1
|
Maria H, Rusche LN. The DNA replication protein Orc1 from the yeast Torulaspora delbrueckii is required for heterochromatin formation but not as a silencer-binding protein. Genetics 2022; 222:6650695. [PMID: 35894940 PMCID: PMC9434157 DOI: 10.1093/genetics/iyac110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
To understand the process by which new protein functions emerge, we examined how the yeast heterochromatin protein Sir3 arose through gene duplication from the conserved DNA replication protein Orc1. Orc1 is a subunit of the origin recognition complex (ORC), which marks origins of DNA replication. In Saccharomyces cerevisiae, Orc1 also promotes heterochromatin assembly by recruiting the structural proteins Sir1-4 to silencer DNA. In contrast, the paralog of Orc1, Sir3, is a nucleosome-binding protein that spreads across heterochromatic loci in conjunction with other Sir proteins. We previously found that a non-duplicated Orc1 from the yeast Kluyveromyces lactis behaved like ScSir3 but did not have a silencer-binding function like ScOrc1. Moreover, K. lactis lacks Sir1, the protein that interacts directly with ScOrc1 at the silencer. Here, we examined whether the emergence of Sir1 coincided with Orc1 acting as a silencer-binding protein. In the non-duplicated species Torulaspora delbrueckii, which has an ortholog of Sir1 (TdKos3), we found that TdOrc1 spreads across heterochromatic loci independently of ORC, as ScSir3 and KlOrc1 do. This spreading is dependent on the nucleosome binding BAH domain of Orc1 and on Sir2 and Kos3. However, TdOrc1 does not have a silencer-binding function: T. delbrueckii silencers do not require ORC binding sites to function, and Orc1 and Kos3 do not appear to interact. Instead, Orc1 and Kos3 both spread across heterochromatic loci with other Sir proteins. Thus, Orc1 and Sir1/Kos3 originally had different roles in heterochromatin formation than they do now in S. cerevisiae.
Collapse
Affiliation(s)
- Haniam Maria
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo NY, 14260, USA
| | - Laura N Rusche
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo NY, 14260, USA
| |
Collapse
|
2
|
Bizzarri M, Cassanelli S, Bartolini L, Pryszcz LP, Dušková M, Sychrová H, Solieri L. Interplay of Chimeric Mating-Type Loci Impairs Fertility Rescue and Accounts for Intra-Strain Variability in Zygosaccharomyces rouxii Interspecies Hybrid ATCC42981. Front Genet 2019; 10:137. [PMID: 30881382 PMCID: PMC6405483 DOI: 10.3389/fgene.2019.00137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/11/2019] [Indexed: 11/13/2022] Open
Abstract
The pre-whole genome duplication (WGD) Zygosaccharomyces clade comprises several allodiploid strain/species with industrially interesting traits. The salt-tolerant yeast ATCC42981 is a sterile and allodiploid strain which contains two subgenomes, one of them resembling the haploid parental species Z. rouxii. Recently, different mating-type-like (MTL) loci repertoires were reported for ATCC42981 and the Japanese strain JCM22060, which are considered two stocks of the same strain. MTL reconstruction by direct sequencing approach is challenging due to gene redundancy, structure complexities, and allodiploid nature of ATCC42981. Here, DBG2OLC and MaSuRCA hybrid de novo assemblies of ONT and Illumina reads were combined with in vitro long PCR to definitively solve these incongruences. ATCC42981 exhibits several chimeric MTL loci resulting from reciprocal translocation between parental haplotypes and retains two MATa/MATα expression loci, in contrast to MATα in JCM22060. Consistently to these reconstructions, JCM22060, but not ATCC42981, undergoes mating and meiosis. To ascertain whether the damage of one allele at the MAT locus regains the complete sexual cycle in ATCC42981, we removed the MATα expressed locus by gene deletion. The resulting MATa/- hemizygous mutants did not show any evidence of sporulation, as well as of self- and out-crossing fertility, probably because incomplete silencing at the chimeric HMLα cassette masks the loss of heterozygosity at the MAT locus. We also found that MATα deletion switched off a2 transcription, an activator of a-specific genes in pre-WGD species. These findings suggest that regulatory scheme of cell identity needs to be further investigated in Z. rouxii protoploid yeast.
Collapse
Affiliation(s)
- Melissa Bizzarri
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Stefano Cassanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Laura Bartolini
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Leszek P. Pryszcz
- Laboratory of Zebrafish Developmental Genomics, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Michala Dušková
- Department of Membrane Transport, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Hana Sychrová
- Department of Membrane Transport, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Lisa Solieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
3
|
Gu X, Cai Z, Cai M, Liu K, Liu D, Zhang Q, Tan J, Ma Q. AMPK/SIRT1/p38 MAPK signaling pathway regulates alcohol‑induced neurodegeneration by resveratrol. Mol Med Rep 2018; 17:5402-5408. [PMID: 29393425 DOI: 10.3892/mmr.2018.8482] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 06/08/2017] [Indexed: 11/06/2022] Open
Abstract
Resveratrol has also been approved for use in enhancing plant disease resistance and reducing pesticide use. A number of studies have shown that the disease resistance of crops treated with resveratrol is markedly improved. The aim of the present study was to examine the protective effect of resveratrol against alcohol‑induced neurodegeneration occurred and its association with AMP‑activated protein kinase (AMPK)/sirtuin 1 (SIRT1)/p38 in rats and humans. ELISA, caspase‑3 activity and western blot analyses were employed in the present study. Sprague‑Dawley rats and human neuroblastoma SH‑SY5Y cells were treated with alcohol to establish the alcohol‑induced model. Resveratrol protected against alcohol‑induced neuron damage in the hippocampus of the rats. Treatment with resveratrol also inhibited the alcohol‑induced inflammatory response, oxidative stress, caspase‑3 activities and B‑cell lymphoma (Bcl‑2)‑associated X protein/Bcl‑2 in the alcohol‑induced rat. Resveratrol also reduced the upregulated protein expression of AMPK and SIRT1, preventing the pro‑apoptotic alcohol‑induced protein expression of p38 in the rats exposed to alcohol. The downregulation of AMPK suppressed the expression of SIRT1 and activated the expression of p38 in the SH‑SY5Y cell model. Taken together, the data obtained suggested that resveratrol protected against alcohol‑induced neurodegeneration via the AMPK/SIRT1/p38 pathway in rats and humans.
Collapse
Affiliation(s)
- Xinyi Gu
- Department of Neurology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Zhengxu Cai
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116001, P.R. China
| | - Ming Cai
- Department of Neurology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Kun Liu
- Department of Neurology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Dan Liu
- Department of Neurology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Qinsong Zhang
- Department of Neurology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Jing Tan
- Department of Neurology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Qiang Ma
- Department of Neurology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| |
Collapse
|
4
|
Abstract
Cell differentiation in yeast species is controlled by a reversible, programmed DNA-rearrangement process called mating-type switching. Switching is achieved by two functionally similar but structurally distinct processes in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. In both species, haploid cells possess one active and two silent copies of the mating-type locus (a three-cassette structure), the active locus is cleaved, and synthesis-dependent strand annealing is used to replace it with a copy of a silent locus encoding the opposite mating-type information. Each species has its own set of components responsible for regulating these processes. In this review, we summarize knowledge about the function and evolution of mating-type switching components in these species, including mechanisms of heterochromatin formation, MAT locus cleavage, donor bias, lineage tracking, and environmental regulation of switching. We compare switching in these well-studied species to others such as Kluyveromyces lactis and the methylotrophic yeasts Ogataea polymorpha and Komagataella phaffii. We focus on some key questions: Which cells switch mating type? What molecular apparatus is required for switching? Where did it come from? And what is the evolutionary purpose of switching?
Collapse
|
5
|
The Nuts and Bolts of Transcriptionally Silent Chromatin in Saccharomyces cerevisiae. Genetics 2017; 203:1563-99. [PMID: 27516616 DOI: 10.1534/genetics.112.145243] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/30/2016] [Indexed: 12/31/2022] Open
Abstract
Transcriptional silencing in Saccharomyces cerevisiae occurs at several genomic sites including the silent mating-type loci, telomeres, and the ribosomal DNA (rDNA) tandem array. Epigenetic silencing at each of these domains is characterized by the absence of nearly all histone modifications, including most prominently the lack of histone H4 lysine 16 acetylation. In all cases, silencing requires Sir2, a highly-conserved NAD(+)-dependent histone deacetylase. At locations other than the rDNA, silencing also requires additional Sir proteins, Sir1, Sir3, and Sir4 that together form a repressive heterochromatin-like structure termed silent chromatin. The mechanisms of silent chromatin establishment, maintenance, and inheritance have been investigated extensively over the last 25 years, and these studies have revealed numerous paradigms for transcriptional repression, chromatin organization, and epigenetic gene regulation. Studies of Sir2-dependent silencing at the rDNA have also contributed to understanding the mechanisms for maintaining the stability of repetitive DNA and regulating replicative cell aging. The goal of this comprehensive review is to distill a wide array of biochemical, molecular genetic, cell biological, and genomics studies down to the "nuts and bolts" of silent chromatin and the processes that yield transcriptional silencing.
Collapse
|
6
|
Karademir Andersson A, Cohn M. Naumovozyma castellii: an alternative model for budding yeast molecular biology. Yeast 2016; 34:95-109. [PMID: 27794167 DOI: 10.1002/yea.3218] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/18/2016] [Indexed: 11/11/2022] Open
Abstract
Naumovozyma castellii (Saccharomyces castellii) is a member of the budding yeast family Saccharomycetaceae. It has been extensively used as a model organism for telomere biology research and has gained increasing interest as a budding yeast model for functional analyses owing to its amenability to genetic modifications. Owing to the suitable phylogenetic distance to S. cerevisiae, the whole genome sequence of N. castellii has provided unique data for comparative genomic studies, and it played a key role in the establishment of the timing of the whole genome duplication and the evolutionary events that took place in the subsequent genomic evolution of the Saccharomyces lineage. Here we summarize the historical background of its establishment as a laboratory yeast species, and the development of genetic and molecular tools and strains. We review the research performed on N. castellii, focusing on areas where it has significantly contributed to the discovery of new features of molecular biology and to the advancement of our understanding of molecular evolution. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Marita Cohn
- Department of Biology, Genetics group, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Ellahi A, Rine J. Evolution and Functional Trajectory of Sir1 in Gene Silencing. Mol Cell Biol 2016; 36:1164-79. [PMID: 26811328 PMCID: PMC4800792 DOI: 10.1128/mcb.01013-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/08/2015] [Accepted: 01/21/2016] [Indexed: 01/28/2023] Open
Abstract
We used the budding yeasts Saccharomyces cerevisiae and Torulaspora delbrueckii to examine the evolution of Sir-based silencing, focusing on Sir1, silencers, the molecular topography of silenced chromatin, and the roles of SIR and RNA interference (RNAi) genes in T. delbrueckii. Chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) analysis of Sir proteins in T. delbrueckii revealed a different topography of chromatin at the HML and HMR loci than was observed in S. cerevisiae. S. cerevisiae Sir1, enriched at the silencers of HMLα and HMR A: , was absent from telomeres and did not repress subtelomeric genes. In contrast to S. cerevisiae SIR1's partially dispensable role in silencing, the T. delbrueckii SIR1 paralog KOS3 was essential for silencing. KOS3 was also found at telomeres with T. delbrueckii Sir2 (Td-Sir2) and Td-Sir4 and repressed subtelomeric genes. Silencer mapping in T. delbrueckii revealed single silencers at HML and HMR, bound by Td-Kos3, Td-Sir2, and Td-Sir4. The KOS3 gene mapped near HMR, and its expression was regulated by Sir-based silencing, providing feedback regulation of a silencing protein by silencing. In contrast to the prominent role of Sir proteins in silencing, T. delbrueckii RNAi genes AGO1 and DCR1 did not function in heterochromatin formation. These results highlighted the shifting role of silencing genes and the diverse chromatin architectures underlying heterochromatin.
Collapse
Affiliation(s)
- Aisha Ellahi
- Department of Molecular and Cell Biology and California Institute of Quantitative Biology, University of California Berkeley, Berkeley, California, USA
| | - Jasper Rine
- Department of Molecular and Cell Biology and California Institute of Quantitative Biology, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
8
|
Charron G, Leducq JB, Landry CR. Chromosomal variation segregates within incipient species and correlates with reproductive isolation. Mol Ecol 2014; 23:4362-72. [PMID: 25039979 DOI: 10.1111/mec.12864] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 12/19/2022]
Abstract
Reproductive isolation is a critical step in the process of speciation. Among the most important factors driving reproductive isolation are genetic incompatibilities. Whether these incompatibilities are already present before extrinsic factors prevent gene flow between incipient species remains largely unresolved in natural systems. This question is particularly challenging because it requires that we catch speciating populations in the act before they reach the full-fledged species status. We measured the extent of intrinsic postzygotic isolation within and between phenotypically and genetically divergent lineages of the wild yeast Saccharomyces paradoxus that have partially overlapping geographical distributions. We find that hybrid viability between lineages progressively decreases with genetic divergence. A large proportion of postzygotic inviability within lineages is associated with chromosomal rearrangements, suggesting that chromosomal differences substantially contribute to the early steps of reproductive isolation within lineages before reaching fixation. Our observations show that polymorphic intrinsic factors may segregate within incipient species before they contribute to their full reproductive isolation and highlight the role of chromosomal rearrangements in speciation. We propose different hypotheses based on adaptation, biogeographical events and life history evolution that could explain these observations.
Collapse
Affiliation(s)
- Guillaume Charron
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, PROTEO, Université Laval, Québec, QC, G1V 0A6, Canada
| | | | | |
Collapse
|
9
|
Abstract
Whole-genome sequencing, particularly in fungi, has progressed at a tremendous rate. More difficult, however, is experimental testing of the inferences about gene function that can be drawn from comparative sequence analysis alone. We present a genome-wide functional characterization of a sequenced but experimentally understudied budding yeast, Saccharomyces bayanus var. uvarum (henceforth referred to as S. bayanus), allowing us to map changes over the 20 million years that separate this organism from S. cerevisiae. We first created a suite of genetic tools to facilitate work in S. bayanus. Next, we measured the gene-expression response of S. bayanus to a diverse set of perturbations optimized using a computational approach to cover a diverse array of functionally relevant biological responses. The resulting data set reveals that gene-expression patterns are largely conserved, but significant changes may exist in regulatory networks such as carbohydrate utilization and meiosis. In addition to regulatory changes, our approach identified gene functions that have diverged. The functions of genes in core pathways are highly conserved, but we observed many changes in which genes are involved in osmotic stress, peroxisome biogenesis, and autophagy. A surprising number of genes specific to S. bayanus respond to oxidative stress, suggesting the organism may have evolved under different selection pressures than S. cerevisiae. This work expands the scope of genome-scale evolutionary studies from sequence-based analysis to rapid experimental characterization and could be adopted for functional mapping in any lineage of interest. Furthermore, our detailed characterization of S. bayanus provides a valuable resource for comparative functional genomics studies in yeast.
Collapse
|
10
|
Saccharomyces diversity and evolution: a budding model genus. Trends Genet 2013; 29:309-17. [PMID: 23395329 DOI: 10.1016/j.tig.2013.01.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 12/21/2012] [Accepted: 01/14/2013] [Indexed: 12/21/2022]
Abstract
Saccharomyces cerevisiae is one of the best-understood and most powerful genetic model systems. Several disciplines are now converging to turn Saccharomyces into an exciting model genus for evolutionary genetics and genomics. Yeast taxonomists and ecologists have dramatically expanded and clarified Saccharomyces diversity, more than doubling the number of bona fide species since 2000. High-quality genome sequences are available (or soon will be) for all seven known species. Haploid laboratory strains are enabling a deep integration of classic genetic approaches with modern genomic tools. Population genomic surveys and quantitative trait mapping of variation within species are underway across the genus. Finally, several case studies have illuminated general and novel genetic mechanisms of evolution. Expanding strain collections, low-cost genome sequencing, and tools for precise genetic manipulation promise to usher in a golden era for this surprisingly diverse genus as an evolutionary model.
Collapse
|
11
|
Abstract
Mating type in Saccharomyces cerevisiae is determined by two nonhomologous alleles, MATa and MATα. These sequences encode regulators of the two different haploid mating types and of the diploids formed by their conjugation. Analysis of the MATa1, MATα1, and MATα2 alleles provided one of the earliest models of cell-type specification by transcriptional activators and repressors. Remarkably, homothallic yeast cells can switch their mating type as often as every generation by a highly choreographed, site-specific homologous recombination event that replaces one MAT allele with different DNA sequences encoding the opposite MAT allele. This replacement process involves the participation of two intact but unexpressed copies of mating-type information at the heterochromatic loci, HMLα and HMRa, which are located at opposite ends of the same chromosome-encoding MAT. The study of MAT switching has yielded important insights into the control of cell lineage, the silencing of gene expression, the formation of heterochromatin, and the regulation of accessibility of the donor sequences. Real-time analysis of MAT switching has provided the most detailed description of the molecular events that occur during the homologous recombinational repair of a programmed double-strand chromosome break.
Collapse
|
12
|
Evolutionary analysis of heterochromatin protein compatibility by interspecies complementation in Saccharomyces. Genetics 2012; 192:1001-14. [PMID: 22923378 DOI: 10.1534/genetics.112.141549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genetic bases for species-specific traits are widely sought, but reliable experimental methods with which to identify functionally divergent genes are lacking. In the Saccharomyces genus, interspecies complementation tests can be used to evaluate functional conservation and divergence of biological pathways or networks. Silent information regulator (SIR) proteins in S. bayanus provide an ideal test case for this approach because they show remarkable divergence in sequence and paralog number from those found in the closely related S. cerevisiae. We identified genes required for silencing in S. bayanus using a genetic screen for silencing-defective mutants. Complementation tests in interspecies hybrids identified an evolutionarily conserved Sir-protein-based silencing machinery, as defined by two interspecies complementation groups (SIR2 and SIR3). However, recessive mutations in S. bayanus SIR4 isolated from this screen could not be complemented by S. cerevisiae SIR4, revealing species-specific functional divergence in the Sir4 protein despite conservation of the overall function of the Sir2/3/4 complex. A cladistic complementation series localized the occurrence of functional changes in SIR4 to the S. cerevisiae and S. paradoxus branches of the Saccharomyces phylogeny. Most of this functional divergence mapped to sequence changes in the Sir4 PAD. Finally, a hemizygosity modifier screen in the interspecies hybrids identified additional genes involved in S. bayanus silencing. Thus, interspecies complementation tests can be used to identify (1) mutations in genetically underexplored organisms, (2) loci that have functionally diverged between species, and (3) evolutionary events of functional consequence within a genus.
Collapse
|
13
|
APJ1 and GRE3 homologs work in concert to allow growth in xylose in a natural Saccharomyces sensu stricto hybrid yeast. Genetics 2012; 191:621-32. [PMID: 22426884 PMCID: PMC3374322 DOI: 10.1534/genetics.112.140053] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Creating Saccharomyces yeasts capable of efficient fermentation of pentoses such as xylose remains a key challenge in the production of ethanol from lignocellulosic biomass. Metabolic engineering of industrial Saccharomyces cerevisiae strains has yielded xylose-fermenting strains, but these strains have not yet achieved industrial viability due largely to xylose fermentation being prohibitively slower than that of glucose. Recently, it has been shown that naturally occurring xylose-utilizing Saccharomyces species exist. Uncovering the genetic architecture of such strains will shed further light on xylose metabolism, suggesting additional engineering approaches or possibly even enabling the development of xylose-fermenting yeasts that are not genetically modified. We previously identified a hybrid yeast strain, the genome of which is largely Saccharomyces uvarum, which has the ability to grow on xylose as the sole carbon source. To circumvent the sterility of this hybrid strain, we developed a novel method to genetically characterize its xylose-utilization phenotype, using a tetraploid intermediate, followed by bulk segregant analysis in conjunction with high-throughput sequencing. We found that this strain’s growth in xylose is governed by at least two genetic loci, within which we identified the responsible genes: one locus contains a known xylose-pathway gene, a novel homolog of the aldo-keto reductase gene GRE3, while a second locus contains a homolog of APJ1, which encodes a putative chaperone not previously connected to xylose metabolism. Our work demonstrates that the power of sequencing combined with bulk segregant analysis can also be applied to a nongenetically tractable hybrid strain that contains a complex, polygenic trait, and identifies new avenues for metabolic engineering as well as for construction of nongenetically modified xylose-fermenting strains.
Collapse
|
14
|
Reinventing heterochromatin in budding yeasts: Sir2 and the origin recognition complex take center stage. EUKARYOTIC CELL 2011; 10:1183-92. [PMID: 21764908 DOI: 10.1128/ec.05123-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transcriptional silencing of the cryptic mating-type loci in Saccharomyces cerevisiae is one of the best-studied models of repressive heterochromatin. However, this type of heterochromatin, which is mediated by the Sir proteins, has a distinct molecular composition compared to the more ubiquitous type of heterochromatin found in Schizosaccharomyces pombe, other fungi, animals, and plants and characterized by the presence of HP1 (heterochromatin protein 1). This review discusses how the loss of important heterochromatin proteins, including HP1, in the budding yeast lineage presented an evolutionary opportunity for the development and diversification of alternative varieties of heterochromatin, in which the conserved deacetylase Sir2 and the replication protein Orc1 play key roles. In addition, we highlight how this diversification has been facilitated by gene duplications and has contributed to adaptations in lifestyle.
Collapse
|
15
|
The Awesome Power of Yeast Evolutionary Genetics: New Genome Sequences and Strain Resources for the Saccharomyces sensu stricto Genus. G3-GENES GENOMES GENETICS 2011; 1:11-25. [PMID: 22384314 PMCID: PMC3276118 DOI: 10.1534/g3.111.000273] [Citation(s) in RCA: 233] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 05/01/2011] [Indexed: 01/05/2023]
Abstract
High-quality, well-annotated genome sequences and standardized laboratory strains fuel experimental and evolutionary research. We present improved genome sequences of three species of Saccharomyces sensu stricto yeasts: S. bayanus var. uvarum (CBS 7001), S. kudriavzevii (IFO 1802T and ZP 591), and S. mikatae (IFO 1815T), and describe their comparison to the genomes of S. cerevisiae and S. paradoxus. The new sequences, derived by assembling millions of short DNA sequence reads together with previously published Sanger shotgun reads, have vastly greater long-range continuity and far fewer gaps than the previously available genome sequences. New gene predictions defined a set of 5261 protein-coding orthologs across the five most commonly studied Saccharomyces yeasts, enabling a re-examination of the tempo and mode of yeast gene evolution and improved inferences of species-specific gains and losses. To facilitate experimental investigations, we generated genetically marked, stable haploid strains for all three of these Saccharomyces species. These nearly complete genome sequences and the collection of genetically marked strains provide a valuable toolset for comparative studies of gene function, metabolism, and evolution, and render Saccharomyces sensu stricto the most experimentally tractable model genus. These resources are freely available and accessible through www.SaccharomycesSensuStricto.org.
Collapse
|
16
|
Zill OA, Scannell D, Teytelman L, Rine J. Co-evolution of transcriptional silencing proteins and the DNA elements specifying their assembly. PLoS Biol 2010; 8:e1000550. [PMID: 21151344 PMCID: PMC2994660 DOI: 10.1371/journal.pbio.1000550] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 10/18/2010] [Indexed: 01/18/2023] Open
Abstract
Co-evolution of transcriptional regulatory proteins and their sites of action has been often hypothesized but rarely demonstrated. Here we provide experimental evidence of such co-evolution in yeast silent chromatin, a finding that emerged from studies of hybrids formed between two closely related Saccharomyces species. A unidirectional silencing incompatibility between S. cerevisiae and S. bayanus led to a key discovery: asymmetrical complementation of divergent orthologs of the silent chromatin component Sir4. In S. cerevisiae/S. bayanus interspecies hybrids, ChIP-Seq analysis revealed a restriction against S. cerevisiae Sir4 associating with most S. bayanus silenced regions; in contrast, S. bayanus Sir4 associated with S. cerevisiae silenced loci to an even greater degree than did S. cerevisiae's own Sir4. Functional changes in silencer sequences paralleled changes in Sir4 sequence and a reduction in Sir1 family members in S. cerevisiae. Critically, species-specific silencing of the S. bayanus HMR locus could be reconstituted in S. cerevisiae by co-transfer of the S. bayanus Sir4 and Kos3 (the ancestral relative of Sir1) proteins. As Sir1/Kos3 and Sir4 bind conserved silencer-binding proteins, but not specific DNA sequences, these rapidly evolving proteins served to interpret differences in the two species' silencers presumably involving emergent features created by the regulatory proteins that bind sequences within silencers. The results presented here, and in particular the high resolution ChIP-Seq localization of the Sir4 protein, provided unanticipated insights into the mechanism of silent chromatin assembly in yeast.
Collapse
Affiliation(s)
- Oliver A. Zill
- Department of Molecular and Cell Biology, and California Institute for Quantitative Biosciences, University of California–Berkeley, Berkeley, California, United States of America
- * E-mail: (JR); (OAZ)
| | - Devin Scannell
- Department of Molecular and Cell Biology, and California Institute for Quantitative Biosciences, University of California–Berkeley, Berkeley, California, United States of America
| | - Leonid Teytelman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Jasper Rine
- Department of Molecular and Cell Biology, and California Institute for Quantitative Biosciences, University of California–Berkeley, Berkeley, California, United States of America
- * E-mail: (JR); (OAZ)
| |
Collapse
|
17
|
Transcriptional silencing functions of the yeast protein Orc1/Sir3 subfunctionalized after gene duplication. Proc Natl Acad Sci U S A 2010; 107:19384-9. [PMID: 20974972 DOI: 10.1073/pnas.1006436107] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The origin recognition complex (ORC) defines origins of replication and also interacts with heterochromatin proteins in a variety of species, but how ORC functions in heterochromatin assembly remains unclear. The largest subunit of ORC, Orc1, is particularly interesting because it contains a nucleosome-binding BAH domain and because it gave rise to Sir3, a key silencing protein in Saccharomyces cerevisiae, through gene duplication. We examined whether Orc1 possessed a Sir3-like silencing function before duplication and found that Orc1 from the yeast Kluyveromyces lactis, which diverged from S. cerevisiae before the duplication, acts in conjunction with the deacetylase Sir2 and the histone-binding protein Sir4 to generate heterochromatin at telomeres and a mating-type locus. Moreover, the ability of KlOrc1 to spread across a silenced locus depends on its nucleosome-binding BAH domain and the deacetylase Sir2. Interestingly, KlOrc1 appears to act independently of the entire ORC, as other subunits of the complex, Orc4 and Orc5, are not strongly associated with silenced domains. These findings demonstrate that Orc1 functioned in silencing before duplication and suggest that Orc1 and Sir2, both of which are broadly conserved among eukaryotes, may have an ancient history of cooperating to generate chromatin structures, with Sir2 deacetylating histones and Orc1 binding to these deacetylated nucleosomes through its BAH domain.
Collapse
|
18
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|