1
|
Szwarc J, Niemann J, Kaczmarek J, Majka J, Bocianowski J. Novel Brassica hybrids with different resistance to Leptosphaeria maculans reveal unbalanced rDNA signal patterns. Open Life Sci 2022; 17:293-301. [PMID: 35434369 PMCID: PMC8974394 DOI: 10.1515/biol-2022-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 11/15/2022] Open
Abstract
Hybridization of Brassica napus with various Brassicaceae species can result in obtaining new forms with increased resistance to blackleg, a dangerous disease caused mainly by Leptosphaeria maculans. In this study, we aimed to correlate the field resistance of selected Brassica hybrids to blackleg with chromosomal structure revealed by Fluorescence in situ hybridization. Tested genotypes varied in the number of chromosomes and rDNA signals. The greatest variation was observed for A1-type chromosomes. Field evaluation also revealed significant differences in L. maculans resistance. Performed analyses allowed to distinguish three B. napus × Brassica fruticulosa genotypes in which variable patterns of chromosomal structure might be connected to field resistance. However, a more thorough study, including the detection of all A-genome chromosomes, is required.
Collapse
Affiliation(s)
- Justyna Szwarc
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland
| | - Janetta Niemann
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland
| | - Joanna Kaczmarek
- Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszynska 34, 60-479 Poznan, Poland
| | - Joanna Majka
- Institute of Experimental Botany, Czech Acad Sci, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 77900 Olomouc, Czech Republic
- Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszynska 34, 60-479 Poznan, Poland
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland
| |
Collapse
|
2
|
Roslinsky V, Falk KC, Gaebelein R, Mason AS, Eynck C. Development of B. carinata with super-high erucic acid content through interspecific hybridization. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3167-3181. [PMID: 34269830 PMCID: PMC8440251 DOI: 10.1007/s00122-021-03883-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE Disomic alien chromosome addition Brassica carinata lines with super-high erucic acid content were developed through interspecific hybridization with B. juncea and characterized using molecular, cytological and biochemical techniques. Brassica carinata [A.] Braun (BBCC, 2n = 34) is a climate-resilient oilseed. Its seed oil is high in erucic acid (> 40%), rendering it well suited for the production of biofuel and other bio-based applications. To enhance the competitiveness of B. carinata with high erucic B. napus (HEAR), lines with super-high erucic acid content were developed through interspecific hybridization. To this end, a fad2B null allele from Brassica juncea (AABB, 2n = 36) was introgressed into B. carinata, resulting in a B. carinata fad2B mutant with erucic acid levels of over 50%. Subsequently, the FAE allele from B. rapa spp. yellow sarson (AA, 2n = 20) was transferred to the fad2B B. carinata line, yielding lines with erucic acid contents of up to 57.9%. Molecular analysis using the Brassica 90 K Illumina Infinium™ SNP genotyping array identified these lines as disomic alien chromosome addition lines, with two extra A08 chromosomes containing the BrFAE gene. The alien chromosomes from B. rapa were clearly distinguished by molecular cytogenetics in one of the addition lines. Analysis of microspore-derived offspring and hybrids from crosses with a CMS B. carinata line showed that the transfer rate of the A08 chromosome into male gametes was over 98%, resulting in almost completely stable transmission of an A08 chromosome copy into the progeny. The increase in erucic acid levels was accompanied by changes in the proportions of other fatty acids depending on the genetic changes that were introduced in the interspecific hybrids, providing valuable insights into erucic acid metabolism in Brassica.
Collapse
Affiliation(s)
- Vicky Roslinsky
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Kevin C Falk
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Roman Gaebelein
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, Germany
| | - Annaliese S Mason
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, Germany
- Department of Plant Breeding, INRES, University of Bonn, Bonn, Germany
| | - Christina Eynck
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada.
| |
Collapse
|
3
|
Subgenome Discrimination in Brassica and Raphanus Allopolyploids Using Microsatellites. Cells 2021; 10:cells10092358. [PMID: 34572008 PMCID: PMC8466703 DOI: 10.3390/cells10092358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 01/11/2023] Open
Abstract
Intergeneric crosses between Brassica species and Raphanus sativus have produced crops with prominent shoot and root systems of Brassica and R. sativus, respectively. It is necessary to discriminate donor genomes when studying cytogenetic stability in distant crosses to identify homologous chromosome pairing, and microsatellite repeats have been used to discriminate subgenomes in allopolyploids. To identify genome-specific microsatellites, we explored the microsatellite content in three Brassica species (B. rapa, AA, B. oleracea, CC, and B. nigra, BB) and R. sativus (RR) genomes, and validated their genome specificity by fluorescence in situ hybridization. We identified three microsatellites showing A, C, and B/R genome specificity. ACBR_msat14 and ACBR_msat20 were detected in the A and C chromosomes, respectively, and ACBR_msat01 was detected in B and R genomes. However, we did not find a microsatellite that discriminated the B and R genomes. The localization of ACBR_msat20 in the 45S rDNA array in ×Brassicoraphanus 977 corroborated the association of the 45S rDNA array with genome rearrangement. Along with the rDNA and telomeric repeat probes, these microsatellites enabled the easy identification of homologous chromosomes. These data demonstrate the utility of microsatellites as probes in identifying subgenomes within closely related Brassica and Raphanus species for the analysis of genetic stability of new synthetic polyploids of these genomes.
Collapse
|
4
|
Higgins EE, Howell EC, Armstrong SJ, Parkin IAP. A major quantitative trait locus on chromosome A9, BnaPh1, controls homoeologous recombination in Brassica napus. THE NEW PHYTOLOGIST 2021; 229:3281-3293. [PMID: 33020949 PMCID: PMC7984352 DOI: 10.1111/nph.16986] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/23/2020] [Indexed: 05/09/2023]
Abstract
Ensuring faithful homologous recombination in allopolyploids is essential to maintain optimal fertility of the species. Variation in the ability to control aberrant pairing between homoeologous chromosomes in Brassica napus has been identified. The current study exploited the extremes of such variation to identify genetic factors that differentiate newly resynthesised B. napus, which is inherently unstable, and established B. napus, which has adapted to largely control homoeologous recombination. A segregating B. napus mapping population was analysed utilising both cytogenetic observations and high-throughput genotyping to quantify the levels of homoeologous recombination. Three quantitative trait loci (QTL) were identified that contributed to the control of homoeologous recombination in the important oilseed crop B. napus. One major QTL on BnaA9 contributed between 32 and 58% of the observed variation. This study is the first to assess homoeologous recombination and map associated QTLs resulting from deviations in normal pairing in allotetraploid B. napus. The identified QTL regions suggest candidate meiotic genes that could be manipulated in order to control this important trait and further allow the development of molecular markers to utilise this trait to exploit homoeologous recombination in a crop.
Collapse
Affiliation(s)
- Erin E. Higgins
- Agriculture and Agri‐Food Canada107 Science PlaceSaskatoonSKS7N 0X2Canada
| | - Elaine C. Howell
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Susan J. Armstrong
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | | |
Collapse
|
5
|
Xiong Z, Gaeta RT, Edger PP, Cao Y, Zhao K, Zhang S, Pires JC. Chromosome inheritance and meiotic stability in allopolyploid Brassica napus. G3-GENES GENOMES GENETICS 2021; 11:6044140. [PMID: 33704431 PMCID: PMC8022990 DOI: 10.1093/g3journal/jkaa011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/05/2020] [Indexed: 12/23/2022]
Abstract
Homoeologous recombination, aneuploidy, and other genetic changes are common in resynthesized allopolyploid Brassica napus. In contrast, the chromosomes of cultivars have long been considered to be meiotically stable. To gain a better understanding of the underlying mechanisms leading to stabilization in the allopolyploid, the behavior of chromosomes during meiosis can be compared by unambiguous chromosome identification between resynthesized and natural B. napus. Compared with natural B. napus, resynthesized lines show high rates of nonhomologous centromere association, homoeologous recombination leading to translocation, homoeologous chromosome replacement, and association and breakage of 45S rDNA loci. In both natural and resynthesized B. napus, we observed low rates of univalents, A–C bivalents, and early sister chromatid separations. Reciprocal homoeologous chromosome exchanges and double reductions were photographed for the first time in meiotic telophase I. Meiotic errors were non-uniformly distributed across the genome in resynthesized B. napus, and in particular homoeologs sharing synteny along their entire length exhibited multivalents at diakinesis and polysomic inheritance at telophase I. Natural B. napus appeared to resolve meiotic errors mainly by suppressing homoeologous pairing, resolving nonhomologous centromere associations and 45S rDNA associations before diakinesis, and reducing homoeologous cross-overs.
Collapse
Affiliation(s)
- Zhiyong Xiong
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021, PR China.,Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Robert T Gaeta
- Bayer's Crop Science Division, Chesterfield, MO 63017, USA
| | - Patrick P Edger
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA.,Department of Horticulture, Michigan State University, East Lansing, MI 48823, USA
| | - Yao Cao
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021, PR China
| | - Kanglu Zhao
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021, PR China
| | - Siqi Zhang
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021, PR China
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
6
|
Zhang WM, Fang D, Cheng XZ, Cao J, Tan XL. Insights Into the Molecular Evolution of AT-Hook Motif Nuclear Localization Genes in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 12:714305. [PMID: 34567028 PMCID: PMC8458767 DOI: 10.3389/fpls.2021.714305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/19/2021] [Indexed: 05/13/2023]
Abstract
AT-hook motif nuclear localization (AHL) proteins belong to a family of transcription factors, and play important roles in plant growth and development and response to various stresses through protein-DNA and protein-protein interactions. To better understand the Brassica napus AHL gene family, AHL genes in B. napus and related species were analyzed. Using Arabidopsis as a reference, 122 AHL gene family members were first identified in B. napus. According to the phylogenetic tree and gene organization, the BnaAHLs were classified into two clades (Clade-A and Clade-B) and three types (Type-I, Type-II, and Type-III). Gene organization and motif distribution analysis suggested that the AHL gene family is relatively conserved during evolution. These BnaAHLs are unevenly distributed on 38 chromosomes and expanded by whole-genome duplication (WGD) or segmental duplication. And large-scale loss events have also occurred in evolution. All types of BnaAHLs are subject to purification or neutral selection, while some positive selection sites are also identified in Type-II and Type-III groups. At the same time, the purification effect of Type-I members are stronger than that of the others. In addition, RNA-seq data and cis-acting element analysis also suggested that the BnaAHLs play important roles in B. napus growth and development, as well as in response to some abiotic and biotic stresses. Protein-protein interaction analysis identified some important BnaAHL-binding proteins, which also play key roles in plant growth and development. This study is helpful to fully understand the origin and evolution of the AHL gene in B. napus, and lays the foundation for their functional studies.
Collapse
|
7
|
Shamim Z, Armstrong SJ. Using Genome In Situ Hybridization (GISH) to Distinguish the Constituent Genomes of Brassica nigra and B. rapa in the Hybrid B. juncea. Methods Mol Biol 2020; 2061:69-78. [PMID: 31583654 DOI: 10.1007/978-1-4939-9818-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The genome in situ hybridization (GISH) technique has become important for deciphering the organization of the constituent genomes in the allopolyploid plants that comprise many of the crop species. This technique comprises using the nuclear DNA from the constituent genomes as probes that have been labeled separately with different nucleotides that can be identified by using secondary antibodies. The Brassica family includes a range of mustard species with diverse phytochemical and morphological profile, hence making it an important plant family in agriculture. Meiosis is a specialized cellular division which brings the homologous chromosomes together and creates recombinants via pairing and synapsis during its early phase. Transfer of the genetic material within homoelog pairs creates novelty in subsequent generations which hold promise for improving the agriculture sector. This chapter is concerned with developing a GISH technique that discriminates between the constituent genomes in the allopolyploid B. juncea, in order to study meiosis.
Collapse
Affiliation(s)
- Zeeshan Shamim
- School of Biosciences, University of Birmingham, Birmingham, UK.,Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur Azad Kashmir, Pakistan
| | | |
Collapse
|
8
|
Sepsi A, Schwarzacher T. Chromosome-nuclear envelope tethering - a process that orchestrates homologue pairing during plant meiosis? J Cell Sci 2020; 133:jcs243667. [PMID: 32788229 PMCID: PMC7438012 DOI: 10.1242/jcs.243667] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
During prophase I of meiosis, homologous chromosomes pair, synapse and exchange their genetic material through reciprocal homologous recombination, a phenomenon essential for faithful chromosome segregation. Partial sequence identity between non-homologous and heterologous chromosomes can also lead to recombination (ectopic recombination), a highly deleterious process that rapidly compromises genome integrity. To avoid ectopic exchange, homology recognition must be extended from the narrow position of a crossover-competent double-strand break to the entire chromosome. Here, we review advances on chromosome behaviour during meiotic prophase I in higher plants, by integrating centromere- and telomere dynamics driven by cytoskeletal motor proteins, into the processes of homologue pairing, synapsis and recombination. Centromere-centromere associations and the gathering of telomeres at the onset of meiosis at opposite nuclear poles create a spatially organised and restricted nuclear state in which homologous DNA interactions are favoured but ectopic interactions also occur. The release and dispersion of centromeres from the nuclear periphery increases the motility of chromosome arms, allowing meiosis-specific movements that disrupt ectopic interactions. Subsequent expansion of interstitial synapsis from numerous homologous interactions further corrects ectopic interactions. Movement and organisation of chromosomes, thus, evolved to facilitate the pairing process, and can be modulated by distinct stages of chromatin associations at the nuclear envelope and their collective release.
Collapse
Affiliation(s)
- Adél Sepsi
- Department of Plant Cell Biology, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
- BME Budapest University of Technology and Economics, Department of Applied Biotechnology and Food Science (ABÉT), 1111, Budapest, Mu˝ egyetem rkp. 3-9., Hungary
| | - Trude Schwarzacher
- University of Leicester, Department of Genetics and Genome Biology, University Road, Leicester LE1 7RH, UK
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
9
|
Amosova AV, Zoshchuk SA, Volovik VT, Shirokova AV, Horuzhiy NE, Mozgova GV, Yurkevich OY, Artyukhova MA, Lemesh VA, Samatadze TE, Muravenko OV. Phenotypic, biochemical and genomic variability in generations of the rapeseed (Brassica napus L.) mutant lines obtained via chemical mutagenesis. PLoS One 2019; 14:e0221699. [PMID: 31461492 PMCID: PMC6713389 DOI: 10.1371/journal.pone.0221699] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/13/2019] [Indexed: 01/06/2023] Open
Abstract
The phenotypic, biochemical and genetic variability was studied in M2-M5 generations of ethyl methansulfonat (EMS, 0.2%) mutagenized rapeseed lines generated from canola, '00', B. napus cv. Vikros. EMS mutagenesis induced extensive diversity in morphological and agronomic traits among mutant progeny resulted in selection of EMS populations of B. napus- and B. rapa-morphotypes. The seeds of the obtained mutant lines were high-protein, low in oil and stabilized in contents of main fatty acids which make them useful for feed production. Despite the increased level of various meiotic abnormalities revealed in EMS populations, comparative karyotype analysis and FISH-based visualization of 45S and 5S rDNA indicated a high level of karyotypic stability in M2-M5 plants, and therefore, the obtained mutant lines could be useful in further rapeseed improvement. The revealed structural chromosomal reorganizations in karyotypes of several plants of B. rapa-type indicate that rapeseed breeding by chemical mutagenesis can result in cytogenetic instability in the mutant progeny, and therefore, it should include the karyotype examination. Our findings demonstrate that EMS at low concentrations has great potential in rapeseed improvement.
Collapse
Affiliation(s)
- Alexandra V. Amosova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
- * E-mail:
| | - Svyatoslav A. Zoshchuk
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Valentina T. Volovik
- Federal Williams Research Center of Forage Production and Agroecology, Lobnya, Moscow region, Russian Federation
| | - Anna V. Shirokova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Nickolai E. Horuzhiy
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Galina V. Mozgova
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Olga Yu. Yurkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Margarita A. Artyukhova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Valentina A. Lemesh
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Tatiana E. Samatadze
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Olga V. Muravenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
10
|
Higgins EE, Clarke WE, Howell EC, Armstrong SJ, Parkin IAP. Detecting de Novo Homoeologous Recombination Events in Cultivated Brassica napus Using a Genome-Wide SNP Array. G3 (BETHESDA, MD.) 2018; 8:2673-2683. [PMID: 29907649 PMCID: PMC6071606 DOI: 10.1534/g3.118.200118] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/12/2018] [Indexed: 11/20/2022]
Abstract
The heavy selection pressure due to intensive breeding of Brassica napus has created a narrow gene pool, limiting the ability to produce improved varieties through crosses between B. napus cultivars. One mechanism that has contributed to the adaptation of important agronomic traits in the allotetraploid B. napus has been chromosomal rearrangements resulting from homoeologous recombination between the constituent A and C diploid genomes. Determining the rate and distribution of such events in natural B. napus will assist efforts to understand and potentially manipulate this phenomenon. The Brassica high-density 60K SNP array, which provides genome-wide coverage for assessment of recombination events, was used to assay 254 individuals derived from 11 diverse cultivated spring type B. napus These analyses identified reciprocal allele gain and loss between the A and C genomes and allowed visualization of de novo homoeologous recombination events across the B. napus genome. The events ranged from loss/gain of 0.09 Mb to entire chromosomes, with almost 5% aneuploidy observed across all gametes. There was a bias toward sub-telomeric exchanges leading to genome homogenization at chromosome termini. The A genome replaced the C genome in 66% of events, and also featured more dominantly in gain of whole chromosomes. These analyses indicate de novo homoeologous recombination is a continuous source of variation in established Brassica napus and the rate of observed events appears to vary with genetic background. The Brassica 60K SNP array will be a useful tool in further study and manipulation of this phenomenon.
Collapse
Affiliation(s)
- Erin E Higgins
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Wayne E Clarke
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Elaine C Howell
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Susan J Armstrong
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Isobel A P Parkin
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| |
Collapse
|
11
|
Blary A, Gonzalo A, Eber F, Bérard A, Bergès H, Bessoltane N, Charif D, Charpentier C, Cromer L, Fourment J, Genevriez C, Le Paslier MC, Lodé M, Lucas MO, Nesi N, Lloyd A, Chèvre AM, Jenczewski E. FANCM Limits Meiotic Crossovers in Brassica Crops. FRONTIERS IN PLANT SCIENCE 2018; 9:368. [PMID: 29628933 PMCID: PMC5876677 DOI: 10.3389/fpls.2018.00368] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/06/2018] [Indexed: 05/18/2023]
Abstract
Meiotic crossovers (COs) are essential for proper chromosome segregation and the reshuffling of alleles during meiosis. In WT plants, the number of COs is usually small, which limits the genetic variation that can be captured by plant breeding programs. Part of this limitation is imposed by proteins like FANCM, the inactivation of which results in a 3-fold increase in COs in Arabidopsis thaliana. Whether the same holds true in crops needed to be established. In this study, we identified EMS induced mutations in FANCM in two species of economic relevance within the genus Brassica. We showed that CO frequencies were increased in fancm mutants in both diploid and tetraploid Brassicas, Brassica rapa and Brassica napus respectively. In B. rapa, we observed a 3-fold increase in the number of COs, equal to the increase observed previously in Arabidopsis. In B. napus we observed a lesser but consistent increase (1.3-fold) in both euploid (AACC) and allohaploid (AC) plants. Complementation tests in A. thaliana suggest that the smaller increase in crossover frequency observed in B. napus reflects residual activity of the mutant C copy of FANCM. Altogether our results indicate that the anti-CO activity of FANCM is conserved across the Brassica, opening new avenues to make a wider range of genetic diversity accessible to crop improvement.
Collapse
Affiliation(s)
- Aurélien Blary
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National De La Recherche Scientifique, Université Paris-Saclay, Versailles, France
| | - Adrián Gonzalo
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National De La Recherche Scientifique, Université Paris-Saclay, Versailles, France
| | - Frédérique Eber
- IGEPP, Institut National de la Recherche Agronomique, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Aurélie Bérard
- EPGV US 1279, Institut National de la Recherche Agronomique, CEA-IG-CNG, Université Paris-Saclay, Evry, France
| | - Hélène Bergès
- Institut National de la Recherche Agronomique UPR 1258, Centre National des Ressources Génomiques Végétales, Castanet-Tolosan, France
| | - Nadia Bessoltane
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National De La Recherche Scientifique, Université Paris-Saclay, Versailles, France
| | - Delphine Charif
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National De La Recherche Scientifique, Université Paris-Saclay, Versailles, France
| | - Catherine Charpentier
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National De La Recherche Scientifique, Université Paris-Saclay, Versailles, France
| | - Laurence Cromer
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National De La Recherche Scientifique, Université Paris-Saclay, Versailles, France
| | - Joelle Fourment
- Institut National de la Recherche Agronomique UPR 1258, Centre National des Ressources Génomiques Végétales, Castanet-Tolosan, France
| | - Camille Genevriez
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National De La Recherche Scientifique, Université Paris-Saclay, Versailles, France
| | - Marie-Christine Le Paslier
- EPGV US 1279, Institut National de la Recherche Agronomique, CEA-IG-CNG, Université Paris-Saclay, Evry, France
| | - Maryse Lodé
- IGEPP, Institut National de la Recherche Agronomique, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Marie-Odile Lucas
- IGEPP, Institut National de la Recherche Agronomique, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Nathalie Nesi
- IGEPP, Institut National de la Recherche Agronomique, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Andrew Lloyd
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National De La Recherche Scientifique, Université Paris-Saclay, Versailles, France
| | - Anne-Marie Chèvre
- IGEPP, Institut National de la Recherche Agronomique, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Eric Jenczewski
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National De La Recherche Scientifique, Université Paris-Saclay, Versailles, France
- *Correspondence: Eric Jenczewski
| |
Collapse
|
12
|
|
13
|
Homoeologous chromosome pairing across the eukaryote phylogeny. Mol Phylogenet Evol 2017; 117:83-94. [PMID: 28602622 DOI: 10.1016/j.ympev.2017.05.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 11/21/2022]
Abstract
During the past quarter century, molecular phylogenetic inferences have significantly resolved evolutionary relationships spanning the eukaryotic tree of life. With improved phylogenies in hand, the focus of systematics will continue to expand from estimating species relationships toward examining the evolution of specific, fundamental traits across the eukaryotic tree. Undoubtedly, this will expose knowledge gaps in the evolution of key traits, particularly with respect to non-model lineages. Here, we examine one such trait across eukaryotes-the regulation of homologous chromosome pairing during meiosis-as an illustrative example. Specifically, we present an overview of the breakdown of homologous chromosome pairing in model eukaryotes and provide a discussion of various meiotic aberrations that result in the failure of homolog recognition, with a particular focus on lineages with a history of hybridization and polyploidization, across major eukaryotic clades. We then explore what is known about these processes in natural and non-model eukaryotic taxa, thereby exposing disparities in our understanding of this key trait among non-model groups.
Collapse
|
14
|
Baker RL, Yarkhunova Y, Vidal K, Ewers BE, Weinig C. Polyploidy and the relationship between leaf structure and function: implications for correlated evolution of anatomy, morphology, and physiology in Brassica. BMC PLANT BIOLOGY 2017; 17:3. [PMID: 28056801 PMCID: PMC5217196 DOI: 10.1186/s12870-016-0957-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/19/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND Polyploidy is well studied from a genetic and genomic perspective, but the morphological, anatomical, and physiological consequences of polyploidy remain relatively uncharacterized. Whether these potential changes bear on functional integration or are idiosyncratic remains an open question. Repeated allotetraploid events and multiple genomic combinations as well as overlapping targets of artificial selection make the Brassica triangle an excellent system for exploring variation in the connection between plant structure (anatomy and morphology) and function (physiology). We examine phenotypic integration among structural aspects of leaves including external morphology and internal anatomy with leaf-level physiology among several species of Brassica. We compare diploid and allotetraploid species to ascertain patterns of phenotypic correlations among structural and functional traits and test the hypothesis that allotetraploidy results in trait disintegration allowing for transgressive phenotypes and additional evolutionary and crop improvement potential. RESULTS Among six Brassica species, we found significant effects of species and ploidy level for morphological, anatomical and physiological traits. We identified three suites of intercorrelated traits in both diploid parents and allotetraploids: Morphological traits (such as leaf area and perimeter) anatomic traits (including ab- and ad- axial epidermis) and aspects of physiology. In general, there were more correlations between structural and functional traits for allotetraploid hybrids than diploid parents. Parents and hybrids did not have any significant structure-function correlations in common. Of particular note, there were no significant correlations between morphological structure and physiological function in the diploid parents. Increased phenotypic integration in the allotetraploid hybrids may be due, in part, to increased trait ranges or simply different structure-function relationships. CONCLUSIONS Genomic and chromosomal instability in early generation allotetraploids may allow Brassica species to explore new trait space and potentially reach higher adaptive peaks than their progenitor species could, despite temporary fitness costs associated with unstable genomes. The trait correlations that disappear after hybridization as well as the novel trait correlations observed in allotetraploid hybrids may represent relatively evolutionarily labile associations and therefore could be ideal targets for artificial selection and crop improvement.
Collapse
Affiliation(s)
- Robert L Baker
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA.
| | - Yulia Yarkhunova
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
- Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
| | - Katherine Vidal
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| | - Brent E Ewers
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| | - Cynthia Weinig
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA
| |
Collapse
|
15
|
Sochorová J, Coriton O, Kuderová A, Lunerová J, Chèvre AM, Kovařík A. Gene conversion events and variable degree of homogenization of rDNA loci in cultivars of Brassica napus. ANNALS OF BOTANY 2017; 119:13-26. [PMID: 27707747 PMCID: PMC5218374 DOI: 10.1093/aob/mcw187] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/12/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Brassica napus (AACC, 2n = 38, oilseed rape) is a relatively recent allotetraploid species derived from the putative progenitor diploid species Brassica rapa (AA, 2n = 20) and Brassica oleracea (CC, 2n = 18). To determine the influence of intensive breeding conditions on the evolution of its genome, we analysed structure and copy number of rDNA in 21 cultivars of B. napus, representative of genetic diversity. METHODS We used next-generation sequencing genomic approaches, Southern blot hybridization, expression analysis and fluorescence in situ hybridization (FISH). Subgenome-specific sequences derived from rDNA intergenic spacers (IGS) were used as probes for identification of loci composition on chromosomes. KEY RESULTS Most B. napus cultivars (18/21, 86 %) had more A-genome than C-genome rDNA copies. Three cultivars analysed by FISH ('Darmor', 'Yudal' and 'Asparagus kale') harboured the same number (12 per diploid set) of loci. In B. napus 'Darmor', the A-genome-specific rDNA probe hybridized to all 12 rDNA loci (eight on the A-genome and four on the C-genome) while the C-genome-specific probe showed weak signals on the C-genome loci only. Deep sequencing revealed high homogeneity of arrays suggesting that the C-genome genes were largely overwritten by the A-genome variants in B. napus 'Darmor'. In contrast, B. napus 'Yudal' showed a lack of gene conversion evidenced by additive inheritance of progenitor rDNA variants and highly localized hybridization signals of subgenome-specific probes on chromosomes. Brassica napus 'Asparagus kale' showed an intermediate pattern to 'Darmor' and 'Yudal'. At the expression level, most cultivars (95 %) exhibited stable A-genome nucleolar dominance while one cultivar ('Norin 9') showed co-dominance. CONCLUSIONS The B. napus cultivars differ in the degree and direction of rDNA homogenization. The prevalent direction of gene conversion (towards the A-genome) correlates with the direction of expression dominance indicating that gene activity may be needed for interlocus gene conversion.
Collapse
Affiliation(s)
- Jana Sochorová
- Laboratory of Molecular Epigenetics, Institute of Biophysics, Královopolská 135, 61265 Brno, Czech Academy of Science, v.v.i., Czech Republic
| | - Olivier Coriton
- Institut National de la Recherche Agronomique (INRA), UMR 1349 IGEPP, BP 35327, F-35653 Le Rheu cedex, France
| | - Alena Kuderová
- Laboratory of Molecular Epigenetics, Institute of Biophysics, Královopolská 135, 61265 Brno, Czech Academy of Science, v.v.i., Czech Republic
| | - Jana Lunerová
- Laboratory of Molecular Epigenetics, Institute of Biophysics, Královopolská 135, 61265 Brno, Czech Academy of Science, v.v.i., Czech Republic
| | - Anne-Marie Chèvre
- Institut National de la Recherche Agronomique (INRA), UMR 1349 IGEPP, BP 35327, F-35653 Le Rheu cedex, France
| | - Aleš Kovařík
- Laboratory of Molecular Epigenetics, Institute of Biophysics, Královopolská 135, 61265 Brno, Czech Academy of Science, v.v.i., Czech Republic
| |
Collapse
|
16
|
Mason AS, Snowdon RJ. Oilseed rape: learning about ancient and recent polyploid evolution from a recent crop species. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:883-892. [PMID: 27063780 DOI: 10.1111/plb.12462] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/06/2016] [Indexed: 05/18/2023]
Abstract
Oilseed rape (Brassica napus) is one of our youngest crop species, arising several times under cultivation in the last few thousand years and completely unknown in the wild. Oilseed rape originated from hybridisation events between progenitor diploid species B. rapa and B. oleracea, both important vegetable species. The diploid progenitors are also ancient polyploids, with remnants of two previous polyploidisation events evident in the triplicated genome structure. This history of polyploid evolution and human agricultural selection makes B. napus an excellent model with which to investigate processes of genomic evolution and selection in polyploid crops. The ease of de novo interspecific hybridisation, responsiveness to tissue culture, and the close relationship of oilseed rape to the model plant Arabidopsis thaliana, coupled with the recent availability of reference genome sequences and suites of molecular cytogenetic and high-throughput genotyping tools, allow detailed dissection of genetic, genomic and phenotypic interactions in this crop. In this review we discuss the past and present uses of B. napus as a model for polyploid speciation and evolution in crop species, along with current and developing analysis tools and resources. We further outline unanswered questions that may now be tractable to investigation.
Collapse
Affiliation(s)
- A S Mason
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany.
| | - R J Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| |
Collapse
|
17
|
Qin Q, Lai Z, Cao L, Xiao Q, Wang Y, Liu S. Rapid genomic changes in allopolyploids of Carassius auratus red var. (♀) × Megalobrama amblycephala (♂). Sci Rep 2016; 6:34417. [PMID: 27703178 PMCID: PMC5050501 DOI: 10.1038/srep34417] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/13/2016] [Indexed: 11/16/2022] Open
Abstract
To better understand genomic changes in the early generations after polyploidisation, we examined the chromosomal consequences of genomic merger in allotetraploid hybrids (4 nF1) (AABB, 4n = 148) of Carassius auratus red var. (RCC) (AA, 2n = 100) (♀) × Megalobrama amblycephala (BSB) (BB, 2n = 48) (♂). Complete loss of the paternal 5S rDNA sequence and the expected number of maternal chromosomal loci were found in 4 nF1, suggesting directional genomic changes occurred in the first generations after polyploidisation. Recent studies have reported instability of newly established allotetraploid genomes. To assess this in the newly formed 4 nF1 genome, we performed fluorescence in situ hybridisation on an allotetraploid gynogenetic hybrid (4 nG) (AABB, 4n = 148) and an allopentaploid hybrid (5 nH) (AABBB, 5n = 172) from 4 nF1 (♀) × BSB (♂) with 5S rDNA gene and centromere probes from RCC, the original diploid parent. The expected numbers of maternal chromosomal loci were found in 4 nG, while chromosomal locus deletions and chromosome recombinations were detected in 5 nH. These observations suggest that abnormal meiosis did not lead to obvious genomic changes in the newly established allotetraploid genomes, but hybridisation with the original diploid parent resulted in obvious genomic changes in the newly established allotetraploid genomes, as was found for the maternal genome.
Collapse
|
18
|
Dang J, Zhao Q, Yang X, Chen Z, Xiang S, Liang G. A modified method for preparing meiotic chromosomes based on digesting pollen mother cells in suspension. Mol Cytogenet 2015; 8:80. [PMID: 26500700 PMCID: PMC4619508 DOI: 10.1186/s13039-015-0184-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/14/2015] [Indexed: 11/11/2022] Open
Abstract
Background Meiotic chromosome preparation is a key step in plant meiotic research. Pollen mother cell (PMC) wall elimination is beneficial to cytogenetic experimental procedures. Without wall interference, these procedures are easier and more successful. In existing methods it is difficult to eliminate PMC walls completely and uniformly. In this paper, we present an improved method for digesting PMC walls, and one for providing massive chromosomal spreads on a slide for other cytogenetic experimental procedures. Results Three plants were selected to exhibit the modified meiotic chromosome preparation method. PMCs were dispersed as single cells and incubated in a mixed enzyme solution (3 % cellulose + 0.3 % pectinase + 1 % snailase) for 1.5–2.5 h. In total, 28.28 % cells were lost during this process. There were 800–1900 spreads on every slide and no PMC wall interference was found on any of the slides. The spreads were also evenly distributed on the slides. More spreads were obtained when PMC and protoplast densities in the suspension were increased. All three plants’ spreads were successfully used to locate a 5 s rDNA conserved sequence. The Nicotiana hybrid’s spreads were successfully used to identify the hybrid’s parental genome. Conclusion This is an alternative method for meiotic chromosome preparation. Through this method, PMC walls can be completely and uniformly eliminated, and hundreds of spreads on every slide can be obtained. These spreads can be successfully used for DNA in situ hybridization.
Collapse
Affiliation(s)
- Jiangbo Dang
- Southwest University, College of Horticulture and Landscape, No. 2 Tiansheng Road, Beibei District, Chongqing, 400715 China
| | - Qian Zhao
- Southwest University, College of Horticulture and Landscape, No. 2 Tiansheng Road, Beibei District, Chongqing, 400715 China
| | - Xing Yang
- Southwest University, College of Horticulture and Landscape, No. 2 Tiansheng Road, Beibei District, Chongqing, 400715 China
| | - Zhi Chen
- Southwest University, College of Horticulture and Landscape, No. 2 Tiansheng Road, Beibei District, Chongqing, 400715 China
| | - Suqiong Xiang
- Southwest University, College of Horticulture and Landscape, No. 2 Tiansheng Road, Beibei District, Chongqing, 400715 China
| | - Guolu Liang
- Southwest University, College of Horticulture and Landscape, No. 2 Tiansheng Road, Beibei District, Chongqing, 400715 China
| |
Collapse
|
19
|
Zemtsova LV, Amosova AV, Samatadze TE, Bolsheva NL, Volovik VT, Zelenin AV, Muravenko OV. Differentiation of closely related genomes and chromosome identification in Brassica napus L. By simultaneous fluorescence in situ hybridization and genomic in situ hybridization. DOKL BIOCHEM BIOPHYS 2014; 457:137-40. [PMID: 25172335 DOI: 10.1134/s1607672914040061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Indexed: 11/22/2022]
Affiliation(s)
- L V Zemtsova
- Engelgardt Institute of Molecular Biology of RAS, ul. Vavilova 32, Moscow, 119991, Russia,
| | | | | | | | | | | | | |
Collapse
|
20
|
Intraspecific chromosomal and genetic polymorphism in Brassica napus L. detected by cytogenetic and molecular markers. J Genet 2014; 93:133-43. [PMID: 24840830 DOI: 10.1007/s12041-014-0351-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The application of DNA intercalator 9-aminoacridine allowed us to increase the resolution of chromosome C-banding and DAPI-banding patterns and to investigate chromosomal polymorphism in karyotypes of seven spring and six winter rape varieties. It was shown that the pericentromeric and intercalary C-bands of most of the chromosomes in spring rape were smaller in size and less polymorphic than those of winter rape. More 26S and 5S rDNA sites were found in the winter rape karyotypes than the spring varieties. Separate or colocalized 26S and 5S rDNA sites were revealed on chromosomes 4, 5, 6, 8, 10, 14, 15, 16 and 18. Intervarietal and intravarietal polymorphism of the number and chromosomal localization of rDNA sites were detected. The generalized idiogram of chromosomes of 13 Brassica napus varieties with account of all possibilities of C-banding patterns as well as localization of 26S and 5S rDNA sites were constructed. Polymorphism of the examined molecular and cytogenetic markers as well as the heterozygosis level of FAE1.1 gene controlling erucic acid synthesis in rapeseed was higher in the winter varieties than in the spring ones. The obtained data were in a atisfactory agreement with increased tolerance to environmental stress conditions of winter rape.
Collapse
|
21
|
Yan M, Liu X, Guan C, Liu L, Xiang J, Lu Y, Liu Z. Cloning of TTG1 gene and PCR identification of genomes A, B and C in Brassica species. Genetica 2014; 142:169-76. [PMID: 24752509 DOI: 10.1007/s10709-014-9764-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 04/07/2014] [Indexed: 02/05/2023]
Abstract
Arabidopsis Transparent Testa Glabra 1 (TTG1) genes were cloned from three diploid Brassica species (B. rapa, B. nigra and B. oleracea) and two amphidiploids species (B. juncea and B. carinata) by homology cloning. TTG1 homologues identified in all the accessions of the investigated species had a coding sequence of 1,014 bp. One copy was obtained from each diploid species and two copies from each amphidiploid species. Combined analysis of the TTG1 sequences cloned in this study with those obtained from public databases demonstrated that three, forty-five and seven nucleotides were specific variations in TTG1 genes from genomes A, B and C, respectively. Primers designed with genome-specific nucleotide variations were able to distinguish among TTG1 genes originating from genomes A, B and C in Brassica. Therefore, the TTG1 gene could serve as a candidate marker gene to detect the pollen flow of Brassica and provide an alternative method for the detection of pollen drift and risk assessment of gene flow in Brassica species.
Collapse
Affiliation(s)
- Mingli Yan
- School of Life Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China,
| | | | | | | | | | | | | |
Collapse
|
22
|
Grandont L, Cuñado N, Coriton O, Huteau V, Eber F, Chèvre AM, Grelon M, Chelysheva L, Jenczewski E. Homoeologous Chromosome Sorting and Progression of Meiotic Recombination in Brassica napus: Ploidy Does Matter! THE PLANT CELL 2014; 26:1448-1463. [PMID: 24737673 PMCID: PMC4036564 DOI: 10.1105/tpc.114.122788] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/04/2014] [Accepted: 03/26/2014] [Indexed: 05/18/2023]
Abstract
Meiotic recombination is the fundamental process that produces balanced gametes and generates diversity within species. For successful meiosis, crossovers must form between homologous chromosomes. This condition is more difficult to fulfill in allopolyploid species, which have more than two sets of related chromosomes (homoeologs). Here, we investigated the formation, progression, and completion of several key hallmarks of meiosis in Brassica napus (AACC), a young polyphyletic allotetraploid crop species with closely related homoeologous chromosomes. Altogether, our results demonstrate a precocious and efficient sorting of homologous versus homoeologous chromosomes during early prophase I in two representative B. napus accessions that otherwise show a genotypic difference in the progression of homologous recombination. More strikingly, our detailed comparison of meiosis in near isogenic allohaploid and euploid plants showed that the mechanism(s) promoting efficient chromosome sorting in euploids is adjusted to promote crossover formation between homoeologs in allohaploids. This suggests that, in contrast to other polyploid species, chromosome sorting is context dependent in B. napus.
Collapse
Affiliation(s)
- Laurie Grandont
- INRA, UMR1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France
| | - Nieves Cuñado
- Departamento de Génetica, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | - Olivier Coriton
- INRA, UMR 1349, Institut de Génétique, Environnement et Protection des Plantes, F-35653 Le Rheu Cedex, France
| | - Virgine Huteau
- INRA, UMR 1349, Institut de Génétique, Environnement et Protection des Plantes, F-35653 Le Rheu Cedex, France
| | - Frédérique Eber
- INRA, UMR 1349, Institut de Génétique, Environnement et Protection des Plantes, F-35653 Le Rheu Cedex, France
| | - Anne Marie Chèvre
- INRA, UMR 1349, Institut de Génétique, Environnement et Protection des Plantes, F-35653 Le Rheu Cedex, France
| | - Mathilde Grelon
- INRA, UMR1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France
| | - Liudmila Chelysheva
- INRA, UMR1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France
| | - Eric Jenczewski
- INRA, UMR1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France
| |
Collapse
|
23
|
Yang J, Song N, Zhao X, Qi X, Hu Z, Zhang M. Genome survey sequencing provides clues into glucosinolate biosynthesis and flowering pathway evolution in allotetrapolyploid Brassica juncea. BMC Genomics 2014; 15:107. [PMID: 24502855 PMCID: PMC3925957 DOI: 10.1186/1471-2164-15-107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 01/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Brassica juncea is an economically important vegetable crop in China, oil crop in India, condiment crop in Europe and selected for canola quality recently in Canada and Australia. B. juncea (2n = 36, AABB) is an allotetraploid derived from interspecific hybridization between B. rapa (2n = 20, AA) and B. nigra (2n = 16, BB), followed by spontaneous chromosome doubling. RESULTS Comparative genome analysis by genome survey sequence (GSS) of allopolyploid B. juncea with B. rapa was carried out based on high-throughput sequencing approaches. Over 28.35 Gb of GSS data were used for comparative analysis of B. juncea and B. rapa, producing 45.93% reads mapping to the B. rapa genome with a high ratio of single-end reads. Mapping data suggested more structure variation (SV) in the B. juncea genome than in B. rapa. We detected 2,921,310 single nucleotide polymorphisms (SNPs) with high heterozygosity and 113,368 SVs, including 1-3 bp Indels, between B. juncea and B. rapa. Non-synonymous polymorphisms in glucosinolate biosynthesis genes may account for differences in glucosinolate biosynthesis and glucosinolate components between B. juncea and B. rapa. Furthermore, we identified distinctive vernalization-dependent and photoperiod-dependent flowering pathways coexisting in allopolyploid B. juncea, suggesting contribution of these pathways to adaptation for survival during polyploidization. CONCLUSIONS Taken together, we proposed that polyploidization has allowed for accelerated evolution of the glucosinolate biosynthesis and flowering pathways in B. juncea that likely permit the phenotypic variation observed in the crop.
Collapse
Affiliation(s)
- Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, P. R. China
- Key laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou 310058, P. R. China
| | - Ning Song
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, P. R. China
- Key laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou 310058, P. R. China
| | - Xuan Zhao
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, P. R. China
- Key laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou 310058, P. R. China
| | - Xiaohua Qi
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, P. R. China
- Key laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou 310058, P. R. China
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, P. R. China
- Key laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou 310058, P. R. China
| |
Collapse
|
24
|
Li XF, Xuan SX, Wang JL, Zhang SL, Wang YH, Zhang CH, Shen SX, Shen EQ. Generation and identification of Brassica alboglabra-Brassica campestris monosomic alien addition lines. Genome 2013; 56:171-7. [PMID: 23659701 DOI: 10.1139/gen-2012-0139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Four monosomic alien addition lines (MAALs) for Brassica alboglabra-Brassica campestris were developed through digenomic triploid (ACC) backcrossing with the recurrent parent B. alboglabra (CC). The objectives of this study were to compare morphological traits, microsatellite markers (simple sequence repeats), chromosomal karyotypes, and meiotic behaviors. Based on the new chromosome nomenclature system established for Brassica, we preliminarily identified these MAALs as CC+A1, CC+A3, CC+A6, and CC+A7. Their alien chromosomes were transmittable through both female and male gametes at rates of 11.46%-26.53% and 4.88%-12.90%, respectively.
Collapse
Affiliation(s)
- Xiao-Feng Li
- College of Horticulture, Agricultural University of Hebei, Baoding 071001, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Howell EC, Armstrong S. Using sequential fluorescence and genomic in situ hybridization (FISH and GISH) to distinguish the A and C genomes in Brassica napus. Methods Mol Biol 2013; 990:25-34. [PMID: 23559199 DOI: 10.1007/978-1-62703-333-6_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We have developed a sequential procedure with fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH) that enables us to distinguish between the A and C genomes in Brassica napus and to identify certain individual chromosomes or chromosome groups within a genome. Our modified GISH technique uses a repetitive sequence in addition to the whole genome in the blocking DNA, and it is effective on meiotic and mitotic cells present in the anther material that we use.
Collapse
Affiliation(s)
- Elaine C Howell
- School of Biosciences, The University of Birmingham, Birmingham, UK
| | | |
Collapse
|
26
|
Li J, Hong D, He J, Ma L, Wan L, Liu P, Yang G. Map-based cloning of a recessive genic male sterility locus in Brassica napus L. and development of its functional marker. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:223-34. [PMID: 22382488 DOI: 10.1007/s00122-012-1827-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 02/13/2012] [Indexed: 05/25/2023]
Abstract
We previously mapped one male-sterile gene (Bnms3) from an extensively used recessive genic male sterility line (9012AB) in Brassica napus to a 0.14-cM genomic region. In this study, two highly homologous BAC contigs possibly containing the candidate BnMs3 gene were identified using a map-based cloning strategy. A BnMs3-linked SCAR marker (DM1) capable of differentiating the subgenomes between B. rapa and the B. oleracea aided mapping of BnMs3 on the contig derived from the B. napus chromosome C9. One representative BAC clone was sequenced from each of the two contigs and resulted in a larger number of markers according to the sequence difference between the two clones. To isolate BnMs3, these markers were then analyzed in another two BC(1) populations with different genetic backgrounds. This assay allowed for a delimitation of the mutated functional region of BnMs3 to a 9.3-kb DNA fragment. Gene prediction suggested that one complete open reading frame (ORF, ORF2) and partial CDS fragments of ORF1 and ORF3 reside in this fragment. Sequence comparison and genetic transformation eventually indicated that ORF1 (designated as BnaC9.Tic40), an analogue of the Arabidopsis gene AT5G16620 which encodes a translocon of the inner envelope of chloroplasts 40 (Tic40), is the only candidate gene of BnMs3. Furthermore, two distinct mutation types in ORF1 both causing the male-sterile phenotype were individually revealed from 9012A and the temporary maintainer line T45. The molecular mechanism of this male sterility as well as the application of BnMs3-associated functional and cosegregated markers in true breeding programs was also discussed.
Collapse
Affiliation(s)
- Ji Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Heneen WK, Geleta M, Brismar K, Xiong Z, Pires JC, Hasterok R, Stoute AI, Scott RJ, King GJ, Kurup S. Seed colour loci, homoeology and linkage groups of the C genome chromosomes revealed in Brassica rapa-B. oleracea monosomic alien addition lines. ANNALS OF BOTANY 2012; 109:1227-42. [PMID: 22628364 PMCID: PMC3359914 DOI: 10.1093/aob/mcs052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS Brassica rapa and B. oleracea are the progenitors of oilseed rape B. napus. The addition of each chromosome of B. oleracea to the chromosome complement of B. rapa results in a series of monosomic alien addition lines (MAALs). Analysis of MAALs determines which B. oleracea chromosomes carry genes controlling specific phenotypic traits, such as seed colour. Yellow-seeded oilseed rape is a desirable breeding goal both for food and livestock feed end-uses that relate to oil, protein and fibre contents. The aims of this study included developing a missing MAAL to complement an available series, for studies on seed colour control, chromosome homoeology and assignment of linkage groups to B. oleracea chromosomes. METHODS A new batch of B. rapa-B. oleracea aneuploids was produced to generate the missing MAAL. Seed colour and other plant morphological features relevant to differentiation of MAALs were recorded. For chromosome characterization, Snow's carmine, fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH) were used. KEY RESULTS The final MAAL was developed. Morphological traits that differentiated the MAALs comprised cotyledon number, leaf morphology, flower colour and seed colour. Seed colour was controlled by major genes on two B. oleracea chromosomes and minor genes on five other chromosomes of this species. Homoeologous pairing was largely between chromosomes with similar centromeric positions. FISH, GISH and a parallel microsatellite marker analysis defined the chromosomes in terms of their linkage groups. Conclusions A complete set of MAALs is now available for genetic, genomic, evolutionary and breeding perspectives. Defining chromosomes that carry specific genes, physical localization of DNA markers and access to established genetic linkage maps contribute to the integration of these approaches, manifested in the confirmed correspondence of linkage groups with specific chromosomes. Applications include marker-assisted selection and breeding for yellow seeds.
Collapse
Affiliation(s)
- Waheeb K Heneen
- Department of Plant Breeding and Biotechnology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
de Jong TJ, Hesse E. Selection against hybrids in mixed populations of Brassica rapa and Brassica napus: model and synthesis. THE NEW PHYTOLOGIST 2012; 194:1134-1142. [PMID: 22463678 DOI: 10.1111/j.1469-8137.2012.04122.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Pollen of the crop oilseed rape (Brassica napus, AACC) can cross-fertilize ovules of Brassica rapa (AA), which leads to an influx of unpaired C-chromosomes into wild B. rapa populations. The presence of such extra chromosomes is thought to be an indicator of introgression. Backcrosses and F(1) hybrids were found in Danish populations but, surprisingly, only F(1) hybrids were found in the UK and the Netherlands. Here, a model tests how the level of selection and biased vs unbiased transmission affect the population frequency of C-chromosomes. In the biased-transmission scenario the experimental results of the first backcross are extrapolated to estimate survival of gametes with different numbers of C-chromosomes from all crosses in the population. With biased transmission, the frequency of C-chromosomes always rapidly declines to zero. With unbiased transmission, the continued presence of plants with extra C-chromosomes depends on selection in the adult stage and we argue that this is the most realistic option for modeling populations. We suggest that selection in the field against plants with unpaired C-chromosomes is strong in Dutch and UK populations. The model highlights what we do not know and makes suggestions for further research on introgression.
Collapse
Affiliation(s)
- Tom J de Jong
- Plant Ecology & Phytochemistry, Institute of Biology Leiden, Leiden University, PO Box 9516, 2300RA Leiden, the Netherlands
| | - Elze Hesse
- Plant Ecology & Phytochemistry, Institute of Biology Leiden, Leiden University, PO Box 9516, 2300RA Leiden, the Netherlands
| |
Collapse
|
29
|
Cytoplasmic and genomic effects on meiotic pairing in Brassica hybrids and allotetraploids from pair crosses of three cultivated diploids. Genetics 2012; 191:725-38. [PMID: 22505621 DOI: 10.1534/genetics.112.140780] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Interspecific hybridization and allopolyploidization contribute to the origin of many important crops. Synthetic Brassica is a widely used model for the study of genetic recombination and "fixed heterosis" in allopolyploids. To investigate the effects of the cytoplasm and genome combinations on meiotic recombination, we produced digenomic diploid and triploid hybrids and trigenomic triploid hybrids from the reciprocal crosses of three Brassica diploids (B. rapa, AA; B. nigra, BB; B. oleracea, CC). The chromosomes in the resultant hybrids were doubled to obtain three allotetraploids (B. juncea, AA.BB; B. napus, AA.CC; B. carinata, BB.CC). Intra- and intergenomic chromosome pairings in these hybrids were quantified using genomic in situ hybridization and BAC-FISH. The level of intra- and intergenomic pairings varied significantly, depending on the genome combinations and the cytoplasmic background and/or their interaction. The extent of intragenomic pairing was less than that of intergenomic pairing within each genome. The extent of pairing variations within the B genome was less than that within the A and C genomes, each of which had a similar extent of pairing. Synthetic allotetraploids exhibited nondiploidized meiotic behavior, and their chromosomal instabilities were correlated with the relationship of the genomes and cytoplasmic background. Our results highlight the specific roles of the cytoplasm and genome to the chromosomal behaviors of hybrids and allopolyploids.
Collapse
|
30
|
Niemelä T, Seppänen M, Badakshi F, Rokka VM, Heslop-Harrison JSP. Size and location of radish chromosome regions carrying the fertility restorer Rfk1 gene in spring turnip rape. Chromosome Res 2012; 20:353-61. [PMID: 22476396 DOI: 10.1007/s10577-012-9280-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 02/29/2012] [Accepted: 03/08/2012] [Indexed: 11/25/2022]
Abstract
In spring turnip rape (Brassica rapa L. spp. oleifera), the most promising F1 hybrid system would be the Ogu-INRA CMS/Rf system. A Kosena fertility restorer gene Rfk1, homolog of the Ogura restorer gene Rfo, was successfully transferred from oilseed rape into turnip rape and that restored the fertility in female lines carrying Ogura cms. The trait was, however, unstable in subsequent generations. The physical localization of the radish chromosomal region carrying the Rfk1 gene was investigated using genomic in situ hybridization (GISH) and bacterial artificial chromosome-fluorescence in situ hybridization (BAC-FISH) methods. The metaphase chromosomes were hybridized using radish DNA as the genomic probe and BAC64 probe, which is linked with Rfo gene. Both probes showed a signal in the chromosome spreads of the restorer line 4021-2 Rfk of turnip rape but not in the negative control line 4021B. The GISH analyses clearly showed that the turnip rape restorer plants were either monosomic (2n=2x=20+1R) or disomic (2n=2x=20+2R) addition lines with one or two copies of a single alien chromosome region originating from radish. In the BAC-FISH analysis, double dot signals were detected in subterminal parts of the radish chromosome arms showing that the fertility restorer gene Rfk1 was located in this additional radish chromosome. Detected disomic addition lines were found to be unstable for turnip rape hybrid production. Using the BAC-FISH analysis, weak signals were sometimes visible in two chromosomes of turnip rape and a homologous region of Rfk1 in chromosome 9 of the B. rapa A genome was verified with BLAST analysis. In the future, this homologous area in A genome could be substituted with radish chromosome area carrying the Rfk1 gene.
Collapse
Affiliation(s)
- Tarja Niemelä
- Department of Agriculture, University of Helsinki, PO Box 27, FI-00014, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
31
|
Fujii K, Ohmido N. Stable progeny production of the amphidiploid resynthesized Brassica napus cv. Hanakkori, a newly bred vegetable. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:1433-1443. [PMID: 21861174 DOI: 10.1007/s00122-011-1678-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 07/30/2011] [Indexed: 05/31/2023]
Abstract
Resynthesized Brassica napus cv. Hanakkori (AACC, 2n = 38) was produced by cross-hybridization between B. rapa (AA, 2n = 20) and B. oleracea (CC, 2n = 18) as a new vegetative crop. Many studies have provided evidences for the instability and close relationship between A and C genome in the resynthesized B. napus cultivars. In fact, seed produced to obtain progeny in Hanakkori had unstable morphological characters and generated many off-type plants. In this study, we investigated the pollen fertility, chromosome number, structure, and behavior linked to various Hanakkori phenotypes to define factors of unstable phenotypic expression in the progeny. Hanakkori phenotypes were categorized into five types. The results of pollen fertility, chromosome number, and fluorescence in situ hybridization analysis for somatic mitosis cells indicated that the off-type plants had lower pollen fertility, aberrant chromosome number, and structures with small chromosome fragments. Observation of chromosomes at meiosis showed that the meiotic division in off-type plants led to appreciably higher abnormalities than in on-type plants. However, polyvalent chromosomes were observed frequently in both on- and off-type plants in diplotene stage of meiosis. We assume that the unstable morphological characters in resynthesized progeny were the result of abnormal division in meiosis. It results as important that the plants of normal phenotype, chromosome structure and minimized abnormal meiosis are selected to stabilize progeny.
Collapse
Affiliation(s)
- K Fujii
- Yamaguchi Prefectural Technology Center for Agriculture and Forestry, Yamaguchi 753-0214, Japan.
| | | |
Collapse
|
32
|
Zou J, Fu D, Gong H, Qian W, Xia W, Pires JC, Li R, Long Y, Mason AS, Yang TJ, Lim YP, Park BS, Meng J. De novo genetic variation associated with retrotransposon activation, genomic rearrangements and trait variation in a recombinant inbred line population of Brassica napus derived from interspecific hybridization with Brassica rapa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:212-24. [PMID: 21689170 DOI: 10.1111/j.1365-313x.2011.04679.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Interspecific hybridization is a significant evolutionary force as well as a powerful method for crop breeding. Partial substitution of the AA subgenome in Brassica napus (A(n) A(n) C(n) C(n) ) with the Brassica rapa (A(r) A(r) ) genome by two rounds of interspecific hybridization resulted in a new introgressed type of B. napus (A(r) A(r) C(n) C(n) ). In this study, we construct a population of recombinant inbred lines of the new introgressed type of B. napus. Microsatellite, intron-based and retrotransposon markers were used to characterize this experimental population with genetic mapping, genetic map comparison and specific marker cloning analysis. Yield-related traits were also recorded for identification of quantitative trait loci (QTLs). A remarkable range of novel genomic alterations was observed in the population, including simple sequence repeat (SSR) mutations, chromosomal rearrangements and retrotransposon activations. Most of these changes occurred immediately after interspecific hybridization, in the early stages of genome stabilization and derivation of experimental lines. These novel genomic alterations affected yield-related traits in the introgressed B. napus to an even greater extent than the alleles alone that were introgressed from the A(r) subgenome of B. rapa, suggesting that genomic changes induced by interspecific hybridization are highly significant in both genome evolution and crop improvement.
Collapse
Affiliation(s)
- Jun Zou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Szadkowski E, Eber F, Huteau V, Lodé M, Coriton O, Jenczewski E, Chèvre AM. Polyploid formation pathways have an impact on genetic rearrangements in resynthesized Brassica napus. THE NEW PHYTOLOGIST 2011; 191:884-894. [PMID: 21517871 DOI: 10.1111/j.1469-8137.2011.03729.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
• Polyploids can be produced by the union of unreduced gametes or through somatic doubling of F(1) interspecific hybrids. The first route is suspected to produce allopolyploid species under natural conditions, whereas experimental data have only been thoroughly gathered for the latter. • We analyzed the meiotic behavior of an F(1) interspecific hybrid (by crossing Brassica oleracea and B.rapa, progenitors of B.napus) and the extent to which recombined homoeologous chromosomes were transmitted to its progeny. These results were then compared with results obtained for a plant generated by somatic doubling of this F₁ hybrid (CD.S₀) and an amphidiploid (UG.S₀) formed via a pathway involving unreduced gametes; we studied the impact of this method of polyploid formation on subsequent generations. • This study revealed that meiosis of the F₁ interspecific hybrid generated more gametes with recombined chromosomes than did meiosis of the plant produced by somatic doubling, although the size of these translocations was smaller. In the progeny of the UG.S₀ plant, there was an unexpected increase in the frequency at which the C1 chromosome was replaced by the A1 chromosome. • We conclude that polyploid formation pathways differ in their genetic outcome. Our study opens up perspectives for the understanding of polyploid origins.
Collapse
Affiliation(s)
- E Szadkowski
- INRA, UMR118 APBV, BP35327, F-35653 Le Rheu cedex, France
| | - F Eber
- INRA, UMR118 APBV, BP35327, F-35653 Le Rheu cedex, France
| | - V Huteau
- INRA, UMR118 APBV, BP35327, F-35653 Le Rheu cedex, France
| | - M Lodé
- INRA, UMR118 APBV, BP35327, F-35653 Le Rheu cedex, France
| | - O Coriton
- INRA, UMR118 APBV, BP35327, F-35653 Le Rheu cedex, France
| | - E Jenczewski
- INRA Institut Jean-Pierre Bourgin, Station Génétique et d'Amélioration des Plantes, F-78026 Versailles, France
| | - A M Chèvre
- INRA, UMR118 APBV, BP35327, F-35653 Le Rheu cedex, France
| |
Collapse
|
34
|
Zhang Y, Wang X, Zhang W, Yu F, Tian J, Li D, Guo A. Functional analysis of the two Brassica AP3 genes involved in apetalous and stamen carpelloid phenotypes. PLoS One 2011; 6:e20930. [PMID: 21738595 PMCID: PMC3128040 DOI: 10.1371/journal.pone.0020930] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 05/12/2011] [Indexed: 01/23/2023] Open
Abstract
The Arabidopsis homeotic genes APETALA3 (AP3) and PISTILLATA (PI) are B genes which encode MADS-box transcription factors and specify petal and stamen identities. In the current study, the stamen carpelloid (SC) mutants, HGMS and AMS, of B. rapa and B. napus were investigated and two types of AP3 genes, B.AP3.a and B.AP3.b, were functional characterized. B.AP3.a and B.AP3.b share high similarity in amino acid sequences except for 8 residues difference located at the C-terminus. Loss of this 8 residues in B.AP3.b led to the change of PI-derived motifs. Meanwhile, B.AP3.a specified petal and stamen development, whereas B.AP3.b only specified stamen development. In B. rapa, the mutations of both genes generated the SC mutant HGMS. In B. napus that contained two B.AP3.a and two B.AP3.b, loss of the two B.AP3.a functions was the key reason for the apetalous mutation, however, the loss-of-function in all four AP3 was related to the SC mutant AMS. We inferred that the 8 residues or the PI-derived motif in AP3 gene probably relates to petal formation.
Collapse
Affiliation(s)
- Yanfeng Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi, China
| | - Xuefang Wang
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi, China
| | - Wenxue Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi, China
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianhua Tian
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi, China
| | - Dianrong Li
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi, China
- * E-mail: (DL); (AG)
| | - Aiguang Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (DL); (AG)
| |
Collapse
|
35
|
Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc Natl Acad Sci U S A 2011; 108:7908-13. [PMID: 21512129 DOI: 10.1073/pnas.1014138108] [Citation(s) in RCA: 292] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Polyploidy has contributed to the evolution of eukaryotes, particularly flowering plants. The genomic consequences of polyploidy have been extensively studied, but the mechanisms for chromosome stability and diploidization in polyploids remain largely unknown. By using new cytogenetic tools to identify all of the homoeologous chromosomes, we conducted a cytological investigation of 50 resynthesized Brassica napus allopolyploids across generations S(0:1) to S(5:6) and in the S(10:11) generation. Changes in copy number of individual chromosomes were detected in the S(0:1) generation and increased in subsequent generations, despite the fact that the mean chromosome number among lines was approximately 38. The chromosome complement of individual plants (segregants) ranged from 36 to 42, with a bias toward the accumulation of extra chromosomes. Karyotype analysis of the S(10:11) generation detected aneuploidy and inter- and intragenomic rearrangements, chromosome breakage and fusion, rDNA changes, and loss of repeat sequences. Chromosome sets with extensive homoeology showed the greatest instability. Dosage balance requirements maintained chromosome numbers at or near the tetraploid level, and the loss and gain of chromosomes frequently involved homoeologous chromosome replacement and compensation. These data indicate that early generations of resynthesized B. napus involved aneuploidy and gross chromosomal rearrangements, and that dosage balance mechanisms enforced chromosome number stability. Seed yield and pollen viability were inversely correlated with increasing aneuploidy, and the greatest fertility was observed in two lines that were additive for parental chromosomes. These data on resynthesized B. napus and the correlation of fertility with additive karyotypes cast light on the origins and establishment of natural B. napus.
Collapse
|
36
|
Analysis of B-genome chromosome introgression in interspecific hybrids of Brassica napus × B. carinata. Genetics 2010; 187:659-73. [PMID: 21196520 DOI: 10.1534/genetics.110.124925] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Brassica carinata, an allotetraploid with B and C genomes, has a number of traits that would be valuable to introgress into B. napus. Interspecific hybrids were created between B. carinata (BBCC) and B. napus (AACC), using an advanced backcross approach to identify and introgress traits of agronomic interest from the B. carinata genome and to study the genetic changes that occur during the introgression process. We mapped the B and C genomes of B. carinata with SSR markers and observed their introgression into B. napus through a number of backcross generations, focusing on a BC(3) and BC(3)S(1) sibling family. There was close colinearity between the C genomes of B. carinata and B. napus and we provide evidence that B. carinata C chromosomes pair and recombine normally with those of B. napus, suggesting that similar to other Brassica allotetraploids no major chromosomal rearrangements have taken place since the formation of B. carinata. There was no evidence of introgression of the B chromosomes into the A or C chromosomes of B. napus; instead they were inherited as whole linkage groups with the occasional loss of terminal segments and several of the B-genome chromosomes were retained across generations. Several BC(3)S(1) families were analyzed using SSR markers, genomic in situ hybridization (GISH) assays, and chromosome counts to study the inheritance of the B-genome chromosome(s) and their association with morphological traits. Our work provides an analysis of the behavior of chromosomes in an interspecific cross and reinforces the challenges of introgressing novel traits into crop plants.
Collapse
|
37
|
Karyotype and identification of all homoeologous chromosomes of allopolyploid Brassica napus and its diploid progenitors. Genetics 2010; 187:37-49. [PMID: 21041557 DOI: 10.1534/genetics.110.122473] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Investigating recombination of homoeologous chromosomes in allopolyploid species is central to understanding plant breeding and evolution. However, examining chromosome pairing in the allotetraploid Brassica napus has been hampered by the lack of chromosome-specific molecular probes. In this study, we establish the identification of all homoeologous chromosomes of allopolyploid B. napus by using robust molecular cytogenetic karyotypes developed for the progenitor species Brassica rapa (A genome) and Brassica oleracea (C genome). The identification of every chromosome among these three Brassica species utilized genetically mapped bacterial artificial chromosomes (BACs) from B. rapa as probes for fluorescent in situ hybridization (FISH). With this BAC-FISH data, a second karyotype was developed using two BACs that contained repetitive DNA sequences and the ubiquitous ribosomal and pericentromere repeats. Using this diagnostic probe mix and a BAC that contained a C-genome repeat in two successive hybridizations allowed for routine identification of the corresponding homoeologous chromosomes between the A and C genomes of B. napus. When applied to the B. napus cultivar Stellar, we detected one chromosomal rearrangement relative to the parental karyotypes. This robust novel chromosomal painting technique will have biological applications for the understanding of chromosome pairing, homoeologous recombination, and genome evolution in the genus Brassica and will facilitate new applied breeding technologies that rely upon identification of chromosomes.
Collapse
|
38
|
Kong F, Ge C, Fang X, Snowdon RJ, Wang Y. Characterization of seedling proteomes and development of markers to distinguish the Brassica A and C genomes. J Genet Genomics 2010; 37:333-40. [PMID: 20513634 DOI: 10.1016/s1673-8527(09)60051-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 03/30/2010] [Accepted: 04/06/2010] [Indexed: 11/28/2022]
Abstract
The diploid species Brassica rapa (genome AA) and B. oleracea (genome CC) were compared by full-scale proteome analyses of seedling. A total of 28.2% of the proteins was common to both species, indicating the existence of a basal or ubiquitous proteome. However, a number of discriminating proteins (32.0%) and specific proteins (39.8%) of the Brassica A and C genomes, respectively, were identified, which could represent potentially species-specific functions. Based on these A or C genome-specific proteins, a number of PCR-based markers to distinguish B. rapa and B. oleracea species were also developed.
Collapse
Affiliation(s)
- Fang Kong
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | | | | | | | | |
Collapse
|
39
|
Cifuentes M, Eber F, Lucas MO, Lode M, Chèvre AM, Jenczewski E. Repeated polyploidy drove different levels of crossover suppression between homoeologous chromosomes in Brassica napus allohaploids. THE PLANT CELL 2010; 22:2265-76. [PMID: 20639447 PMCID: PMC2929116 DOI: 10.1105/tpc.109.072991] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Allopolyploid species contain more than two sets of related chromosomes (homoeologs) that must be sorted during meiosis to ensure fertility. As polyploid species usually have multiple origins, one intriguing, yet largely underexplored, question is whether different mechanisms suppressing crossovers between homoeologs may coexist within the same polyphyletic species. We addressed this question using Brassica napus, a young polyphyletic allopolyploid species. We first analyzed the meiotic behavior of 363 allohaploids produced from 29 accessions, which represent a large part of B. napus genetic diversity. Two main clear-cut meiotic phenotypes were observed, encompassing a twofold difference in the number of univalents at metaphase I. We then sequenced two chloroplast intergenic regions to gain insight into the maternal origins of the same 29 accessions; only two plastid haplotypes were found, and these correlated with the dichotomy of meiotic phenotypes. Finally, we analyzed genetic diversity at the PrBn locus, which was shown to determine meiotic behavior in a segregating population of B. napus allohaploids. We observed that segregation of two alleles at PrBn could adequately explain a large part of the variation in meiotic behavior found among B. napus allohaploids. Overall, our results suggest that repeated polyploidy resulted in different levels of crossover suppression between homoeologs in B. napus allohaploids.
Collapse
Affiliation(s)
- Marta Cifuentes
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, INRA-AgroParisTech. Bâtiment 7, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, 78026 Versailles Cedex, France
| | - Frédérique Eber
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 118, Amélioration des Plantes et Biotechnologies Végétales, F-35653 Le Rheu, France
| | - Marie-Odile Lucas
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 118, Amélioration des Plantes et Biotechnologies Végétales, F-35653 Le Rheu, France
| | - Maryse Lode
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 118, Amélioration des Plantes et Biotechnologies Végétales, F-35653 Le Rheu, France
| | - Anne-Marie Chèvre
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 118, Amélioration des Plantes et Biotechnologies Végétales, F-35653 Le Rheu, France
| | - Eric Jenczewski
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, INRA-AgroParisTech. Bâtiment 7, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, 78026 Versailles Cedex, France
- Address correspondence to
| |
Collapse
|
40
|
Inácio A, Matos I, Machado MP, Coelho MM. An easier method to identify the individual genomic composition of allopolyploid complexes. JOURNAL OF FISH BIOLOGY 2010; 76:1995-2001. [PMID: 20557652 DOI: 10.1111/j.1095-8649.2010.02637.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A new method for the fast identification of the genomic composition of the cyprinid Squalius alburnoides is presented. The method is based on a length polymorphism detected in the beta-actin gene, which serves as the basis for the development of a semi-quantitative PCR.
Collapse
Affiliation(s)
- A Inácio
- Universidade de Lisboa, Faculdade de Ciências de Lisboa, Centro de Biologia Ambiental-Departamento de Biologia Animal, Bloco C2-3 degrees Piso, 1749-16, Campo Grande Lisboa, Portugal.
| | | | | | | |
Collapse
|
41
|
Yao XC, Du XZ, Ge XH, Chen JP, Li ZY. Intra- and intergenomic chromosome pairings revealed by dual-color GISH in trigenomic hybrids of Brassica juncea and B. carinata with B. maurorum. Genome 2010; 53:14-22. [PMID: 20130745 DOI: 10.1139/g09-082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
From dual-color genomic in situ hybridization (GISH) analysis of three trigenomic hybrids, Brassica maurorum (MM, 2n = 16) x B. juncea (AABB, 2n = 36) (M.AB), B. maurorum x B. carinata (BBCC, 2n = 34) (M.BC), and B. carinata x B. maurorum (BC.M), the three genomes of each hybrid were distinguished and autosyndesis and allosyndesis were evaluated. In M.AB, up to two autosyndetic bivalents occurred among the chromosomes of each genome; a maximum of three allosyndetic bivalents appeared between A-B, A-M, and B-M genomes. The similar pairings in M.BC and BC.M suggested that the cytoplasm of B. maurorum or B. carinata had no obvious effect on chromosome pairing. In M.BC and BC.M, a maximum of one autosyndetic bivalent was found for B and M genomes, but two were found for the C genome; from 0 to 2 allosyndetic bivalents were observed between B-C, B-M, and C-M genomes. The B-M allosyndesis frequency was higher than the A-M or C-M allosyndesis frequency in these hybrids, revealing the closer relationship of B and M genomes. The allosyndesis frequency was higher than the autosyndesis frequency among A, B, and C genomes in these combinations, suggesting that intergenomic homoeology was higher than intragenomic homoeology. The implications for genome evolution and crop breeding are discussed.
Collapse
Affiliation(s)
- X C Yao
- National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | | | | | | | | |
Collapse
|
42
|
Ohmido N, Fukui K, Kinoshita T. Recent advances in rice genome and chromosome structure research by fluorescence in situ hybridization (FISH). PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:103-16. [PMID: 20154468 PMCID: PMC3417561 DOI: 10.2183/pjab.86.103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 01/04/2010] [Indexed: 05/28/2023]
Abstract
Fluorescence in situ hybridization (FISH) is an effective method for the physical mapping of genes and repetitive DNA sequences on chromosomes. Physical mapping of unique nucleotide sequences on specific rice chromosome regions was performed using a combination of chromosome identification and highly sensitive FISH. Increases in the detection sensitivity of smaller DNA sequences and improvements in spatial resolution have ushered in a new phase in FISH technology. Thus, it is now possible to perform in situ hybridization on somatic chromosomes, pachytene chromosomes, and even on extended DNA fibers (EDFs). Pachytene-FISH allows the integration of genetic linkage maps and quantitative chromosome maps. Visualization methods using FISH can reveal the spatial organization of the centromere, heterochromatin/euchromatin, and the terminal structures of rice chromosomes. Furthermore, EDF-FISH and the DNA combing technique can resolve a spatial distance of 1 kb between adjacent DNA sequences, and the detection of even a 300-bp target is now feasible. The copy numbers of various repetitive sequences and the sizes of various DNA molecules were quantitatively measured using the molecular combing technique. This review describes the significance of these advances in molecular cytology in rice and discusses future applications in plant studies using visualization techniques.
Collapse
Affiliation(s)
- Nobuko Ohmido
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan.
| | | | | |
Collapse
|
43
|
Wang J, Long Y, Wu B, Liu J, Jiang C, Shi L, Zhao J, King GJ, Meng J. The evolution of Brassica napus FLOWERING LOCUS T paralogues in the context of inverted chromosomal duplication blocks. BMC Evol Biol 2009; 9:271. [PMID: 19939256 PMCID: PMC2794288 DOI: 10.1186/1471-2148-9-271] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 11/25/2009] [Indexed: 12/22/2022] Open
Abstract
Background The gene FLOWERING LOCUS T (FT) and its orthologues play a central role in the integration of flowering signals within Arabidopsis and other diverse species. Multiple copies of FT, with different cis-intronic sequence, exist and appear to operate harmoniously within polyploid crop species such as Brassica napus (AACC), a member of the same plant family as Arabidopsis. Results We have identified six BnFT paralogues from the genome of B. napus and mapped them to six distinct regions, each of which is homologous to a common ancestral block (E) of Arabidopsis chromosome 1. Four of the six regions were present within inverted duplicated regions of chromosomes A7 and C6. The coding sequences of BnFT paralogues showed 92-99% identities to each other and 85-87% identity with that of Arabidopsis. However, two of the paralogues on chromosomes A2 and C2, BnA2.FT and BnC2.FT, were found to lack the distinctive CArG box that is located within intron 1 that has been shown in Arabidopsis to be the binding site for theFLC protein. Three BnFT paralogues (BnA2.FT, BnC6.FT.a and BnC6.FT.b) were associated with two major QTL clusters for flowering time. One of the QTLs encompassing two BnFT paralogues (BnC6.FT.a and BnC6.FT.b) on chromosome C6 was resolved further using near isogenic lines, specific alleles of which were both shown to promote flowering. Association analysis of the three BnFT paralogues across 55 cultivars of B. napus showed that the alleles detected in the original parents of the mapping population used to detect QTL (NY7 and Tapidor) were ubiquitous amongst spring and winter type cultivars of rapeseed. It was inferred that the ancestral FT homologues in Brassica evolved from two distinct copies, one of which was duplicated along with inversion of the associated chromosomal segment prior to the divergence of B. rapa (AA) and B. oleracea (CC). At least ten such inverted duplicated blocks (IDBs) were identified covering a quarter of the whole B. napus genome. Conclusion Six orthologues of Arabidopsis FT were identified and mapped in the genome of B. napus which sheds new light on the evolution of paralogues in polyploidy species. The allelic variation of BnFT paralogues results in functional differences affecting flowering time between winter and spring type cultivars of oilseed Brassica. The prevalent inverted duplicated blocks, two of which were located by four of the six BnFT paralogues, contributed to gene duplications and might represent predominant pathway of evolution in Brassica.
Collapse
Affiliation(s)
- Jing Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Feng J, Primomo V, Li Z, Zhang Y, Jan CC, Tulsieram L, Xu SS. Physical localization and genetic mapping of the fertility restoration gene Rfo in canola (Brassica napus L.). Genome 2009; 52:401-7. [PMID: 19370095 DOI: 10.1139/g09-016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Ogu cytoplasm for male sterility and its fertility restorer gene Rfo in canola (Brassica napus L.) were originally introgressed from radish (Raphanus sativus L.) and have been widely used for canola hybrid production and breeding. The objective of this study was to determine the physical location of the Rfo locus in the canola genome using fluorescence in situ hybridization and genetic mapping. For physical localization of the Rfo gene, two bacterial artificial chromosome (BAC) clones, G62 and B420, which were closely linked to the Rfo gene, were used as probes to hybridize with the somatic metaphase chromosomes of a canola hybrid variety, PHI-46 (46H02), containing the Rfo fragment. The results showed that both clones were physically located at the end of one large metacentric chromosome. By simultaneous use of two BAC clones and 45S rDNA repeated sequences as the probes, we demonstrated that the large metacentric chromosome probed with the two BAC clones did not carry 45S rDNA repeated sequences. The chromosome was 3.65 +/- 0.74 microm in average length (20 cells) and ranked second in size among the chromosomes without 45S rDNAs. The centromere index of the chromosome (20 cells) was calculated as 43.74 +/- 4.19. A comparison with previously reported putative karyotypes of B. napus (AACC) and its diploid ancestors Brassica rapa L. (AA) and Brassica oleracea L. (CC) suggests that the chromosome carrying the Rfo fragment might belong to one of three large metacentric chromosomes of the C genome. Genetic mapping has confirmed the localization of the Rfo fragment to the distal region of linkage group N19, which corresponds to the C genome in B. napus. This study has provided the evidence of the location of the Rfo gene on canola chromosomes and established a basic framework for further physical mapping and manipulation of the gene.
Collapse
Affiliation(s)
- Jiuhuan Feng
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58105, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Ge XH, Wang J, Li ZY. Different genome-specific chromosome stabilities in synthetic Brassica allohexaploids revealed by wide crosses with Orychophragmus. ANNALS OF BOTANY 2009; 104:19-31. [PMID: 19403626 PMCID: PMC2706731 DOI: 10.1093/aob/mcp099] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2008] [Revised: 02/12/2009] [Accepted: 03/17/2009] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS In sexual hybrids between cultivated Brassica species and another crucifer, Orychophragmus violaceus (2n = 24), parental genome separation during mitosis and meiosis is under genetic control but this phenomenon varies depending upon the Brassica species. To further investigate the mechanisms involved in parental genome separation, complex hybrids between synthetic Brassica allohexaploids (2n = 54, AABBCC) from three sources and O. violaceus were obtained and characterized. METHODS Genomic in situ hybridization, amplified fragment length polymorphism (AFLP) and single-strand conformation polymorphism (SSCP) were used to explore chromosomal/genomic components and rRNA gene expression of the complex hybrids and their progenies. KEY RESULTS Complex hybrids with variable fertility exhibited phenotypes that were different from the female allohexaploids and expressed some traits from O. violaceus. These hybrids were mixoploids (2n = 34-46) and retained partial complements of allohexaploids, including whole chromosomes of the A and B genomes and some of the C genome but no intact O. violaceus chromosomes; AFLP bands specific for O. violaceus, novel for two parents and absent in hexaploids were detected. The complex hybrids produced progenies with chromosomes/genomic complements biased to B. juncea (2n = 36, AABB) and novel B. juncea lines with two genomes of different origins. The expression of rRNA genes from B. nigra was revealed in all allohexaploids and complex hybrids, showing that the hierarchy of nucleolar dominance (B. nigra, BB > B. rapa, AA > B. oleracea, CC) in Brassica allotetraploids was still valid in these plants. CONCLUSIONS The chromosomes of three genomes in these synthetic Brassica allohexaploids showed different genome-specific stabilities (B > A > C) under induction of alien chromosome elimination in crosses with O. violaceus, which was possibly affected by nucleolar dominance.
Collapse
|