanko, Finland
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Dieter Ebert
- Tvärminne Zoological Station, J.A. Palmenintie 260, 10900 Hanko, Finland
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Isobel Booksmythe
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Tvärminne Zoological Station, J.A. Palmenintie 260, 10900 Hanko, Finland
| |
Collapse
|
24
|
Phenotypic influences on the reproductive strategy of the facultative sexual rotifer Brachionus rubens (Monogononta). ORG DIVERS EVOL 2017. [DOI: 10.1007/s13127-017-0345-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Nieuwenhuis BPS, James TY. The frequency of sex in fungi. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0540. [PMID: 27619703 DOI: 10.1098/rstb.2015.0540] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2016] [Indexed: 12/16/2022] Open
Abstract
Fungi are a diverse group of organisms with a huge variation in reproductive strategy. While almost all species can reproduce sexually, many reproduce asexually most of the time. When sexual reproduction does occur, large variation exists in the amount of in- and out-breeding. While budding yeast is expected to outcross only once every 10 000 generations, other fungi are obligate outcrossers with well-mixed panmictic populations. In this review, we give an overview of the costs and benefits of sexual and asexual reproduction in fungi, and the mechanisms that evolved in fungi to reduce the costs of either mode. The proximate molecular mechanisms potentiating outcrossing and meiosis appear to be present in nearly all fungi, making them of little use for predicting outcrossing rates, but also suggesting the absence of true ancient asexual lineages. We review how population genetic methods can be used to estimate the frequency of sex in fungi and provide empirical data that support a mixed mode of reproduction in many species with rare to frequent sex in between rounds of mitotic reproduction. Finally, we highlight how these estimates might be affected by the fungus-specific mechanisms that evolved to reduce the costs of sexual and asexual reproduction.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'.
Collapse
Affiliation(s)
- Bart P S Nieuwenhuis
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University, Ann Arbor, MI 48109-1048, USA
| |
Collapse
|
26
|
Dellus-Gur E, Ram Y, Hadany L. Errors in mutagenesis and the benefit of cell-to-cell signalling in the evolution of stress-induced mutagenesis. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170529. [PMID: 29291054 PMCID: PMC5717628 DOI: 10.1098/rsos.170529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/02/2017] [Indexed: 06/07/2023]
Abstract
Stress-induced mutagenesis is a widely observed phenomenon. Theoretical models have shown that stress-induced mutagenesis can be favoured by natural selection due to the beneficial mutations it generates. These models, however, assumed an error-free regulation of mutation rate in response to stress. Here, we explore the effects of errors in the regulation of mutagenesis on the evolution of stress-induced mutagenesis, and consider the role of cell-to-cell signalling. Using theoretical models, we show (i) that stress-induced mutagenesis can be disadvantageous if errors are common; and (ii) that cell-to-cell signalling can allow stress-induced mutagenesis to be favoured by selection even when error rates are high. We conclude that cell-to-cell signalling can facilitate the evolution of stress-induced mutagenesis in microbes through second-order selection.
Collapse
|
27
|
Ram Y, Hadany L. Condition-dependent sex: who does it, when and why? Philos Trans R Soc Lond B Biol Sci 2016; 371:20150539. [PMID: 27619702 PMCID: PMC5031623 DOI: 10.1098/rstb.2015.0539] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2016] [Indexed: 01/09/2023] Open
Abstract
We review the phenomenon of condition-dependent sex-where individuals' condition affects the likelihood that they will reproduce sexually rather than asexually. In recent years, condition-dependent sex has been studied both theoretically and empirically. Empirical results in microbes, fungi and plants support the theoretical prediction that negative condition-dependent sex, in which individuals in poor condition are more likely to reproduce sexually, can be evolutionarily advantageous under a wide range of settings. Here, we review the evidence for condition-dependent sex and its potential implications for the long-term survival and adaptability of populations. We conclude by asking why condition-dependent sex is not more commonly observed, and by considering generalizations of condition-dependent sex that might apply even for obligate sexuals.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'.
Collapse
Affiliation(s)
- Yoav Ram
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lilach Hadany
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
28
|
Menat J, Armstrong-Cho C, Banniza S. Lack of evidence for sexual reproduction in field populations of Colletotrichum lentis. FUNGAL ECOL 2016. [DOI: 10.1016/j.funeco.2015.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
Coalescent Times and Patterns of Genetic Diversity in Species with Facultative Sex: Effects of Gene Conversion, Population Structure, and Heterogeneity. Genetics 2015; 202:297-312. [PMID: 26584902 DOI: 10.1534/genetics.115.178004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 11/16/2015] [Indexed: 11/18/2022] Open
Abstract
Many diploid organisms undergo facultative sexual reproduction. However, little is currently known concerning the distribution of neutral genetic variation among facultative sexual organisms except in very simple cases. Understanding this distribution is important when making inferences about rates of sexual reproduction, effective population size, and demographic history. Here we extend coalescent theory in diploids with facultative sex to consider gene conversion, selfing, population subdivision, and temporal and spatial heterogeneity in rates of sex. In addition to analytical results for two-sample coalescent times, we outline a coalescent algorithm that accommodates the complexities arising from partial sex; this algorithm can be used to generate multisample coalescent distributions. A key result is that when sex is rare, gene conversion becomes a significant force in reducing diversity within individuals. This can reduce genomic signatures of infrequent sex (i.e., elevated within-individual allelic sequence divergence) or entirely reverse the predicted patterns. These models offer improved methods for assessing null patterns of molecular variation in facultative sexual organisms.
Collapse
|
30
|
Roze D. Selection for sex in finite populations. J Evol Biol 2014; 27:1304-22. [DOI: 10.1111/jeb.12344] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/07/2014] [Accepted: 01/20/2014] [Indexed: 11/28/2022]
Affiliation(s)
- D. Roze
- CNRS; UMI 3614; Evolutionary Biology and Ecology of Algae; Roscoff France
- Sorbonne Universités; UPMC Université Paris VI; Roscoff France
| |
Collapse
|
31
|
Abstract
Candida species exhibit a variety of ploidy states and modes of sexual reproduction. Most species possess the requisite genes for sexual reproduction, recombination, and meiosis, yet only a few have been reported to undergo a complete sexual cycle including mating and sporulation. Candida albicans, the most studied Candida species and a prevalent human fungal pathogen, completes its sexual cycle via a parasexual process of concerted chromosome loss rather than a conventional meiosis. In this study, we examine ploidy changes in Candida tropicalis, a closely related species to C. albicans that was recently revealed to undergo sexual mating. C. tropicalis diploid cells mate to form tetraploid cells, and we show that these can be induced to undergo chromosome loss to regenerate diploid forms by growth on sorbose medium. The diploid products are themselves mating competent, thereby establishing a parasexual cycle in this species for the first time. Extended incubation (>120 generations) of C. tropicalis tetraploid cells under rich culture conditions also resulted in instability of the tetraploid form and a gradual reduction in ploidy back to the diploid state. The fitness levels of C. tropicalis diploid and tetraploid cells were compared, and diploid cells exhibited increased fitness relative to tetraploid cells in vitro, despite diploid and tetraploid cells having similar doubling times. Collectively, these experiments demonstrate distinct pathways by which a parasexual cycle can occur in C. tropicalis and indicate that nonmeiotic mechanisms drive ploidy changes in this prevalent human pathogen.
Collapse
|
32
|
Döll K, Chatterjee S, Scheu S, Karlovsky P, Rohlfs M. Fungal metabolic plasticity and sexual development mediate induced resistance to arthropod fungivory. Proc Biol Sci 2013; 280:20131219. [PMID: 24068353 DOI: 10.1098/rspb.2013.1219] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Prey organisms do not tolerate predator attack passively but react with a multitude of inducible defensive strategies. Although inducible defence strategies are well known in plants attacked by herbivorous insects, induced resistance of fungi against fungivorous animals is largely unknown. Resistance to fungivory is thought to be mediated by chemical properties of fungal tissue, i.e. by production of toxic secondary metabolites. However, whether fungi change their secondary metabolite composition to increase resistance against arthropod fungivory is unknown. We demonstrate that grazing by a soil arthropod, Folsomia candida, on the filamentous fungus Aspergillus nidulans induces a phenotype that repels future fungivores and retards fungivore growth. Arthropod-exposed colonies produced significantly higher amounts of toxic secondary metabolites and invested more in sexual reproduction relative to unchallenged fungi. Compared with vegetative tissue and asexual conidiospores, sexual fruiting bodies turned out to be highly resistant against fungivory in facultative sexual A. nidulans. This indicates that fungivore grazing triggers co-regulated allocation of resources to sexual reproduction and chemical defence in A. nidulans. Plastic investment in facultative sex and chemical defence may have evolved as a fungal strategy to escape from predation.
Collapse
Affiliation(s)
- Katharina Döll
- Molecular Phytopathology and Mycotoxin Research, Georg-August-University Göttingen, , Göttingen, Germany, J.F. Blumenbach Institute of Zoology and Anthropology, Georg-August-University Göttingen, , Göttingen, Germany
| | | | | | | | | |
Collapse
|
33
|
López-Villavicencio M, Debets AJM, Slakhorst M, Giraud T, Schoustra SE. Deleterious effects of recombination and possible nonrecombinatorial advantages of sex in a fungal model. J Evol Biol 2013; 26:1968-78. [PMID: 23848947 DOI: 10.1111/jeb.12196] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/03/2013] [Accepted: 05/08/2013] [Indexed: 01/19/2023]
Abstract
Why sexual reproduction is so prevalent in nature remains a major question in evolutionary biology. Most of the proposed advantages of sex rely on the benefits obtained from recombination. However, it is still unclear whether the conditions under which these recombinatorial benefits would be sufficient to maintain sex in the short term are met in nature. Our study addresses a largely overlooked hypothesis, proposing that sex could be maintained in the short term by advantages due to functions linked with sex, but not related to recombination. These advantages would be so essential that sex could not be lost in the short term. Here, we used the fungus Aspergillus nidulans to experimentally test predictions of this hypothesis. Specifically, we were interested in (i) the short-term deleterious effects of recombination, (ii) possible nonrecombinatorial advantages of sex particularly through the elimination of mutations and (iii) the outcrossing rate under choice conditions in a haploid fungus able to reproduce by both outcrossing and haploid selfing. Our results were consistent with our hypotheses: we found that (i) recombination can be strongly deleterious in the short term, (ii) sexual reproduction between individuals derived from the same clonal lineage provided nonrecombinatorial advantages, likely through a selection arena mechanism, and (iii) under choice conditions, outcrossing occurs in a homothallic species, although at low rates.
Collapse
Affiliation(s)
- M López-Villavicencio
- Origine, Structure, Evolution de la Biodiversité, UMR 7205 CNRS-MNHN, Muséum National d'Histoire Naturelle, Paris, France.
| | | | | | | | | |
Collapse
|
34
|
Gueijman A, Ayali A, Ram Y, Hadany L. Dispersing away from bad genotypes: the evolution of Fitness-Associated Dispersal (FAD) in homogeneous environments. BMC Evol Biol 2013; 13:125. [PMID: 23777293 PMCID: PMC3704926 DOI: 10.1186/1471-2148-13-125] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 05/15/2013] [Indexed: 11/10/2022] Open
Abstract
Background Dispersal is a major factor in ecological and evolutionary dynamics. Although empirical evidence shows that the tendency to disperse varies among individuals in many organisms, the evolution of dispersal patterns is not fully understood. Previous theoretical studies have shown that condition-dependent dispersal may evolve as a means to move to a different environment when environments are heterogeneous in space or in time. However, dispersal is also a means to genetically diversify offspring, a genetic advantage that might be particularly important when the individual fitness is low. We suggest that plasticity in dispersal, in which fit individuals are less likely to disperse (Fitness-Associated Dispersal, or FAD), can evolve due to its evolutionary advantages even when the environment is homogeneous and stable, kin competition is weak, and the cost of dispersal is high. Results Using stochastic simulations we show that throughout the parameter range, selection favors FAD over uniform dispersal (in which all individuals disperse with equal probability). FAD also has significant long-term effects on the mean fitness and genotypic variance of the population. Conclusions We show that FAD evolves under a very wide parameter range, regardless of its effects on the population mean fitness. We predict that individuals of low quality will have an increased tendency for dispersal, even when the environment is homogeneous, there is no direct competition with neighbors, and dispersal carries significant costs.
Collapse
Affiliation(s)
- Ariel Gueijman
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel-Aviv 69978, Israel
| | | | | | | |
Collapse
|
35
|
Doums C, Cronin AL, Ruel C, Fédérici P, Haussy C, Tirard C, Monnin T. Facultative use of thelytokous parthenogenesis for queen production in the polyandrous ant Cataglyphis cursor. J Evol Biol 2013; 26:1431-44. [PMID: 23639217 DOI: 10.1111/jeb.12142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/30/2013] [Accepted: 02/13/2013] [Indexed: 11/27/2022]
Abstract
The evolutionary paradox of sex remains one of the major debates in evolutionary biology. The study of species capable of both sexual and asexual reproduction can elucidate factors important in the evolution of sex. One such species is the ant Cataglyphis cursor, where the queen maximizes the transmission of her genes by producing new queens (gynes) asexually while simultaneously maintaining a genetically diverse workforce via the sexual production of workers. We show that the queen can also produce gynes sexually and may do so to offset the costs of asexual reproduction. We genotyped 235 gynes from 18 colonies and found that half were sexually produced. A few colonies contained both sexually and asexually produced gynes. Although workers in this species can also use thelytoky, we found no evidence of worker production of gynes based on genotypes of 471 workers from the six colonies producing sexual gynes. Gynes are thus mainly, and potentially exclusively, produced by the queen. Simulations of gynes inbreeding level following one to ten generations of automictic thelytoky suggest that the queen switches between or combines thelytoky and sex, which may reduce the costs of inbreeding. This is supported by the relatively small size of inbred gynes in one colony, although we found no relationship between the level of inbreeding and immune parameters. Such facultative use of sex and thelytoky by individual queens contrasts with other known forms of parthenogenesis in ants, which are typically characterized by distinct lineages specializing in one strategy or the other.
Collapse
Affiliation(s)
- C Doums
- Laboratoire Ecologie & Evolution CNRS UMR 7625, Université Pierre et Marie Curie, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The evolution of sex is one of the most important and controversial problems in evolutionary biology. Although sex is almost universal in higher animals and plants, its inherent costs have made its maintenance difficult to explain. The most famous of these is the twofold cost of males, which can greatly reduce the fecundity of a sexual population, compared to a population of asexual females. Over the past century, multiple hypotheses, along with experimental evidence to support these, have been put forward to explain widespread costly sex. In this review, we outline some of the most prominent theories, along with the experimental and observational evidence supporting these. Historically, there have been 4 classes of theories: the ability of sex to fix multiple novel advantageous mutants (Fisher-Muller hypothesis); sex as a mechanism to stop the build-up of deleterious mutations in finite populations (Muller's ratchet); recombination creating novel genotypes that can resist infection by parasites (Red Queen hypothesis); and the ability of sex to purge bad genomes if deleterious mutations act synergistically (mutational deterministic hypothesis). Current theoretical and experimental evidence seems to favor the hypothesis that sex breaks down selection interference between new mutants, or it acts as a mechanism to shuffle genotypes in order to repel parasitic invasion. However, there is still a need to collect more data from natural populations and experimental studies, which can be used to test different hypotheses.
Collapse
Affiliation(s)
- Matthew Hartfield
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
37
|
Mostowy R, Engelstädter J. Host–parasite coevolution induces selection for condition‐dependent sex. J Evol Biol 2012; 25:2033-2046. [DOI: 10.1111/j.1420-9101.2012.02584.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 06/04/2012] [Accepted: 06/27/2012] [Indexed: 11/27/2022]
Affiliation(s)
- R. Mostowy
- Institute for Integrative Biology ETH Zurich Zurich Switzerland
- Department of Infectious Disease Epidemiology Imperial College London London UK
| | - J. Engelstädter
- Institute for Biogeochemistry and Pollutant Dynamics ETH Zurich Zurich Switzerland
- School of Biological Sciences The University of Queensland Brisbane Qld Australia
| |
Collapse
|
38
|
Obolski U, Hadany L. Implications of stress-induced genetic variation for minimizing multidrug resistance in bacteria. BMC Med 2012; 10:89. [PMID: 22889082 PMCID: PMC3482572 DOI: 10.1186/1741-7015-10-89] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 08/13/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Antibiotic resistance in bacterial infections is a growing threat to public health. Recent evidence shows that when exposed to stressful conditions, some bacteria perform higher rates of horizontal gene transfer and mutation, and thus acquire antibiotic resistance more rapidly. METHODS We incorporate this new notion into a mathematical model for the emergence of antibiotic multi-resistance in a hospital setting. RESULTS We show that when stress has a considerable effect on genetic variation, the emergence of antibiotic resistance is dramatically affected. A strategy in which patients receive a combination of antibiotics (combining) is expected to facilitate the emergence of multi-resistant bacteria when genetic variation is stress-induced. The preference between a strategy in which one of two effective drugs is assigned randomly to each patient (mixing), and a strategy where only one drug is administered for a specific period of time (cycling) is determined by the resistance acquisition mechanisms. We discuss several features of the mechanisms by which stress affects variation and predict the conditions for success of different antibiotic treatment strategies. CONCLUSIONS These findings should encourage research on the mechanisms of stress-induced genetic variation and establish the importance of incorporating data about these mechanisms when considering antibiotic treatment strategies.
Collapse
Affiliation(s)
- Uri Obolski
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | | |
Collapse
|
39
|
Berman J, Hadany L. Does stress induce (para)sex? Implications for Candida albicans evolution. Trends Genet 2012; 28:197-203. [PMID: 22364928 DOI: 10.1016/j.tig.2012.01.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/19/2012] [Accepted: 01/26/2012] [Indexed: 01/09/2023]
Abstract
Theory predicts that stress is a key factor in explaining the evolutionary role of sex in facultatively sexual organisms, including microorganisms. Organisms capable of reproducing both sexually and asexually are expected to mate more frequently when stressed, and such stress-induced mating is predicted to facilitate adaptation. Here, we propose that stress has an analogous effect on the parasexual cycle in Candida albicans, which involves alternation of generations between diploid and tetraploid cells. The parasexual cycle can generate high levels of diversity, including aneuploidy, yet it apparently occurs only rarely in nature. We review the evidence that stress facilitates four major steps in the parasexual cycle and suggest that parasex occurs much more frequently under stress conditions. This may explain both the evolutionary significance of parasex and its apparent rarity.
Collapse
Affiliation(s)
- Judith Berman
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
40
|
Jarosz DF, Taipale M, Lindquist S. Protein homeostasis and the phenotypic manifestation of genetic diversity: principles and mechanisms. Annu Rev Genet 2011; 44:189-216. [PMID: 21047258 DOI: 10.1146/annurev.genet.40.110405.090412] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Changing a single nucleotide in a genome can have profound consequences under some conditions, but the same change can have no consequences under others. Indeed, organisms can be surprisingly robust to environmental and genetic perturbations. Yet, the mechanisms underlying such robustness are controversial. Moreover, how they might affect evolutionary change remains enigmatic. Here, we review the recently appreciated central role of protein homeostasis in buffering and potentiating genetic variation and discuss how these processes mediate the critical influence of the environment on the relationship between genotype and phenotype. Deciphering how robustness emerges from biological organization and the mechanisms by which it is overcome in changing environments will lead to a more complete understanding of both fundamental evolutionary processes and diverse human diseases.
Collapse
Affiliation(s)
- Daniel F Jarosz
- Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, Cambridge, Massachusetts 02142, USA.
| | | | | |
Collapse
|
41
|
Higher rates of sex evolve in spatially heterogeneous environments. Nature 2010; 468:89-92. [PMID: 20944628 DOI: 10.1038/nature09449] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 08/24/2010] [Indexed: 11/09/2022]
Abstract
The evolution and maintenance of sexual reproduction has puzzled biologists for decades. Although this field is rich in hypotheses, experimental evidence is scarce. Some important experiments have demonstrated differences in evolutionary rates between sexual and asexual populations; other experiments have documented evolutionary changes in phenomena related to genetic mixing, such as recombination and selfing. However, direct experiments of the evolution of sex within populations are extremely rare (but see ref. 12). Here we use the rotifer, Brachionus calyciflorus, which is capable of both sexual and asexual reproduction, to test recent theory predicting that there is more opportunity for sex to evolve in spatially heterogeneous environments. Replicated experimental populations of rotifers were maintained in homogeneous environments, composed of either high- or low-quality food habitats, or in heterogeneous environments that consisted of a mix of the two habitats. For populations maintained in either type of homogeneous environment, the rate of sex evolves rapidly towards zero. In contrast, higher rates of sex evolve in populations experiencing spatially heterogeneous environments. The data indicate that the higher level of sex observed under heterogeneity is not due to sex being less costly or selection against sex being less efficient; rather sex is sufficiently advantageous in heterogeneous environments to overwhelm its inherent costs. Counter to some alternative theories for the evolution of sex, there is no evidence that genetic drift plays any part in the evolution of sex in these populations.
Collapse
|
42
|
Abstract
A new study has found that strains of the fungus Aspergillus nidulans produce more of their spores sexually in environments where they are less fit, resembling a hypothesized transitional stage in the evolution of sex.
Collapse
Affiliation(s)
- Clifford Zeyl
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| |
Collapse
|
43
|
Fitness-Associated Sexual Reproduction in a Filamentous Fungus. Curr Biol 2010; 20:1350-5. [DOI: 10.1016/j.cub.2010.05.060] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 05/21/2010] [Accepted: 05/24/2010] [Indexed: 01/04/2023]
|
44
|
Schneider A, Elgar MA. Facultative sex and reproductive strategies in response to male availability in the spiny stick insect, Extatosoma tiaratum. AUST J ZOOL 2010. [DOI: 10.1071/zo10012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Facultative thelytoky, in which females can reproduce both sexually and asexually, offers a promising model system to understand the evolutionary significance of sex, by providing insights into whether the different reproductive modes reflect an adaptive life-history response to varying environmental conditions. Females of the spiny stick insect, Extatosoma tiaratum, can reproduce both sexually or asexually. We show that virgin females signal their reproductive state: males respond to signals produced by virgin females that have not commenced ovipositing, but fail to respond to ovipositing virgin females. Virgin females reared under different social environments varied their reproductive output: virgin females reared in the absence of males laid more eggs over a seven-day period than virgin females reared in the presence of males. The reproductive output of mated females over a seven-day period was higher than that of virgin females. These data suggest that female E. tiaratum adjust several life-history strategies in conjunction with facultative thelytoky.
Collapse
|
45
|
Abstract
Recent modeling has shown that condition-dependent sex can evolve much more readily than sex that occurs at a uniform rate, even in the face of substantial costs of sex. Specifically, evolution favors genes that cause organisms to allocate more resources to sexual reproduction when they are in poor condition and to asexual reproduction--including increased life span--when they are in good condition. This form of fitness-associated sex (FAS) evolves because modifier genes that promote their own escape from low-fitness genetic backgrounds and that remain longer in high-fitness genetic backgrounds rise in frequency alongside the spread of high-fitness genotypes due to selection. Importantly, FAS does not evolve because it is good for the individual or good for the species but because it is in the selfish interest of modifier genes that promote FAS to move from low- to high-fitness genetic backgrounds. Even though FAS does not evolve for the good of its descendants, we show here that FAS often hastens the rate of adaptation. Ironically, the rate of adaptation is most likely to be accelerated by FAS when sex is costly, because FAS makes it more likely that individuals in poor condition will suffer the costs of sex, improving the efficiency with which less fit alleles are eliminated.
Collapse
Affiliation(s)
- Lilach Hadany
- Department of Plant Sciences, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
46
|
Affiliation(s)
- Sarah P Otto
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
47
|
Morran LT, Cappy BJ, Anderson JL, Phillips PC. Sexual partners for the stressed: facultative outcrossing in the self-fertilizing nematode Caenorhabditis elegans. Evolution 2009; 63:1473-82. [PMID: 19210536 PMCID: PMC4183189 DOI: 10.1111/j.1558-5646.2009.00652.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sexual reproduction shuffles genetic variation, potentially enhancing the evolutionary response to environmental change. Many asexual organisms respond to stress by generating facultative sexual reproduction, presumably as a means of escaping the trap of low genetic diversity. Self-fertilizing organisms are subject to similar genetic limitations: the consistent loss of genetic diversity within lineages restricts the production of variation through recombination. Selfing organisms may therefore benefit from a similar shift in mating strategy during periods of stress. We determined the effects of environmental stress via starvation and passage through the stress-resistant dauer stage on mating system dynamics of Caenorhabditis elegans, which reproduces predominantly through self-fertilization but is capable of outcrossing in the presence of males. Starvation elevated male frequencies in a strain-specific manner through differential male survival during dauer exposure and increased outcrossing rates after dauer exposure. In the most responsive strain, the mating system changed from predominantly selfing to almost exclusively outcrossing. Like facultative sex in asexual organisms, facultative outcrossing in C. elegans may periodically facilitate adaptation under stress. Such a shift in reproductive strategy should have a major impact on evolutionary change within these populations and may be a previously unrecognized feature of other highly selfing organisms.
Collapse
Affiliation(s)
- Levi T. Morran
- Center for Ecology & Evolutionary Biology, 335 Pacific Hall, 5289 University of Oregon, Eugene, OR 97403-5289
| | - Brian J. Cappy
- Center for Ecology & Evolutionary Biology, 335 Pacific Hall, 5289 University of Oregon, Eugene, OR 97403-5289
| | - Jennifer L. Anderson
- Center for Ecology & Evolutionary Biology, 335 Pacific Hall, 5289 University of Oregon, Eugene, OR 97403-5289
| | - Patrick C. Phillips
- Center for Ecology & Evolutionary Biology, 335 Pacific Hall, 5289 University of Oregon, Eugene, OR 97403-5289
| |
Collapse
|
48
|
Cáceres CE, Hartway C, Paczolt KA. Inbreeding depression varies with investment in sex in a facultative parthenogen. Evolution 2009; 63:2474-80. [PMID: 19473400 DOI: 10.1111/j.1558-5646.2009.00707.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reproductive mode of facultative parthenogens allows recessive mutations that accumulate during the asexual phase to be unmasked following sexual reproduction. Longer periods of asexual reproduction should increase the accumulation of deleterious mutations within individuals, reduce population-level genetic diversity via competition and increase the probability of mating among close relatives. Having documented that the investment in sexual reproduction differs among populations and clones of Daphnia pulicaria, we ask if this variation is predictive of the level of inbreeding depression across populations. In four lake populations that vary in sex investment, we raised multiple families (mother, field-produced daughter, laboratory-produced daughter) on high food and estimated the fitness reduction in both sexually produced offspring relative to the maternal genotype. Inbred individuals had lower fitness than their field-produced siblings. The magnitude of fitness reduction in inbred offspring increased as population-level investment in sex decreased. However, there was less of a fitness reduction following sex in the field-produced daughters, suggesting that many field-collected mothers were involved in outcross mating.
Collapse
Affiliation(s)
- Carla E Cáceres
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | |
Collapse
|
49
|
|
50
|
Leontiev VV, Maury WJ, Hadany L. Drug induced superinfection in HIV and the evolution of drug resistance. INFECTION GENETICS AND EVOLUTION 2008; 8:40-50. [DOI: 10.1016/j.meegid.2007.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 09/22/2007] [Accepted: 09/24/2007] [Indexed: 11/25/2022]
|