1
|
Flores-León CD, Dominguez L, Aguayo-Ortiz R. Molecular basis of Toxoplasma gondii oryzalin resistance from a novel α-tubulin binding site model. Arch Biochem Biophys 2022; 730:109398. [PMID: 36116504 DOI: 10.1016/j.abb.2022.109398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022]
Abstract
Oryzalin (ORY) is a dinitroaniline derivative that inhibits the microtubule polymerization in plants and parasitic protozoa by selectively binding to the α-tubulin subunit. This herbicidal agent exhibits good antiprotozoal activity against major human parasites, such as Toxoplasma gondii (toxoplasmosis), Leishmania mexicana (leishmaniasis), and Plasmodium falciparum (malaria). Previous chemical mutagenesis assays on T. gondii α-tubulin (TgAT) have identified key mutations that lead to ORY resistance. Herein, we employed alchemical free energy methods and molecular dynamics simulations to determine if the ORY resistance mutations either decrease the TgAT's affinity of the compound or increase the protein stability. Our results here suggest that L136F and V202F mutations significantly decrease the affinity of ORY to TgAT, while T239I and V252L mutations diminish TgAT's flexibility. On the other hand, protein stability predictors determined that R243S mutation reduces TgAT stability due to the loss of its salt bridge interaction with E27. Interestingly, molecular dynamics simulations confirm that the loss of this key interaction leads to ORY binding site closure. Our study provides a better insight into the TgAT-ORY interaction, further supporting our recently proposed ORY-binding site.
Collapse
Affiliation(s)
- Carlos D Flores-León
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Laura Dominguez
- Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Rodrigo Aguayo-Ortiz
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| |
Collapse
|
2
|
Povedano JM, Li V, Lake KE, Bai X, Rallabandi R, Kim J, Xie Y, De Brabander JK, McFadden DG. TK216 targets microtubules in Ewing sarcoma cells. Cell Chem Biol 2022; 29:1325-1332.e4. [PMID: 35803262 PMCID: PMC9394687 DOI: 10.1016/j.chembiol.2022.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/02/2022] [Accepted: 06/15/2022] [Indexed: 11/12/2022]
Abstract
Ewing sarcoma (EWS) is a pediatric malignancy driven by the EWSR1-FLI1 fusion protein formed by the chromosomal translocation t(11; 22). The small molecule TK216 was developed as a first-in-class direct EWSR1-FLI1 inhibitor and is in phase II clinical trials in combination with vincristine for patients with EWS. However, TK216 exhibits anti-cancer activity against cancer cell lines and xenografts that do not express EWSR1-FLI1, and the mechanism underlying cytotoxicity remains unresolved. We apply a forward-genetics screening platform utilizing engineered hypermutation in EWS cell lines and identify recurrent mutations in TUBA1B, encoding ⍺-tubulin, that prove sufficient to drive resistance to TK216. Using reconstituted microtubule (MT) polymerization in vitro and cell-based chemical probe competition assays, we demonstrate that TK216 acts as an MT destabilizing agent. This work defines the mechanism of cytotoxicity of TK216, explains the synergy observed with vincristine, and calls for a reexamination of ongoing clinical trials with TK216.
Collapse
Affiliation(s)
- Juan Manuel Povedano
- Department of Internal Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Vicky Li
- Department of Internal Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Katherine E Lake
- Department of Internal Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Xin Bai
- Department of Internal Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Rameshu Rallabandi
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA; Program in Molecular Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jiwoong Kim
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Yang Xie
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jef K De Brabander
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA; Program in Molecular Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - David G McFadden
- Department of Internal Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA; Program in Molecular Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA.
| |
Collapse
|
3
|
Aguayo-Ortiz R, Dominguez L. Unveiling the Possible Oryzalin-Binding Site in the α-Tubulin of Toxoplasma gondii. ACS OMEGA 2022; 7:18434-18442. [PMID: 35694483 PMCID: PMC9178734 DOI: 10.1021/acsomega.2c00729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/11/2022] [Indexed: 06/09/2023]
Abstract
Dinitroaniline derivatives have been widely used as herbicidal agents to control weeds and grass. Previous studies demonstrated that these compounds also exhibit good antiparasitic activity against some protozoan parasites. Oryzalin (ORY), a representative dinitroaniline derivative, exerts its antiprotozoal activity against Toxoplasma gondii by inhibiting the microtubule polymerization process. Moreover, the identification of ORY-resistant T. gondii lines obtained by chemical mutagenesis confirmed that this compound binds selectively to α-tubulin. Based on experimental information reported so far and a multiple sequence analysis carried out in this work, we propose that the pironetin (PIR) site is the potential ORY-binding site. Therefore, we employed state-of-the-art computational approaches to characterize the interaction profile of ORY at the proposed site in the α-tubulin of T. gondii. An exhaustive search for other possible binding sites was performed using the Wrap "N" Shake method, which showed that ORY exhibits highest stability and affinity for the PIR site. Moreover, our molecular dynamics simulations revealed that the dipropylamine substituent of ORY interacts with a hydrophobic pocket, while the sulfonamide group formed hydrogen bonds with water molecules at the site entrance. Overall, our results suggest that ORY binds to the PIR site on the α-tubulin of the protozoan parasite T. gondii. This information will be very useful for designing less toxic and more potent antiprotozoal agents.
Collapse
Affiliation(s)
- Rodrigo Aguayo-Ortiz
- Departamento
de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Laura Dominguez
- Departamento
de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
4
|
Wang Y, Han H, Chen J, Yu Q, Vila-Aiub M, Beckie HJ, Powles SB. A dinitroaniline herbicide resistance mutation can be nearly lethal to plants. PEST MANAGEMENT SCIENCE 2022; 78:1547-1554. [PMID: 34981627 DOI: 10.1002/ps.6773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Lolium rigidum is the most important weed in Australian agriculture and pre-emergence dinitroaniline herbicides (e.g., trifluralin) are widely and persistently used for Lolium control. Consequently, evolution of resistance to dinitroaniline herbicides has been increasingly reported. Resistance-endowing target-site α-tubulin gene mutations are identified with varying frequency. This study investigated the putative fitness cost associated with the common resistance mutation Val-202-Phe and the rare resistance mutation Arg-243-Met causing helical plant growth. RESULTS Results showed a deleterious effect of Arg-243-Met on fitness when plants are homozygous for this mutation. This was evidenced as high plant mortality, severely diminished root and aboveground vegetative growth (lower relative growth rate), and very poor fecundity compared with the wild-type, which led to a nearly lethal fitness cost of >99.9% in competition with a wheat crop. A fitness penalty in vegetative growth was evident, but to a much lesser extent, in plants heterozygous for the Arg-243-Met mutation. By contrast, plants possessing the Val-202-Phe mutation exhibited a fitness advantage in vegetative and reproductive growth. CONCLUSION The α-tubulin mutations Arg-243-Met and Val-202-Phe have contrasting effects on fitness. These results help understand the absence of plants homozygous for the Arg-243-Met mutation and the high frequency of plants carrying the Val-202-Phe mutation in dinitroaniline-resistant L. rigidum populations. The α-tubulin Arg-243-Met mutation can have an exceptional fitness cost with nearly lethal effects on resistant L. rigidum plants. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanhui Wang
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, China
- Australian Herbicide Resistance Initiative (AHRI)-School of Agriculture and Environment, University of Western Australia (UWA), Crawley, WA, Australia
| | - Heping Han
- Australian Herbicide Resistance Initiative (AHRI)-School of Agriculture and Environment, University of Western Australia (UWA), Crawley, WA, Australia
| | - Jinyi Chen
- Australian Herbicide Resistance Initiative (AHRI)-School of Agriculture and Environment, University of Western Australia (UWA), Crawley, WA, Australia
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qin Yu
- Australian Herbicide Resistance Initiative (AHRI)-School of Agriculture and Environment, University of Western Australia (UWA), Crawley, WA, Australia
| | - Martin Vila-Aiub
- Australian Herbicide Resistance Initiative (AHRI)-School of Agriculture and Environment, University of Western Australia (UWA), Crawley, WA, Australia
- IFEVA - CONICET - Faculty of Agronomy, Department of Ecology, University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Hugh J Beckie
- Australian Herbicide Resistance Initiative (AHRI)-School of Agriculture and Environment, University of Western Australia (UWA), Crawley, WA, Australia
| | - Stephen B Powles
- Australian Herbicide Resistance Initiative (AHRI)-School of Agriculture and Environment, University of Western Australia (UWA), Crawley, WA, Australia
| |
Collapse
|
5
|
Gaillard N, Sharma A, Abbaali I, Liu T, Shilliday F, Cook AD, Ehrhard V, Bangera M, Roberts AJ, Moores CA, Morrissette N, Steinmetz MO. Inhibiting parasite proliferation using a rationally designed anti-tubulin agent. EMBO Mol Med 2021; 13:e13818. [PMID: 34661376 PMCID: PMC8573600 DOI: 10.15252/emmm.202013818] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 11/09/2022] Open
Abstract
Infectious diseases caused by apicomplexan parasites remain a global public health threat. The presence of multiple ligand-binding sites in tubulin makes this protein an attractive target for anti-parasite drug discovery. However, despite remarkable successes as anti-cancer agents, the rational development of protozoan parasite-specific tubulin drugs has been hindered by a lack of structural and biochemical information on protozoan tubulins. Here, we present atomic structures for a protozoan tubulin and microtubule and delineate the architectures of apicomplexan tubulin drug-binding sites. Based on this information, we rationally designed the parasite-specific tubulin inhibitor parabulin and show that it inhibits growth of parasites while displaying no effects on human cells. Our work presents for the first time the rational design of a species-specific tubulin drug providing a framework to exploit structural differences between human and protozoa tubulin variants enabling the development of much-needed, novel parasite inhibitors.
Collapse
Affiliation(s)
- Natacha Gaillard
- Laboratory of Biomolecular ResearchDivision of Biology and ChemistryPaul Scherrer InstitutVilligenSwitzerland
| | - Ashwani Sharma
- Laboratory of Biomolecular ResearchDivision of Biology and ChemistryPaul Scherrer InstitutVilligenSwitzerland
| | - Izra Abbaali
- Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Tianyang Liu
- Institute of Structural and Molecular BiologyBirkbeck, University of LondonLondonUK
| | - Fiona Shilliday
- Institute of Structural and Molecular BiologyBirkbeck, University of LondonLondonUK
| | - Alexander D Cook
- Institute of Structural and Molecular BiologyBirkbeck, University of LondonLondonUK
| | - Valentin Ehrhard
- Laboratory of Biomolecular ResearchDivision of Biology and ChemistryPaul Scherrer InstitutVilligenSwitzerland
| | - Mamata Bangera
- Institute of Structural and Molecular BiologyBirkbeck, University of LondonLondonUK
| | - Anthony J Roberts
- Institute of Structural and Molecular BiologyBirkbeck, University of LondonLondonUK
| | - Carolyn A Moores
- Institute of Structural and Molecular BiologyBirkbeck, University of LondonLondonUK
| | - Naomi Morrissette
- Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Michel O Steinmetz
- Laboratory of Biomolecular ResearchDivision of Biology and ChemistryPaul Scherrer InstitutVilligenSwitzerland
- Biozentrum University of BaselBaselSwitzerland
| |
Collapse
|
6
|
Wu C, Paciorek M, Liu K, LeClere S, Perez‐Jones A, Westra P, Sammons RD. Investigating the presence of compensatory evolution in dicamba resistant IAA16 mutated kochia (Bassia scoparia) †. PEST MANAGEMENT SCIENCE 2021; 77:1775-1785. [PMID: 33236492 PMCID: PMC7986355 DOI: 10.1002/ps.6198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/02/2020] [Accepted: 11/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Lack of fitness costs has been reported for multiple herbicide resistance traits, but the underlying evolutionary mechanisms are not well understood. Compensatory evolution that ameliorates resistance costs, has been documented in bacteria and insects but rarely studied in weeds. Dicamba resistant IAA16 (G73N) mutated kochia was previously found to have high fecundity in the absence of competition, regardless of significant vegetative growth defects. To understand if costs of dicamba resistance can be compensated through traits promoting reproductive success in kochia, we thoroughly characterized the reproductive growth and development of different G73N kochia biotypes. Flowering phenology, seed production and reproductive allocation were quantified through greenhouse studies, floral (stigma-anthers distance) and seed morphology, as well as resulting mating and seed dispersal systems were studied through time-course microcopy images. RESULTS G73N covaried with multiple phenological, morphological and ecological traits that improve reproductive fitness: (i) 16-60% higher reproductive allocation; (ii) longer reproduction phase through early flowering (2-7 days); (iii) smaller stigma-anthers separation (up to 60% reduction of herkogamy and dichogamy) that can potentially promote selfing and reproductive assurance; (iv) 'winged' seeds with 30-70% longer sepals that facilitate long-distance seed dispersal. CONCLUSION The current study demonstrates that costs of herbicide resistance can be ameliorated through coevolution of other fitness penalty alleviating traits. As illustrated in a hypothetical model, the evolution of herbicide resistance is an ongoing fitness maximization process, which poses challenges to contain the spread of resistance. © 2020 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Chenxi Wu
- Department of Plant BiotechnologyBayer CropScienceChesterfieldMOUSA
| | - Marta Paciorek
- Department of Plant BiotechnologyBayer CropScienceChesterfieldMOUSA
| | - Kang Liu
- Department of Plant BiotechnologyBayer CropScienceChesterfieldMOUSA
| | - Sherry LeClere
- Department of Plant BiotechnologyBayer CropScienceChesterfieldMOUSA
| | | | - Phil Westra
- Department of Agricultural BiologyColorado State UniversityFort CollinsCOUSA
| | | |
Collapse
|
7
|
Ma CI, Tirtorahardjo JA, Jan S, Schweizer SS, Rosario SAC, Du Y, Zhang JJ, Morrissette NS, Andrade RM. Auranofin Resistance in Toxoplasma gondii Decreases the Accumulation of Reactive Oxygen Species but Does Not Target Parasite Thioredoxin Reductase. Front Cell Infect Microbiol 2021; 11:618994. [PMID: 33816332 PMCID: PMC8017268 DOI: 10.3389/fcimb.2021.618994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Auranofin, a reprofiled FDA-approved drug originally designed to treat rheumatoid arthritis, has emerged as a promising anti-parasitic drug. It induces the accumulation of reactive oxygen species (ROS) in parasites, including Toxoplasma gondii. We generated auranofin resistant T. gondii lines through chemical mutagenesis to identify the molecular target of this drug. Resistant clones were confirmed with a competition assay using wild-type T. gondii expressing yellow fluorescence protein (YFP) as a reference strain. The predicted auranofin target, thioredoxin reductase, was not mutated in any of our resistant lines. Subsequent whole genomic sequencing analysis (WGS) did not reveal a consensus resistance locus, although many have point mutations in genes encoding redox-relevant proteins such as superoxide dismutase (TgSOD2) and ribonucleotide reductase. We investigated the SOD2 L201P mutation and found that it was not sufficient to confer resistance when introduced into wild-type parasites. Resistant clones accumulated less ROS than their wild type counterparts. Our results demonstrate that resistance to auranofin in T. gondii enhances its ability to abate oxidative stress through diverse mechanisms. This evidence supports a hypothesized mechanism of auranofin anti-parasitic activity as disruption of redox homeostasis.
Collapse
Affiliation(s)
- Christopher I. Ma
- Division of Infectious Diseases, Department of Medicine, University of California Irvine, Irvine, CA, United States
| | - James A. Tirtorahardjo
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA, United States
| | - Sharon Jan
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA, United States
| | - Sakura S. Schweizer
- Division of Infectious Diseases, Department of Medicine, University of California Irvine, Irvine, CA, United States
- School of Biological Sciences, University of California Irvine, Irvine, CA, United States
| | - Shawn A. C. Rosario
- School of Biological Sciences, University of California Irvine, Irvine, CA, United States
| | - Yanmiao Du
- School of Biological Sciences, University of California Irvine, Irvine, CA, United States
| | - Jerry J. Zhang
- Division of Infectious Diseases, Department of Medicine, University of California Irvine, Irvine, CA, United States
| | - Naomi S. Morrissette
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, United States
| | - Rosa M. Andrade
- Division of Infectious Diseases, Department of Medicine, University of California Irvine, Irvine, CA, United States
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
8
|
Chen J, Chu Z, Han H, Patterson E, Yu Q, Powles S. Diversity of α-tubulin transcripts in Lolium rigidum. PEST MANAGEMENT SCIENCE 2021; 77:970-977. [PMID: 32991064 DOI: 10.1002/ps.6109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/18/2020] [Accepted: 09/29/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Tubulin, the target site of dinitroaniline herbicides, is encoded by small gene families in plants. To better characterize the mechanisms of target-site resistance to dinitroaniline herbicides in the globally important weedy species Lolium rigidum, attempts were made to amplify and sequence α-tubulin transcripts. RESULTS Four α-tubulin isoforms (TUA1, TUA2, TUA3 and TUA4) were identified in L. rigidum. Variations in the number and sequence of transcripts encoding these α-tubulin proteins were found in individuals from the two L. rigidum populations examined. Within and among populations, differences in the 5'- and 3'-untranslated regions of cDNA in TUA3 and TUA4 were identified. Furthermore, a novel double mutation, Arg-390-Cys+Asp-442-Glu, in the TUA3 transcript was identified and has the potential to confer dinitroaniline resistance. CONCLUSION This research reveals the complexity of the α-tubulin gene family in individuals/populations of the cross-pollinated weedy species L. rigidum, and highlights the need for better understanding of the molecular architecture of tubulin gene families for detecting resistance point mutations. Although TUA4 is a commonly expressed α-tubulin isoform containing most frequently reported resistance mutations, other mutant tubulin isoforms may also have a role in conferring dinitroaniline resistance.
Collapse
Affiliation(s)
- Jinyi Chen
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, Western Australia, Australia
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Zhizhan Chu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Heping Han
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, Western Australia, Australia
| | - Eric Patterson
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Qin Yu
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, Western Australia, Australia
| | - Stephen Powles
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
9
|
Chen J, Yu Q, Patterson E, Sayer C, Powles S. Dinitroaniline Herbicide Resistance and Mechanisms in Weeds. FRONTIERS IN PLANT SCIENCE 2021; 12:634018. [PMID: 33841462 PMCID: PMC8027333 DOI: 10.3389/fpls.2021.634018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/08/2021] [Indexed: 05/08/2023]
Abstract
Dinitroanilines are microtubule inhibitors, targeting tubulin proteins in plants and protists. Dinitroaniline herbicides, such as trifluralin, pendimethalin and oryzalin, have been used as pre-emergence herbicides for weed control for decades. With widespread resistance to post-emergence herbicides in weeds, the use of pre-emergence herbicides such as dinitroanilines has increased, in part, due to relatively slow evolution of resistance in weeds to these herbicides. Target-site resistance (TSR) to dinitroaniline herbicides due to point mutations in α-tubulin genes has been confirmed in a few weedy plant species (e.g., Eleusine indica, Setaria viridis, and recently in Lolium rigidum). Of particular interest is the resistance mutation Arg-243-Met identified from dinitroaniline-resistant L. rigidum that causes helical growth when plants are homozygous for the mutation. The recessive nature of the TSR, plus possible fitness cost for some resistance mutations, likely slows resistance evolution. Furthermore, non-target-site resistance (NTSR) to dinitroanilines has been rarely reported and only confirmed in Lolium rigidum due to enhanced herbicide metabolism (metabolic resistance). A cytochrome P450 gene (CYP81A10) has been recently identified in L. rigidum that confers resistance to trifluralin. Moreover, TSR and NTSR have been shown to co-exist in the same weedy species, population, and plant. The implication of knowledge and information on TSR and NTSR in management of dinitroaniline resistance is discussed.
Collapse
Affiliation(s)
- Jinyi Chen
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture and Environment, University of Western Australia (UWA), Perth, WA, Australia
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Qin Yu
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture and Environment, University of Western Australia (UWA), Perth, WA, Australia
- *Correspondence: Qin Yu,
| | - Eric Patterson
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Chad Sayer
- Nufarm Limited, Melbourne, VIC, Australia
| | - Stephen Powles
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture and Environment, University of Western Australia (UWA), Perth, WA, Australia
| |
Collapse
|
10
|
The tubulin mutation database: A resource for the cytoskeleton community. Cytoskeleton (Hoboken) 2019; 76:186-191. [DOI: 10.1002/cm.21514] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/21/2018] [Accepted: 01/17/2019] [Indexed: 11/07/2022]
|
11
|
Montazeri M, Mehrzadi S, Sharif M, Sarvi S, Tanzifi A, Aghayan SA, Daryani A. Drug Resistance in Toxoplasma gondii. Front Microbiol 2018; 9:2587. [PMID: 30420849 PMCID: PMC6215853 DOI: 10.3389/fmicb.2018.02587] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 10/10/2018] [Indexed: 12/12/2022] Open
Abstract
Toxoplasma gondii (T. gondii) is a global protozoan parasite infecting up to one-third of the world population. Pyrimethamine (PYR) and sulfadiazine (SDZ) are the most widely used drugs for treatment of toxoplasmosis; however, several failure cases have been recorded as well; suggesting the existence of drug resistant strains. This review aims to give a systematic and comprehensive understanding of drug resistance in T. gondii including mechanisms of resistance and sites of drug action in parasite. Analogous amino acid substitutions in the Toxoplasma enzyme were identified to confer PYR resistance. Moreover, resistance to clindamycin, spiramycin, and azithromycin is encoded in the rRNA genes of T. gondii. However, T. gondii SDZ resistance mechanism has not been proved yet. Recently there has been a slight increase in SDZ resistance. That is why the majority of studies were carried out using SDZ. Six strains resistant to SDZ were found in clinical cases between 2013 and 2017 which among Brazilian T. gondii isolates, TgCTBr11, Ck3, and Pg1 were identified in human toxoplasmosis, as well as in livestock intended for human consumption. In conclusion, recent experimental studies in clinical cases have clearly shown that drug resistance in Toxoplasma is ongoing. Thus, establishing a more effective therapeutic scheme in the treatment of toxoplasmosis is critically needed. The emergence of T. gondii strains resistant to current drugs, reviewed here, represents a concern not only for treatment failure but also for increased clinical severity in immunocompromised patients. To improve the therapeutic outcome in patients, a greater understanding of the exact mechanisms of drug resistance in T. gondii should be developed. Thus, monitoring the presence of resistant parasites, in food products, would seem a prudent public health program.
Collapse
Affiliation(s)
- Mahbobeh Montazeri
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Sharif
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Parasitology, School of Medicine, Sari Branch, Islamic Azad University, Sari, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Parasitology, Sari Medical School, Mazandaran University of Medical Sciences, Sari, Iran
| | - Asal Tanzifi
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sargis A Aghayan
- Laboratory of Zoology, Research Institute of Biology, Yerevan State University, Yerevan, Armenia
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Parasitology, Sari Medical School, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
12
|
G Silva M, Knowles DP, Antunes S, Domingos A, Esteves MA, Suarez CE. Inhibition of the in vitro growth of Babesia bigemina, Babesia caballi and Theileria equi parasites by trifluralin analogues. Ticks Tick Borne Dis 2017; 8:593-597. [PMID: 28416183 DOI: 10.1016/j.ttbdis.2017.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 10/19/2022]
Abstract
Bovine and equine babesiosis caused by Babesia bovis, Babesia bigemina and Babesia caballi, along with equine theileriosis caused by Theileria equi are global tick-borne hemoprotozoan diseases characterized by fever, anemia, weight losses and abortions. A common feature of these diseases are transition from acute to chronic phases, in which parasites may persist in the hosts for life. Antiprotozoal drugs are important for managing infection and disease. Previous research demonstrated that trifluralin analogues, designated (TFLAs) 1-15, which specifically bind to regions of alpha-tubulin protein in plants and protozoan parasites, have the ability to inhibit the in vitro growth of B. bovis. The inhibitory activity of TFLAs 1-15 minus TFLA 5 was tested in vitro against cultured B. bigemina, B. caballi and T. equi. The four TFLAs with greatest inhibitory activity were then analyzed for hemolytic activity and toxicity against erythrocytes. All TFLAs tested in the study showed inhibitory effects against the three parasite species. TFLA 2, TFLA 11, TFLA 13 and TFLA 14 were the most effective inhibitors for the three species tested, with estimated IC50 between 5.1 and 10.1μM at 72h. The drug's solvent (DMSO/ethanol) did not statistically affect the growth of the parasites nor cause hemolysis. Also, TFLA 2, 13 and 14 did not cause statistically significant hemolytic activity on bovine and equine erythrocytes at 15μM, and TFLA 2, 11 and 13 had no detectable toxic effects on bovine and equine erythrocytes at 15μM, suggesting that these drugs do not compromise erythrocyte viability. The demonstrated ability of the trifluralin analogues to inhibit in vitro growth of Babesia spp. and Theileria equi, and their lack of toxic effects on erythrocytes supports further in vivo testing and eventually their development as novel alternatives for the treatment of babesiosis and theileriosis.
Collapse
Affiliation(s)
- Marta G Silva
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
| | - Donald P Knowles
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA; Animal Disease Research Unit, USDA-ARS, 3003 ADBF, WSU, Pullman, WA, 99163-6630, USA.
| | - Sandra Antunes
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Rua da Junqueira 100, 1349-008 Lisboa, Portugal.
| | - Ana Domingos
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Rua da Junqueira 100, 1349-008 Lisboa, Portugal.
| | - Maria A Esteves
- Laboratório Nacional de Energia e Geologia, LNEG, Paço do Lumiar, 22, 1649-038 Lisboa, Portugal.
| | - Carlos E Suarez
- Animal Disease Research Unit, USDA-ARS, 3003 ADBF, WSU, Pullman, WA, 99163-6630, USA.
| |
Collapse
|
13
|
Sidik SM, Huet D, Ganesan SM, Huynh MH, Wang T, Nasamu AS, Thiru P, Saeij JPJ, Carruthers VB, Niles JC, Lourido S. A Genome-wide CRISPR Screen in Toxoplasma Identifies Essential Apicomplexan Genes. Cell 2016; 166:1423-1435.e12. [PMID: 27594426 PMCID: PMC5017925 DOI: 10.1016/j.cell.2016.08.019] [Citation(s) in RCA: 555] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/25/2016] [Accepted: 08/05/2016] [Indexed: 12/11/2022]
Abstract
Apicomplexan parasites are leading causes of human and livestock diseases such as malaria and toxoplasmosis, yet most of their genes remain uncharacterized. Here, we present the first genome-wide genetic screen of an apicomplexan. We adapted CRISPR/Cas9 to assess the contribution of each gene from the parasite Toxoplasma gondii during infection of human fibroblasts. Our analysis defines ∼200 previously uncharacterized, fitness-conferring genes unique to the phylum, from which 16 were investigated, revealing essential functions during infection of human cells. Secondary screens identify as an invasion factor the claudin-like apicomplexan microneme protein (CLAMP), which resembles mammalian tight-junction proteins and localizes to secretory organelles, making it critical to the initiation of infection. CLAMP is present throughout sequenced apicomplexan genomes and is essential during the asexual stages of the malaria parasite Plasmodium falciparum. These results provide broad-based functional information on T. gondii genes and will facilitate future approaches to expand the horizon of antiparasitic interventions.
Collapse
Affiliation(s)
- Saima M Sidik
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Diego Huet
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Suresh M Ganesan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - My-Hang Huynh
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Tim Wang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Armiyaw S Nasamu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Prathapan Thiru
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Jeroen P J Saeij
- Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, CA 95616, USA
| | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| |
Collapse
|
14
|
Targeting Toxoplasma tubules: tubulin, microtubules, and associated proteins in a human pathogen. EUKARYOTIC CELL 2014; 14:2-12. [PMID: 25380753 DOI: 10.1128/ec.00225-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite that causes serious opportunistic infections, birth defects, and blindness in humans. Microtubules are critically important components of diverse structures that are used throughout the Toxoplasma life cycle. As in other eukaryotes, spindle microtubules are required for chromosome segregation during replication. Additionally, a set of membrane-associated microtubules is essential for the elongated shape of invasive "zoites," and motility follows a spiral trajectory that reflects the path of these microtubules. Toxoplasma zoites also construct an intricate, tubulin-based apical structure, termed the conoid, which is important for host cell invasion and associates with proteins typically found in the flagellar apparatus. Last, microgametes specifically construct a microtubule-containing flagellar axoneme in order to fertilize macrogametes, permitting genetic recombination. The specialized roles of these microtubule populations are mediated by distinct sets of associated proteins. This review summarizes our current understanding of the role of tubulin, microtubule populations, and associated proteins in Toxoplasma; these components are used for both novel and broadly conserved processes that are essential for parasite survival.
Collapse
|
15
|
Darmency H, Menchari Y, Le Corre V, Délye C. Fitness cost due to herbicide resistance may trigger genetic background evolution. Evolution 2014; 69:271-8. [DOI: 10.1111/evo.12531] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 09/08/2014] [Indexed: 11/30/2022]
Affiliation(s)
| | - Yosra Menchari
- INRA; UMR1347 Agroécologie; Dijon 21000 France
- Current Address: Institut Supérieur de Biotechnologie de Béja; 9000 Béja Tunisia
| | | | | |
Collapse
|
16
|
A SAS-6-like protein suggests that the Toxoplasma conoid complex evolved from flagellar components. EUKARYOTIC CELL 2013; 12:1009-19. [PMID: 23687115 PMCID: PMC3697468 DOI: 10.1128/ec.00096-13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SAS-6 is required for centriole biogenesis in diverse eukaryotes. Here, we describe a novel family of SAS-6-like (SAS6L) proteins that share an N-terminal domain with SAS-6 but lack coiled-coil tails. SAS6L proteins are found in a subset of eukaryotes that contain SAS-6, including diverse protozoa and green algae. In the apicomplexan parasite Toxoplasma gondii, SAS-6 localizes to the centriole but SAS6L is found above the conoid, an enigmatic tubulin-containing structure found at the apex of a subset of alveolate organisms. Loss of SAS6L causes reduced fitness in Toxoplasma. The Trypanosoma brucei homolog of SAS6L localizes to the basal-plate region, the site in the axoneme where the central-pair microtubules are nucleated. When endogenous SAS6L is overexpressed in Toxoplasma tachyzoites or Trypanosoma trypomastigotes, it forms prominent filaments that extend through the cell cytoplasm, indicating that it retains a capacity to form higher-order structures despite lacking a coiled-coil domain. We conclude that although SAS6L proteins share a conserved domain with SAS-6, they are a functionally distinct family that predates the last common ancestor of eukaryotes. Moreover, the distinct localization of the SAS6L protein in Trypanosoma and Toxoplasma adds weight to the hypothesis that the conoid complex evolved from flagellar components.
Collapse
|
17
|
Ichinose M, Iizuka M, Kusumi J, Takefu M. Models of compensatory molecular evolution: Effects of back mutation. J Theor Biol 2013; 323:1-10. [DOI: 10.1016/j.jtbi.2013.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 01/10/2013] [Accepted: 01/13/2013] [Indexed: 01/15/2023]
|
18
|
Silva MG, Domingos A, Esteves MA, Cruz MEM, Suarez CE. Evaluation of the growth-inhibitory effect of trifluralin analogues on in vitro cultured Babesia bovis parasites. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2013; 3:59-68. [PMID: 24533294 DOI: 10.1016/j.ijpddr.2013.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 01/09/2013] [Accepted: 01/12/2013] [Indexed: 10/27/2022]
Abstract
Bovine babesiosis, caused by Babesia bovis, is a global tick borne hemoprotozoan parasite disease characterized by fever, anemia, weight losses and ultimately death. Several babesicidal drugs that have been in use in cattle for years have proven to be only partially effective and the development of alternative chemotherapeutics that are highly specific and have low toxicity against babesiosis is needed. Trifluralin derivatives specifically bind alpha-tubulin in plants and protozoa parasites causing growth inhibition. A set of 12 trifluralin analogues (TFLA) has previously been shown to be inhibitory for the growth of Leishmania species. The conservation of several key amino acids involved in the trifluralin binding site of alpha-tubulin among Leishmania sp. and B. bovis provides rationale for testing these compounds also as babesiacides. The previously tested Leishmania inhibitory, TFLA 1-12 minus TFLA 5, in addition to three novel TFLA (termed TFLA 13-15), were tested against in vitro cultured B. bovis parasites. While all of the TFLA tested in the study showed inhibition of B. bovis growth in vitro TFLA 7, TFLA 10 and TFLA 13, were the most effective inhibitors with estimated IC50 (μM) at 72 h of 8.5 ± 0.3; 9.2 ± 0.2; 8.9 ± 0.7, respectively for the biologically attenuated cloned B. bovis Mo7 strain, and 13.6 ± 1.5; 18.7 ± 1.6; 10.6 ± 1.9, respectively for the virulent B. bovis T3Bo strain. The differences found between the two strains were not statistically significant. Importantly, these drugs displayed low levels of toxicity for the host erythrocytes and bovine renal arterial endothelial cells at the doses tested. The demonstrated ability of trifluralin analogues to inhibit in vitro growth of B. bovis parasites combined with their low toxicity for host cells suggests that these compounds may be further developed as novel alternatives for the treatment of bovine babesiosis.
Collapse
Affiliation(s)
- Marta G Silva
- Animal Disease Research Unit, USDA-ARS, 3003 ADBF, WSU, Pullman, WA 99164-6630, USA ; Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA
| | - Ana Domingos
- Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - M Alexandra Esteves
- Fuel Cells and Hydrogen Unit, National Laboratory for Energy and Geology, Estrada do Paço do Lumiar, 1649-038 Lisboa, Portugal
| | - Maria E M Cruz
- Unit of New Forms of Bioactive Agents, Faculty of Pharmacy of the University of Lisbon, Estrada do Paço do Lumiar, 1649-038 Lisboa, Portugal
| | - Carlos E Suarez
- Animal Disease Research Unit, USDA-ARS, 3003 ADBF, WSU, Pullman, WA 99164-6630, USA
| |
Collapse
|
19
|
SPM1 stabilizes subpellicular microtubules in Toxoplasma gondii. EUKARYOTIC CELL 2011; 11:206-16. [PMID: 22021240 DOI: 10.1128/ec.05161-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have identified two novel proteins that colocalize with the subpellicular microtubules in the protozoan parasite Toxoplasma gondii and named these proteins SPM1 and SPM2. These proteins have basic isoelectric points and both have homologs in other apicomplexan parasites. SPM1 contains six tandem copies of a 32-amino-acid repeat, whereas SPM2 lacks defined protein signatures. Alignment of Toxoplasma SPM2 with apparent Plasmodium SPM2 homologs indicates that the greatest degree of conservation lies in the carboxy-terminal half of the protein. Analysis of Plasmodium homologs of SPM1 indicates that while the central 32-amino-acid repeats have expanded to different degrees (7, 8, 9, 12, or 13 repeats), the amino- and carboxy-terminal regions remain conserved. In contrast, although the Cryptosporidium SPM1 homolog has a conserved carboxy tail, the five repeats are considerably diverged, and it has a smaller amino-terminal domain. SPM1 is localized along the full length of the subpellicular microtubules but does not associate with the conoid or spindle microtubules. SPM2 has a restricted localization along the middle region of the subpellicular microtubules. Domain deletion analysis indicates that four or more copies of the SPM1 repeat are required for localization to microtubules, and the amino-terminal 63 residues of SPM2 are required for localization to the subpellicular microtubules. Gene deletion studies indicate that neither SPM1 nor SPM2 is essential for tachyzoite viability. However, loss of SPM1 decreases overall parasite fitness and eliminates the stability of subpellicular microtubules to detergent extraction.
Collapse
|
20
|
Penuliar GM, Furukawa A, Sato D, Nozaki T. Mechanism of trifluoromethionine resistance in Entamoeba histolytica. J Antimicrob Chemother 2011; 66:2045-52. [PMID: 21676903 DOI: 10.1093/jac/dkr238] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To determine the mechanism of trifluoromethionine resistance in Entamoeba histolytica and evaluate the impact of acquired drug resistance on virulence. METHODS Trifluoromethionine-resistant amoebae were selected in vitro and examined for cross-resistance to antiamoebic drugs, stability of resistance, methionine γ-lyase (MGL) activity, cell adhesion and virulence. Targeted gene silencing was performed to confirm the role of EhMGL. RESULTS Trophozoites with a resistance index of 154 were obtained. The cells were susceptible to chloroquine, metronidazole, paromomycin and tinidazole, but remained resistant to trifluoromethionine in the absence of drug pressure. A complete lack of EhMGL activity accompanied by increased adhesion and decreased cytolysis were also observed. Silencing of the EhMGL genes resulted in trifluoromethionine resistance. CONCLUSIONS This study provides the first demonstration of trifluoromethionine resistance in a parasitic protozoon. Repression of gene expression of drug targets represents a novel mechanism of resistance in E. histolytica. The information obtained from this work should help further development of trifluoromethionine derivatives that have lower chances of inducing resistance.
Collapse
Affiliation(s)
- Gil M Penuliar
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | |
Collapse
|
21
|
Darmency H, Picard JC, Wang T. Fitness costs linked to dinitroaniline resistance mutation in Setaria. Heredity (Edinb) 2011; 107:80-6. [PMID: 21245896 DOI: 10.1038/hdy.2010.169] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A mutant Thr-239-Ileu at the α2-tubulin gene was found to confer resistance to dinitroanilines, a family of mitosis-disrupting herbicides. However, mutations affecting microtubule polymerization and cell division are expected to impact growth and reproduction, that is, the fitness of a resistant weed or the yield of a tolerant crop, although it has not been demonstrated yet. This study was designed to test this hypothesis for the growth and reproduction of near-isogenic resistant and susceptible materials that were created in F(2) and F(3) generations after a Setaria viridis x S. italica cross. Differential growth was noticeable at the very onset of seedling growth. The homozygous resistant plants, grown both in a greenhouse cabinet and in the field, were smaller and had lower 1000-grain weight and therefore a lower yield. This fitness penalty is certainly due to modified cell division kinetics. Although the presence of the mutant allele accounted for 20% yield losses, there were also measurable benefits of dinitroaniline resistance, and these benefits are discussed.
Collapse
Affiliation(s)
- H Darmency
- INRA, UMR 1210 Biologie et Gestion des Adventices, Dijon, France.
| | | | | |
Collapse
|
22
|
α-Tubulin mutations alter oryzalin affinity and microtubule assembly properties to confer dinitroaniline resistance. EUKARYOTIC CELL 2010; 9:1825-34. [PMID: 20870876 DOI: 10.1128/ec.00140-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Plant and protozoan microtubules are selectively sensitive to dinitroanilines, which do not disrupt vertebrate or fungal microtubules. Tetrahymena thermophila is an abundant source of dinitroaniline-sensitive tubulin, and we have modified the single T. thermophila α-tubulin gene to create strains that solely express mutant α-tubulin in functional dimers. Previous research identified multiple α-tubulin mutations that confer dinitroaniline resistance in the human parasite Toxoplasma gondii, and when two of these mutations (L136F and I252L) were introduced into T. thermophila, they conferred resistance in these free-living ciliates. Purified tubulin heterodimers composed of L136F or I252L α-tubulin display decreased affinity for the dinitroaniline oryzalin relative to wild-type T. thermophila tubulin. Moreover, the L136F substitution dramatically reduces the critical concentration for microtubule assembly relative to the properties of wild-type T. thermophila tubulin. Our data provide additional support for the proposed dinitroaniline binding site on α-tubulin and validate the use of T. thermophila for expression of genetically homogeneous populations of mutant tubulins for biochemical characterization.
Collapse
|
23
|
Liarte DB, Murta SMF. Selection and phenotype characterization of potassium antimony tartrate-resistant populations of four New World Leishmania species. Parasitol Res 2010; 107:205-12. [PMID: 20372925 DOI: 10.1007/s00436-010-1852-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 03/18/2010] [Indexed: 10/19/2022]
Abstract
In the present study, we selected in vitro populations of Leishmania Viannia guyanensis, L.V. braziliensis, L. Leishmania amazonensis and L.L. infantum chagasi that were resistant to potassium antimony tartrate (SbIII). The resistance index of these populations varied from 4- to 20-fold higher than that of their wild-type counterparts. To evaluate the stability of the resistance phenotype, these four resistant populations were passaged 37 to 47 times in a culture medium without SbIII. No change was observed in the resistance indexes of L.V. guyanensis (19-fold) and L.L. infantum chagasi (4-fold). In contrast, a decrease in the resistance index was observed for L.V. braziliensis (from 20- to 10-fold) and L.L. amazonensis (from 6- to 3-fold). None of the antimony-resistant populations exhibited cross-resistance to amphotericin B and miltefosine. However, the resistant populations of L.V. braziliensis, L.L. amazonensis and L.L. infantum chagasi were also resistant to paromomycin. A drastic reduction was observed in the infectivity in mice for the resistant L.V. guyanensis, L.L. amazonensis and L.V. braziliensis populations. The SbIII-resistant phenotype of L.V. braziliensis was stable after one passage in mice. Although the protocol of induction was the same, the SbIII-resistant populations showed different degrees of tolerance, stability, infectivity in mice and cross-resistance to antileishmanial drugs, depending on the Leishmania species.
Collapse
Affiliation(s)
- Daniel B Liarte
- Laboratório de Parasitologia Celular e Molecular, Centro de Pesquisas René Rachou-CPqRR/Fiocruz, Av. Augusto de Lima 1715, Caixa Postal 1743, CEP 30190-002, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
24
|
Compensation of fitness costs and reversibility of antibiotic resistance mutations. Antimicrob Agents Chemother 2010; 54:2085-95. [PMID: 20176903 DOI: 10.1128/aac.01460-09] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Strains of bacterial pathogens that have acquired mutations conferring antibiotic resistance often have a lower growth rate and are less invasive or transmissible initially than their susceptible counterparts. However, fitness costs of resistance mutations can be ameliorated by secondary site mutations. These so-called compensatory mutations may restore fitness in the absence and/or presence of antimicrobials. We review literature data and show that the fitness gains in the absence and presence of antibiotic treatment need not be correlated. The aim of this study is to gain a better conceptual grasp of how compensatory mutations with different fitness gains affect evolutionary trajectories, in particular reversibility. To this end, we developed a theoretical model with which we consider both a resistance and a compensation locus. We propose an intuitively understandable parameterization for the fitness values of the four resulting genotypes (wild type, resistance mutation only, compensatory mutation only, and both mutations) in the absence and presence of treatment. The differential fitness gains, together with the turnover rate and the mutation rate, strongly affected the success of antibacterial treatment, reversibility, and long-term abundance of resistant strains. We therefore propose that experimental studies of compensatory mutations should include fitness measurements of all possible genotypes in both the absence and presence of an antibiotic.
Collapse
|
25
|
Dinitroaniline activity in Toxoplasma gondii expressing wild-type or mutant alpha-tubulin. Antimicrob Agents Chemother 2010; 54:1453-60. [PMID: 20145086 DOI: 10.1128/aac.01150-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human parasite Toxoplasma gondii is sensitive to dinitroaniline compounds which selectively disrupt microtubules in diverse protozoa but which have no detectable effect on vertebrate host cell microtubules or other functions. Replication of wild-type T. gondii is inhibited by 0.5 to 2.5 microM oryzalin, but mutant parasites harboring amino acid substitutions in the predicted dinitroaniline binding site confer resistance up to 40 microM oryzalin. However, the precise interaction between dinitroanilines and the binding site in alpha-tubulin remains unclear. We have investigated the activity of 12 dinitroanilines and the related compound amiprophos methyl on wild-type and dinitroaniline-resistant parasite lines that contain proposed binding site mutations. These data indicate that dinitramine is the most effective dinitroaniline to inhibit Toxoplasma growth in wild-type parasites and most resistant lines. Dinitramine has an amine group at the meta position not present in any of the other dinitroanilines tested here that is predicted to form hydrogen bonds with residues Arg2 and Gln133 according to docking data. Remarkably, although the binding site mutation Ile235Val confers increased resistance to most dinitroanilines, it confers increased sensitivity to GB-II-5, a compound optimized for activity against kinetoplastid tubulin. Kinetoplastid parasites have a valine at position 235 of alpha-tubulin, whereas apicomplexan parasites have an isoleucine at this site. We suggest that this heterogeneity in binding site environment influences relative dinitroaniline sensitivity in distinct protozoan lineages and hypothesize that a mutation that makes the apicomplexan dinitroaniline binding site more like the kinetoplastid site increases sensitivity to a dinitroaniline optimized for activity in the latter parasites.
Collapse
|