1
|
Zhou Y, Luo Q, Zeng F, Liu X, Han J, Gu L, Tian X, Zhang Y, Zhao Y, Wang F. Trichostatin A Promotes Cytotoxicity of Cisplatin, as Evidenced by Enhanced Apoptosis/Cell Death Markers. Molecules 2024; 29:2623. [PMID: 38893499 PMCID: PMC11173726 DOI: 10.3390/molecules29112623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, promotes the cytotoxicity of the genotoxic anticancer drug cisplatin, yet the underlying mechanism remains poorly understood. Herein, we revealed that TSA at a low concentration (1 μM) promoted the cisplatin-induced activation of caspase-3/6, which, in turn, increased the level of cleaved PARP1 and degraded lamin A&C, leading to more cisplatin-induced apoptosis and G2/M phase arrest of A549 cancer cells. Both ICP-MS and ToF-SIMS measurements demonstrated a significant increase in DNA-bound platinum in A549 cells in the presence of TSA, which was attributable to TSA-induced increase in the accessibility of genomic DNA to cisplatin attacking. The global quantitative proteomics results further showed that in the presence of TSA, cisplatin activated INF signaling to upregulate STAT1 and SAMHD1 to increase cisplatin sensitivity and downregulated ICAM1 and CD44 to reduce cell migration, synergistically promoting cisplatin cytotoxicity. Furthermore, in the presence of TSA, cisplatin downregulated TFAM and SLC3A2 to enhance cisplatin-induced ferroptosis, also contributing to the promotion of cisplatin cytotoxicity. Importantly, our posttranslational modification data indicated that acetylation at H4K8 played a dominant role in promoting cisplatin cytotoxicity. These findings provide novel insights into better understanding the principle of combining chemotherapy of genotoxic drugs and HDAC inhibitors for the treatment of cancers.
Collapse
Affiliation(s)
- Yang Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.Z.); (Q.L.); (J.H.); (L.G.); (X.T.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.Z.); (Q.L.); (J.H.); (L.G.); (X.T.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangang Zeng
- School of Environment of Natural Resources, Remin University of China, Beijing 100875, China;
| | - Xingkai Liu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.Z.); (Q.L.); (J.H.); (L.G.); (X.T.); (Y.Z.)
| | - Juanjuan Han
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.Z.); (Q.L.); (J.H.); (L.G.); (X.T.); (Y.Z.)
- National Centre for Mass Spectrometry in Beijing, Beijing 100190, China
| | - Liangzhen Gu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.Z.); (Q.L.); (J.H.); (L.G.); (X.T.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Tian
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.Z.); (Q.L.); (J.H.); (L.G.); (X.T.); (Y.Z.)
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yanyan Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.Z.); (Q.L.); (J.H.); (L.G.); (X.T.); (Y.Z.)
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.Z.); (Q.L.); (J.H.); (L.G.); (X.T.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.Z.); (Q.L.); (J.H.); (L.G.); (X.T.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Centre for Mass Spectrometry in Beijing, Beijing 100190, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
2
|
Donczew R, Hahn S. BET family members Bdf1/2 modulate global transcription initiation and elongation in Saccharomyces cerevisiae. eLife 2021; 10:e69619. [PMID: 34137374 PMCID: PMC8266393 DOI: 10.7554/elife.69619] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/16/2021] [Indexed: 01/10/2023] Open
Abstract
Human bromodomain and extra-terminal domain (BET) family members are promising targets for therapy of cancer and immunoinflammatory diseases, but their mechanisms of action and functional redundancies are poorly understood. Bdf1/2, yeast homologues of the human BET factors, were previously proposed to target transcription factor TFIID to acetylated histone H4, analogous to bromodomains that are present within the largest subunit of metazoan TFIID. We investigated the genome-wide roles of Bdf1/2 and found that their important contributions to transcription extend beyond TFIID function as transcription of many genes is more sensitive to Bdf1/2 than to TFIID depletion. Bdf1/2 co-occupy the majority of yeast promoters and affect preinitiation complex formation through recruitment of TFIID, Mediator, and basal transcription factors to chromatin. Surprisingly, we discovered that hypersensitivity of genes to Bdf1/2 depletion results from combined defects in transcription initiation and early elongation, a striking functional similarity to human BET proteins, most notably Brd4. Our results establish Bdf1/2 as critical for yeast transcription and provide important mechanistic insights into the function of BET proteins in all eukaryotes.
Collapse
Affiliation(s)
- Rafal Donczew
- Fred Hutchinson Cancer Research Center, Division of Basic SciencesSeattleUnited States
| | - Steven Hahn
- Fred Hutchinson Cancer Research Center, Division of Basic SciencesSeattleUnited States
| |
Collapse
|
3
|
Acetyl-CoA Metabolism and Histone Acetylation in the Regulation of Aging and Lifespan. Antioxidants (Basel) 2021; 10:antiox10040572. [PMID: 33917812 PMCID: PMC8068152 DOI: 10.3390/antiox10040572] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/16/2022] Open
Abstract
Acetyl-CoA is a metabolite at the crossroads of central metabolism and the substrate of histone acetyltransferases regulating gene expression. In many tissues fasting or lifespan extending calorie restriction (CR) decreases glucose-derived metabolic flux through ATP-citrate lyase (ACLY) to reduce cytoplasmic acetyl-CoA levels to decrease activity of the p300 histone acetyltransferase (HAT) stimulating pro-longevity autophagy. Because of this, compounds that decrease cytoplasmic acetyl-CoA have been described as CR mimetics. But few authors have highlighted the potential longevity promoting roles of nuclear acetyl-CoA. For example, increasing nuclear acetyl-CoA levels increases histone acetylation and administration of class I histone deacetylase (HDAC) inhibitors increases longevity through increased histone acetylation. Therefore, increased nuclear acetyl-CoA likely plays an important role in promoting longevity. Although cytoplasmic acetyl-CoA synthetase 2 (ACSS2) promotes aging by decreasing autophagy in some peripheral tissues, increased glial AMPK activity or neuronal differentiation can stimulate ACSS2 nuclear translocation and chromatin association. ACSS2 nuclear translocation can result in increased activity of CREB binding protein (CBP), p300/CBP-associated factor (PCAF), and other HATs to increase histone acetylation on the promoter of neuroprotective genes including transcription factor EB (TFEB) target genes resulting in increased lysosomal biogenesis and autophagy. Much of what is known regarding acetyl-CoA metabolism and aging has come from pioneering studies with yeast, fruit flies, and nematodes. These studies have identified evolutionary conserved roles for histone acetylation in promoting longevity. Future studies should focus on the role of nuclear acetyl-CoA and histone acetylation in the control of hypothalamic inflammation, an important driver of organismal aging.
Collapse
|
4
|
Ononye OE, Sausen CW, Balakrishnan L, Bochman ML. Lysine acetylation regulates the activity of nuclear Pif1. J Biol Chem 2020; 295:15482-15497. [PMID: 32878983 DOI: 10.1074/jbc.ra120.015164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/28/2020] [Indexed: 12/16/2022] Open
Abstract
In Saccharomyces cerevisiae, the Pif1 helicase functions in both nuclear and mitochondrial DNA replication and repair processes, preferentially unwinding RNA:DNA hybrids and resolving G-quadruplex structures. We sought to determine how the various activities of Pif1 are regulated in vivo Here, we report lysine acetylation of nuclear Pif1 and demonstrate that it influences both Pif1's cellular roles and core biochemical activities. Using Pif1 overexpression toxicity assays, we determined that the acetyltransferase NuA4 and deacetylase Rpd3 are primarily responsible for the dynamic acetylation of nuclear Pif1. MS analysis revealed that Pif1 was modified in several domains throughout the protein's sequence on the N terminus (Lys-118 and Lys-129), helicase domain (Lys-525, Lys-639, and Lys-725), and C terminus (Lys-800). Acetylation of Pif1 exacerbated its overexpression toxicity phenotype, which was alleviated upon deletion of its N terminus. Biochemical assays demonstrated that acetylation of Pif1 stimulated its helicase, ATPase, and DNA-binding activities, whereas maintaining its substrate preferences. Limited proteolysis assays indicate that acetylation of Pif1 induces a conformational change that may account for its altered enzymatic properties. We propose that acetylation is involved in regulating of Pif1 activities, influencing a multitude of DNA transactions vital to the maintenance of genome integrity.
Collapse
Affiliation(s)
- Onyekachi E Ononye
- Department of Biology, School of Science, Indiana University, Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Christopher W Sausen
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA
| | - Lata Balakrishnan
- Department of Biology, School of Science, Indiana University, Purdue University Indianapolis, Indianapolis, Indiana, USA.
| | - Matthew L Bochman
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA.
| |
Collapse
|
5
|
Zhang N, Yang Z, Zhang Z, Liang W. BcRPD3-Mediated Histone Deacetylation Is Involved in Growth and Pathogenicity of Botrytis cinerea. Front Microbiol 2020; 11:1832. [PMID: 32849432 PMCID: PMC7403187 DOI: 10.3389/fmicb.2020.01832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Histone deacetylase activity plays an important role in transcriptional repression. Botrytis cinerea is an important necrotrophic fungal pathogen distributed worldwide and parasites a wide range of hosts. However, the molecular mechanisms of how B. cinerea regulates growth and host infection remain largely unknown. Here, the function of BcRPD3, a histone deacetylase of B. cinerea, was investigated. Overexpression of the BcRPD3 gene resulted in significantly decreased acetylation levels of histone H3 and H4. The BcRPD3 overexpression strains showed slightly delayed vegetative growth, dramatically impaired infection structure formation, oxidative stress response, and virulence. RNA-Seq analysis revealed that enzymatic activity related genes, including 9 genes reported to function as virulence factors, were downregulated in BcRPD3 overexpression strain. Chromatin immunoprecipitation followed by qPCR confirmed the enrichment of BcRPD3 and H3Kac at the promoter regions of these nine genes. These observations indicated that BcRPD3 regulated the transcription of enzymatic activity related genes by controlling the acetylation level of histones, thereby affecting the vegetative growth, infection structure formation, oxidative stress response, and virulence of B. cinerea.
Collapse
Affiliation(s)
- Ning Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zhenzhou Yang
- Key Lab of Integrated Crop Pest Management of Shandong, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Zhonghua Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenxing Liang
- Key Lab of Integrated Crop Pest Management of Shandong, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
6
|
Ray A, Khan P, Nag Chaudhuri R. Deacetylation of H4 lysine16 affects acetylation of lysine residues in histone H3 and H4 and promotes transcription of constitutive genes. Epigenetics 2020; 16:597-617. [PMID: 32795161 DOI: 10.1080/15592294.2020.1809896] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Histone modification map of H4 N-terminal tail residues in Saccharomyces cerevisiae reveals the prominence of lysine acetylation. Previous reports have indicated the importance of lysine acetylation in maintaining chromatin structure and function. H4K16, a residue with highly regulated acetylation dynamics has unique functions not overlapping with the other H4 N- terminal acetylable residues. The present work unravels the role of H4K16 acetylation in regulating expression of constitutive genes. H4K16 gets distinctly deacetylated over the coding region of constitutively expressed genes. Deacetylation of H4K16 reduces H3K9 acetylation at the cellular and gene level. Reduced H3K9 acetylation however did not negatively correlate with active gene transcription. Significantly, H4K16 deacetylation was found to be associated with hypoacetylated H4K12 throughout the locus of constitutive genes. H4K16 and K12 deacetylation is known to favour active transcription. Sas2, the HAT mutant showed similar patterns of hypoacetylated H3K9 and H4K12 at the active loci, clearly implying that the modifications were associated with deacetylation state of H4K16. Deacetylation of H4K16 was also concurrent with increased H3K56 acetylation in the promoter region and ORF of the constitutive genes. Combination of all these histone modifications significantly reduced H3 occupancy, increased promoter accessibility and enhanced RNAPII recruitment at the constitutively active loci. Consequently, we found that expression of active genes was higher in H4K16R mutant which mimic deacetylated state, but not in H4K16Q mimicking constitutive acetylation. To summarize, H4K16 deacetylation linked with H4K12 and H3K9 hypoacetylation along with H3K56 hyperacetylation generate a chromatin landscape that is conducive for transcription of constitutive genes.
Collapse
Affiliation(s)
- Anagh Ray
- Department of Biotechnology, St. Xavier's College, Kolkata, India
| | - Preeti Khan
- Department of Biotechnology, St. Xavier's College, Kolkata, India
| | | |
Collapse
|
7
|
Urban I, Kerimoglu C, Sakib MS, Wang H, Benito E, Thaller C, Zhou X, Yan J, Fischer A, Eichele G. TIP60/KAT5 is required for neuronal viability in hippocampal CA1. Sci Rep 2019; 9:16173. [PMID: 31700011 PMCID: PMC6838100 DOI: 10.1038/s41598-019-50927-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 09/18/2019] [Indexed: 12/24/2022] Open
Abstract
Aberrant histone acetylation contributes to age-dependent cognitive decline and neurodegenerative diseases. We analyze the function of lysine acetyltransferase TIP60/KAT5 in neurons of the hippocampus using an inducible mouse model. TIP60-deficiency in the adult forebrain leads within days to extensive transcriptional dysfunction characterized by the presence of a neurodegeneration-related signature in CA1. Cell cycle- and immunity-related genes are upregulated while learning- and neuronal plasticity-related genes are downregulated. The dysregulated genes seen under TIP60-deficiency overlap with those in the well-characterized CK-p25 neurodegeneration model. We found that H4K12 is hypoacetylated at the transcriptional start sites of those genes whose expression is dampened in TIP60-deficient mice. Transcriptional dysregulation is followed over a period of weeks by activation of Caspase 3 and fragmentation of β-actin in CA1 neurites, eventually leading to severe neuronal loss. TIP60-deficient mice also develop mild memory impairment. These phenotypes point to a central role of TIP60 in transcriptional networks that are critical for neuronal viability.
Collapse
Affiliation(s)
- Inga Urban
- Genes and Behavior Department, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Cemil Kerimoglu
- Department of Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, 37075, Göttingen, Germany
| | - M Sadman Sakib
- Department of Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, 37075, Göttingen, Germany
| | - Haifang Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Eva Benito
- Department of Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, 37075, Göttingen, Germany.,European Molecular Biology Organization (EMBO), 69117, Heidelberg, Germany
| | - Christina Thaller
- Genes and Behavior Department, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Xunlei Zhou
- Genes and Behavior Department, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.,Institute of Anatomy and Cell Biology, University of Heidelberg, 69120, Heidelberg, Germany
| | - Jun Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, China
| | - André Fischer
- Department of Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, 37075, Göttingen, Germany. .,Department for Psychiatry and Psychotherapy, University Medical Center Göttingen, 37075, Göttingen, Germany.
| | - Gregor Eichele
- Genes and Behavior Department, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.
| |
Collapse
|
8
|
Cai Q, Wang ZK, Shao W, Ying SH, Feng MG. Essential role of Rpd3-dependent lysine modification in the growth, development and virulence of Beauveria bassiana. Environ Microbiol 2018; 20:1590-1606. [PMID: 29575704 DOI: 10.1111/1462-2920.14100] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 02/01/2023]
Abstract
Rpd3 is a class I histone deacetylase that reverses lysine acetylation thus influencing cellular processes and functions. However, its role in fungal insect pathogens has not been explored yet. Here we show that Rpd3-dependent lysine modification and gene expression orchestrate growth, conidiation and virulence in Beauveria bassiana. Deletion of Rpd3 resulted in severe growth defects on various carbon/nitrogen sources, 97% reduction in conidiation capacity and drastic attenuation in virulence. These phenotypes concurred with differential expression of 1479 proteins and hyperacetylation or hypoacetylation of 2227 lysine residues on 1134 proteins. Many of these proteins fell into carbon/nitrogen metabolism and cell rescue/defence/virulence, indicating vital roles of Rpd3-dependent protein expression and lysine modification in the fungal growth and virulence. Intriguingly, lysine residues of four core histones (H2A, H2B, H3 and H4) and many histone acetyltransferases were also hyper- or hypoacetylated in Δrpd3, suggesting direct and indirect roles for Rpd3 in genome-wide lysine modification. However, crucial development activators were transcriptionally repressed and not found in either proteome or acetylome. Single/double-site-directed H3K9/K14 mutations for hyper/hypoacetylation exerted significant impacts on conidiation and dimorphic transition crucial for fungal virulence. Altogether, Rpd3 mediates growth, asexual development and virulence through transcriptional/translational regulation and posttranslational lysine modification in B. bassiana.
Collapse
Affiliation(s)
- Qing Cai
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhi-Kang Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Wei Shao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
9
|
Dissecting Nucleosome Function with a Comprehensive Histone H2A and H2B Mutant Library. G3-GENES GENOMES GENETICS 2017; 7:3857-3866. [PMID: 29038170 PMCID: PMC5714483 DOI: 10.1534/g3.117.300252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Using a comprehensive library of histone H2A and H2B mutants, we assessed the biological function of each amino acid residue involved in various stress conditions including exposure to different DNA damage-inducing reagents, different growth temperatures, and other chemicals. H2B N- and H2A C-termini were critical for maintaining nucleosome function and mutations in these regions led to pleiotropic phenotypes. Additionally, two screens were performed using this library, monitoring heterochromatin gene silencing and genome stability, to identify residues that could compromise normal function when mutated. Many distinctive regions within the nucleosome were revealed. Furthermore, we used the barcode sequencing (bar-seq) method to profile the mutant composition of many libraries in one high-throughput sequencing experiment, greatly reducing the labor and increasing the capacity. This study not only demonstrates the applications of the versatile histone library, but also reveals many previously unknown functions of histone H2A and H2B.
Collapse
|
10
|
Marquez-Lona EM, Torres-Machorro AL, Gonzales FR, Pillus L, Patrick GN. Phosphorylation of the 19S regulatory particle ATPase subunit, Rpt6, modifies susceptibility to proteotoxic stress and protein aggregation. PLoS One 2017; 12:e0179893. [PMID: 28662109 PMCID: PMC5491056 DOI: 10.1371/journal.pone.0179893] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/06/2017] [Indexed: 12/22/2022] Open
Abstract
The ubiquitin proteasome system (UPS) is a highly conserved and tightly regulated biochemical pathway that degrades the majority of proteins in eukaryotic cells. Importantly, the UPS is responsible for counteracting altered protein homeostasis induced by a variety of proteotoxic stresses. We previously reported that Rpt6, the ATPase subunit of the 19S regulatory particle (RP) of the 26S proteasome, is phosphorylated in mammalian neurons at serine 120 in response to neuronal activity. Furthermore, we found that Rpt6 S120 phosphorylation, which regulates the activity and distribution of proteasomes in neurons, is relevant for proteasome-dependent synaptic remodeling and function. To better understand the role of proteasome phosphorylation, we have constructed models of altered Rpt6 phosphorylation in S. cerevisiae by introducing chromosomal point mutations that prevent or mimic phosphorylation at the conserved serine (S119). We find that mutants which prevent Rpt6 phosphorylation at this site (rpt6-S119A), had increased susceptibility to proteotoxic stress, displayed abnormal morphology and had reduced proteasome activity. Since impaired proteasome function has been linked to the aggregation of toxic proteins including the Huntington's disease (HD) related huntingtin (Htt) protein with expanded polyglutamine repeats, we evaluated the extent of Htt aggregation in our phospho-dead (rpt6-S119A) and phospho-mimetic (rpt6-S119D) mutants. We showed Htt103Q aggregate size to be significantly larger in rpt6-S119A mutants compared to wild-type or rpt6-S119D strains. Furthermore, we observed that phosphorylation of endogenous Rpt6 at S119 is increased in response to various stress conditions. Together, these data suggest that Rpt6 phosphorylation at S119 may play an important function in proteasome-dependent relief of proteotoxic stress that can be critical in protein aggregation pathologies.
Collapse
Affiliation(s)
- Esther Magdalena Marquez-Lona
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Ana Lilia Torres-Machorro
- Section of Molecular Biology and UCSD Moores Cancer Center, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Frankie R. Gonzales
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Lorraine Pillus
- Section of Molecular Biology and UCSD Moores Cancer Center, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Gentry N. Patrick
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
11
|
Chromatin Regulation by the NuA4 Acetyltransferase Complex Is Mediated by Essential Interactions Between Enhancer of Polycomb (Epl1) and Esa1. Genetics 2017; 205:1125-1137. [PMID: 28108589 DOI: 10.1534/genetics.116.197830] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/16/2017] [Indexed: 12/20/2022] Open
Abstract
Enzymes that modify and remodel chromatin act in broadly conserved macromolecular complexes. One key modification is the dynamic acetylation of histones and other chromatin proteins by opposing activities of acetyltransferase and deacetylase complexes. Among acetyltransferases, the NuA4 complex containing Tip60 or its Saccharomyces cerevisiae ortholog Esa1 is of particular significance because of its roles in crucial genomic processes including DNA damage repair and transcription. The catalytic subunit Esa1 is essential, as are five noncatalytic NuA4 subunits. We found that of the noncatalytic subunits, deletion of Enhancer of polycomb (Epl1), but not the others, can be bypassed by loss of a major deacetylase complex, a property shared by Esa1 Noncatalytic complex subunits can be critical for complex assembly, stability, genomic targeting, substrate specificity, and regulation. Understanding the essential role of Epl1 has been previously limited, a limitation now overcome by the discovery of its bypass suppression. Here, we present a comprehensive in vivo study of Epl1 using the powerful tool of suppression combined with transcriptional and mutational analyses. Our results highlight functional parallels between Epl1 and Esa1 and further illustrate that the structural role of Epl1 is important for promotion of Esa1 activity. This conclusion is strengthened by our dissection of Epl1 domains required in vivo for interaction with specific NuA4 subunits, histone acetylation, and chromatin targeting. These results provide new insights for the conserved, essential nature of Epl1 and its homologs, such as EPC1/2 in humans, which is frequently altered in cancers.
Collapse
|
12
|
Cavero S, Herruzo E, Ontoso D, San-Segundo PA. Impact of histone H4K16 acetylation on the meiotic recombination checkpoint in Saccharomyces cerevisiae. MICROBIAL CELL 2016; 3:606-620. [PMID: 28357333 PMCID: PMC5348980 DOI: 10.15698/mic2016.12.548] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In meiotic cells, the pachytene checkpoint or meiotic recombination checkpoint is
a surveillance mechanism that monitors critical processes, such as recombination
and chromosome synapsis, which are essential for proper distribution of
chromosomes to the meiotic progeny. Failures in these processes lead to the
formation of aneuploid gametes. Meiotic recombination occurs in the context of
chromatin; in fact, the histone methyltransferase Dot1 and the histone
deacetylase Sir2 are known regulators of the pachytene checkpoint in
Saccharomyces cerevisiae. We report here that Sas2-mediated
acetylation of histone H4 at lysine 16 (H4K16ac), one of the Sir2 targets,
modulates meiotic checkpoint activity in response to synaptonemal complex
defects. We show that, like sir2, the H4-K16Q
mutation, mimicking constitutive acetylation of H4K16, eliminates the delay in
meiotic cell cycle progression imposed by the checkpoint in the
synapsis-defective zip1 mutant. We also demonstrate that, like
in dot1, zip1-induced phosphorylation of the
Hop1 checkpoint adaptor at threonine 318 and the ensuing Mek1 activation are
impaired in H4-K16 mutants. However, in contrast to
sir2 and dot1, the
H4-K16R and H4-K16Q mutations have only a
minor effect in checkpoint activation and localization of the nucleolar Pch2
checkpoint factor in ndt80-prophase-arrested cells. We also
provide evidence for a cross-talk between Dot1-dependent H3K79 methylation and
H4K16ac and show that Sir2 excludes H4K16ac from the rDNA region on meiotic
chromosomes. Our results reveal that proper levels of H4K16ac orchestrate this
meiotic quality control mechanism and that Sir2 impinges on additional targets
to fully activate the checkpoint.
Collapse
Affiliation(s)
- Santiago Cavero
- Instituto de Biología Funcional y Genómica. Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain. ; Present address: Department of Experimental and Health Sciences, Pompeu Fabra University, 08003-Barcelona, Spain
| | - Esther Herruzo
- Instituto de Biología Funcional y Genómica. Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain
| | - David Ontoso
- Instituto de Biología Funcional y Genómica. Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain. ; Present address: Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Pedro A San-Segundo
- Instituto de Biología Funcional y Genómica. Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
13
|
|
14
|
Abstract
Heterochromatin is the transcriptionally repressed portion of eukaryotic chromatin that maintains a condensed appearance throughout the cell cycle. At sites of ribosomal DNA (rDNA) heterochromatin, epigenetic states contribute to gene silencing and genome stability, which are required for proper chromosome segregation and a normal life span. Here, we focus on recent advances in the epigenetic regulation of rDNA silencing in Saccharomyces cerevisiae and in mammals, including regulation by several histone modifications and several protein components associated with the inner nuclear membrane within the nucleolus. Finally, we discuss the perturbations of rDNA epigenetic pathways in regulating cellular aging and in causing various types of diseases.
Collapse
|
15
|
Kang WK, Kim YH, Kang HA, Kwon KS, Kim JY. Sir2 phosphorylation through cAMP-PKA and CK2 signaling inhibits the lifespan extension activity of Sir2 in yeast. eLife 2015; 4. [PMID: 26329457 PMCID: PMC4586308 DOI: 10.7554/elife.09709] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/02/2015] [Indexed: 01/24/2023] Open
Abstract
Silent information regulator 2 (Sir2), an NAD+-dependent protein deacetylase, has been proposed to be a longevity factor that plays important roles in dietary restriction (DR)-mediated lifespan extension. In this study, we show that the Sir2's role for DR-mediated lifespan extension depends on cAMP-PKA and casein kinase 2 (CK2) signaling in yeast. Sir2 partially represses the transcription of lifespan-associated genes, such as PMA1 (encoding an H+-ATPase) and many ribosomal protein genes, through deacetylation of Lys 16 of histone H4 in the promoter regions of these genes. This repression is relieved by Sir2 S473 phosphorylation, which is mediated by active cAMP-PKA and CK2 signaling. Moderate DR increases the replicative lifespan of wild-type yeast but has no effect on that of yeast expressing the Sir2-S473E or S473A allele, suggesting that the effect of Sir2 on DR-mediated lifespan extension is negatively regulated by S473 phosphorylation. Our results demonstrate a mechanism by which Sir2 contributes to lifespan extension. DOI:http://dx.doi.org/10.7554/eLife.09709.001 We know that cutting calorie intake through a restricted diet can slow down the aging process and prolong the lives of many organisms ranging from yeast to mammals. Calorie restriction also has protective effects on various age-related diseases including neurodegenerative disorders, cardiovascular disease, and cancer. Many studies suggest that we may mimic the beneficial effects of calorie restriction by controlling the activities of some proteins involved in the aging process. An enzyme called Sir2 is required for calorie restriction to be able to increase lifespan. This enzyme modifies proteins called histones, which are used to package DNA inside cells. In yeast, Sir2 modifies the histones in such a way that the genes contained in that section of DNA are inactivated (or ‘silenced’). As the yeast cells age, the activity of Sir2 declines, which allows these genes to become active and contribute to the aging process. However, when yeast cells are grown in the presence of little sugar—which mimics caloric restriction—Sir2 is activated and this restores gene silencing. It is not clear how Sir2's ability to silence these genes contributes to prolonged lifespan. Kang et al. studied the role of Sir2 in yeast and observed that one of the genes that Sir2 inactivates is called PMA1. This gene encodes a protein that is known to restrict the lifespan of yeast cells. Further experiments show that other proteins attach or remove molecules called phosphate groups from Sir2 to regulate its activity. Sir2 is inactivated when a phosphate group is attached, and active in the absence of phosphate. Under a reduced diet, the proteins that add phosphate to Sir2 are inactive, which allows Sir2 to become active and reduce the expression of the PMA1 gene. These results show that Sir2 fine-tunes the expression of PMA1 and other age-related genes and that the attachment of phosphate groups to Sir2 by other proteins interferes with this regulation. The next challenges will be to identify the proteins responsible for attaching phosphate groups to Sir2, and to find out how they work. DOI:http://dx.doi.org/10.7554/eLife.09709.002
Collapse
Affiliation(s)
- Woo Kyu Kang
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Yeong Hyeock Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Hyun Ah Kang
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Ki-Sun Kwon
- Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jeong-Yoon Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
16
|
The Set3 Complex Antagonizes the MYST Acetyltransferase Esa1 in the DNA Damage Response. Mol Cell Biol 2015; 35:3714-25. [PMID: 26303527 DOI: 10.1128/mcb.00298-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/14/2015] [Indexed: 11/20/2022] Open
Abstract
Acetylation is a dynamic posttranslational modification that contributes to chromatin-regulated processes, including DNA replication, repair, recombination, and gene expression. Acetylation is controlled by complexes containing opposing lysine and histone acetyltransferase (KAT and HAT) and deacetylase (KDAC and HDAC) activities. The essential MYST family Esa1 KAT acetylates core histones and many nonhistone substrates. Phenotypes of esa1 mutants include transcriptional silencing and activation defects, impaired growth at high temperatures, and sensitivity to DNA damage. The KDAC Rpd3 was previously identified as an activity opposing Esa1, as its deletion suppresses growth and silencing defects of esa1 mutants. However, loss of Rpd3 does not suppress esa1 DNA damage sensitivity. In this work, we identified Hos2 as a KDAC counteracting ESA1 in the damage response. Deletion of HOS2 resulted in changes of esa1's transcriptional response upon damage. Further, loss of HOS2 or components of the Set3 complex (Set3C) in which it acts specifically suppressed damage sensitivity and restored esa1 histone H4 acetylation. This rescue was mediated via loss of either Set3C integrity or of its binding to dimethylated histone H3K4. Our results thus add new insight into the interactions of an essential MYST acetyltransferase with diverse deacetylases to respond specifically to environmental and physiological challenges.
Collapse
|
17
|
Torres-Machorro AL, Aris JP, Pillus L. A moonlighting metabolic protein influences repair at DNA double-stranded breaks. Nucleic Acids Res 2015; 43:1646-58. [PMID: 25628362 PMCID: PMC4330366 DOI: 10.1093/nar/gku1405] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Catalytically active proteins with divergent dual functions are often described as ‘moonlighting’. In this work we characterize a new, chromatin-based function of Lys20, a moonlighting protein that is well known for its role in metabolism. Lys20 was initially described as homocitrate synthase (HCS), the first enzyme in the lysine biosynthetic pathway in yeast. Its nuclear localization led to the discovery of a key role for Lys20 in DNA damage repair through its interaction with the MYST family histone acetyltransferase Esa1. Overexpression of Lys20 promotes suppression of DNA damage sensitivity of esa1 mutants. In this work, by taking advantage of LYS20 mutants that are active in repair but not in lysine biosynthesis, the mechanism of suppression of esa1 was characterized. First we analyzed the chromatin landscape of esa1 cells, finding impaired histone acetylation and eviction. Lys20 was recruited to sites of DNA damage, and its overexpression promoted enhanced recruitment of the INO80 remodeling complex to restore normal histone eviction at the damage sites. This study improves understanding of the evolutionary, structural and biological relevance of independent activities in a moonlighting protein and links metabolism to DNA damage repair.
Collapse
Affiliation(s)
- Ana Lilia Torres-Machorro
- Section of Molecular Biology, Division of Biological Sciences, UC San Diego Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0347, USA
| | - John P Aris
- Department of Anatomy and Cell Biology, Health Science Center, University of Florida, Gainesville, FL 32610-0235, USA
| | - Lorraine Pillus
- Section of Molecular Biology, Division of Biological Sciences, UC San Diego Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0347, USA
| |
Collapse
|
18
|
Lunasin sensitivity in non-small cell lung cancer cells is linked to suppression of integrin signaling and changes in histone acetylation. Int J Mol Sci 2014; 15:23705-24. [PMID: 25530619 PMCID: PMC4284788 DOI: 10.3390/ijms151223705] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/03/2014] [Accepted: 12/08/2014] [Indexed: 01/04/2023] Open
Abstract
Lunasin is a plant derived bioactive peptide with both cancer chemopreventive and therapeutic activity. We recently showed lunasin inhibits non-small cell lung cancer (NSCLC) cell proliferation in a cell-line-specific manner. We now compared the effects of lunasin treatment of lunasin-sensitive (H661) and lunasin-insensitive (H1299) NSCLC cells with respect to lunasin uptake, histone acetylation and integrin signaling. Both cell lines exhibited changes in histone acetylation, with H661 cells showing a unique increase in H4K16 acetylation. Proximity ligation assays demonstrated lunasin interacted with integrins containing αv, α5, β1 and β3 subunits to a larger extent in the H661 compared to H1299 cells. Moreover, lunasin specifically disrupted the interaction of β1 and β3 subunits with the downstream signaling components phosphorylated Focal Adhesion Kinase (pFAK), Kindlin and Intergrin Linked Kinase in H661 cells. Immunoblot analyses demonstrated lunasin treatment of H661 resulted in reduced levels of pFAK, phosphorylated Akt and phosphorylated ERK1/2 whereas no changes were observed in H1299 cells. Silencing of αv expression in H661 cells confirmed signaling through integrins containing αv is essential for proliferation. Moreover, lunasin was unable to further inhibit proliferation in αv-silenced H661 cells. This indicates antagonism of integrin signaling via αv-containing integrins is an important component of lunasin’s mechanism of action.
Collapse
|
19
|
Abstract
Histone acetylation is a key regulatory feature for chromatin that is established by opposing enzymatic activities of lysine acetyltransferases (KATs/HATs) and deacetylases (KDACs/HDACs). Esa1, like its human homolog Tip60, is an essential MYST family enzyme that acetylates histones H4 and H2A and other nonhistone substrates. Here we report that the essential requirement for ESA1 in Saccharomyces cerevisiae can be bypassed upon loss of Sds3, a noncatalytic subunit of the Rpd3L deacetylase complex. By studying the esa1∆ sds3∆ strain, we conclude that the essential function of Esa1 is in promoting the cellular balance of acetylation. We demonstrate this by fine-tuning acetylation through modulation of HDACs and the histone tails themselves. Functional interactions between Esa1 and HDACs of class I, class II, and the Sirtuin family define specific roles of these opposing activities in cellular viability, fitness, and response to stress. The fact that both increased and decreased expression of the ESA1 homolog TIP60 has cancer associations in humans underscores just how important the balance of its activity is likely to be for human well-being.
Collapse
|
20
|
Two independent regions of simian virus 40 T antigen increase CBP/p300 levels, alter patterns of cellular histone acetylation, and immortalize primary cells. J Virol 2013; 87:13499-509. [PMID: 24089570 DOI: 10.1128/jvi.02658-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Simian virus 40 (SV40) large T antigen (SVT) interferes with normal cell regulation and thus has been used to identify cellular components controlling proliferation and homeostasis. We have previously shown that SVT-mediated transformation requires interaction with the histone acetyltransferases (HATs) CBP/p300 and now report that the ectopic expression of SVT in several cell types in vivo and in vitro results in a significant increase in the steady-state levels of CBP/p300. Furthermore, SVT-expressing cells contain higher levels of acetylated CBP/p300, a modification that has been linked to increased HAT activity. Concomitantly, the acetylation levels of histone residues H3K56 and H4K12 are markedly increased in SVT-expressing cells. Other polyomavirus-encoded large T antigens also increase the levels of CBP/p300 and sustain a rise in the acetylation levels of H3K56 and H4K12. SVT does not affect the transcription of CBP/p300, but rather, alters their overall levels through increasing the loading of CBP/p300 mRNAs onto polysomes. Two distinct regions within SVT, one located in the amino terminus and one in the carboxy terminus, can independently alter both the levels of CBP/p300 and the loading of CBP/p300 transcripts onto polysomes. Within the amino-terminal fragment, a functional J domain is necessary for increasing CBP/p300 and specific histone acetylation levels, as well as for immortalizing primary cells. These studies uncover the action of polyomavirus T antigens on cellular CBP/p300 and suggest that additional mechanisms are used by T antigens to induce cell immortalization and transformation.
Collapse
|
21
|
Oppikofer M, Kueng S, Gasser SM. SIR–nucleosome interactions: Structure–function relationships in yeast silent chromatin. Gene 2013; 527:10-25. [DOI: 10.1016/j.gene.2013.05.088] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 05/27/2013] [Accepted: 05/30/2013] [Indexed: 01/09/2023]
|
22
|
Good PD, Kendall A, Ignatz-Hoover J, Miller EL, Pai DA, Rivera SR, Carrick B, Engelke DR. Silencing near tRNA genes is nucleosome-mediated and distinct from boundary element function. Gene 2013; 526:7-15. [PMID: 23707796 PMCID: PMC3745993 DOI: 10.1016/j.gene.2013.05.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 01/22/2023]
Abstract
Transfer RNA (tRNA) genes and other RNA polymerase III transcription units are dispersed in high copy throughout nuclear genomes, and can antagonize RNA polymerase II transcription in their immediate chromosomal locus. Previous work in Saccharomyces cerevisiae found that this local silencing required subnuclear clustering of the tRNA genes near the nucleolus. Here we show that the silencing also requires nucleosome participation, though the nature of the nucleosome interaction appears distinct from other forms of transcriptional silencing. Analysis of an extensive library of histone amino acid substitutions finds a large number of residues that affect the silencing, both in the histone N-terminal tails and on the nucleosome disk surface. The residues on the disk surfaces involved are largely distinct from those affecting other regulatory phenomena. Consistent with the large number of histone residues affecting tgm silencing, survey of chromatin modification mutations shows that several enzymes known to affect nucleosome modification and positioning are also required. The enzymes include an Rpd3 deacetylase complex, Hos1 deacetylase, Glc7 phosphatase, and the RSC nucleosome remodeling activity, but not multiple other activities required for other silencing forms or boundary element function at tRNA gene loci. Models for communication between the tRNA gene transcription complexes and local chromatin are discussed.
Collapse
Affiliation(s)
- Paul D. Good
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI 48109-0600, USA
| | - Ann Kendall
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI 48109-0600, USA
| | | | - Erin L. Miller
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI 48109-0600, USA
| | - Dave A. Pai
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI 48109-0600, USA
| | - Sara R. Rivera
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI 48109-0600, USA
| | - Brian Carrick
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI 48109-0600, USA
| | - David R. Engelke
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI 48109-0600, USA
| |
Collapse
|
23
|
Suppression analysis of esa1 mutants in Saccharomyces cerevisiae links NAB3 to transcriptional silencing and nucleolar functions. G3-GENES GENOMES GENETICS 2012; 2:1223-32. [PMID: 23050233 PMCID: PMC3464115 DOI: 10.1534/g3.112.003558] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/14/2012] [Indexed: 11/21/2022]
Abstract
The acetyltransferase Esa1 is essential in the yeast Saccharomyces cerevisiae and plays a critical role in multiple cellular processes. The most well-defined targets for Esa1 are lysine residues on histones. However, an increasing number of nonhistone proteins have recently been identified as substrates of Esa1. In this study, four genes (LYS20, LEU2, VAP1, and NAB3) were identified in a genetic screen as high-copy suppressors of the conditional temperature-sensitive lethality of an esa1 mutant. When expressed from a high-copy plasmid, each of these suppressors rescued the temperature-sensitivity of an esa1 mutant. Only NAB3 overexpression also rescued the rDNA-silencing defects of an esa1 mutant. Strengthening the connections between NAB3 and ESA1, mutants of nab3 displayed several phenotypes similar to those of esa1 mutants, including increased sensitivity to the topoisomerase I inhibitor camptothecin and defects in rDNA silencing and cell-cycle progression. In addition, nuclear localization of Nab3 was altered in the esa1 mutant. Finally, posttranslational acetylation of Nab3 was detected in vivo and found to be influenced by ESA1.
Collapse
|
24
|
Milliman EJ, Yadav N, Chen YC, Muddukrishna B, Karunanithi S, Yu MC. Recruitment of Rpd3 to the telomere depends on the protein arginine methyltransferase Hmt1. PLoS One 2012; 7:e44656. [PMID: 22953000 PMCID: PMC3432115 DOI: 10.1371/journal.pone.0044656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 08/10/2012] [Indexed: 11/19/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, the establishment and maintenance of silent chromatin at the telomere requires a delicate balance between opposing activities of histone modifying enzymes. Previously, we demonstrated that the protein arginine methyltransferase Hmt1 plays a role in the formation of yeast silent chromatin. To better understand the nature of the Hmt1 interactions that contribute to this phenomenon, we carried out a systematic reverse genetic screen using a null allele of HMT1 and the synthetic genetic array (SGA) methodology. This screen revealed interactions between HMT1 and genes encoding components of the histone deacetylase complex Rpd3L (large). A double mutant carrying both RPD3 and HMT1 deletions display increased telomeric silencing and Sir2 occupancy at the telomeric boundary regions, when comparing to a single mutant carrying Hmt1-deletion only. However, the dual rpd3/hmt1-null mutant behaves like the rpd3-null single mutant with respect to silencing behavior, indicating that RPD3 is epistatic to HMT1. Mutants lacking either Hmt1 or its catalytic activity display an increase in the recruitment of histone deacetylase Rpd3 to the telomeric boundary regions. Moreover, in such loss-of-function mutants the levels of acetylated H4K5, which is a substrate of Rpd3, are altered at the telomeric boundary regions. In contrast, the level of acetylated H4K16, a target of the histone deacetylase Sir2, was increased in these regions. Interestingly, mutants lacking either Rpd3 or Sir2 display various levels of reduction in dimethylated H4R3 at these telomeric boundary regions. Together, these data provide insight into the mechanism whereby Hmt1 promotes the proper establishment and maintenance of silent chromatin at the telomeres.
Collapse
Affiliation(s)
- Eric J. Milliman
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Neelu Yadav
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Yin-Chu Chen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Bhavana Muddukrishna
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Sheelarani Karunanithi
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Michael C. Yu
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
25
|
Modulating histone acetylationwith inhibitors and activators. Epigenomics 2012. [DOI: 10.1017/cbo9780511777271.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
26
|
Galdieri L, Vancura A. Acetyl-CoA carboxylase regulates global histone acetylation. J Biol Chem 2012; 287:23865-76. [PMID: 22580297 PMCID: PMC3390662 DOI: 10.1074/jbc.m112.380519] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Indexed: 12/15/2022] Open
Abstract
Histone acetylation depends on intermediary metabolism for supplying acetyl-CoA in the nucleocytosolic compartment. However, because nucleocytosolic acetyl-CoA is also used for de novo synthesis of fatty acids, histone acetylation and synthesis of fatty acids compete for the same acetyl-CoA pool. The first and rate-limiting reaction in de novo synthesis of fatty acids is carboxylation of acetyl-CoA to form malonyl-CoA, catalyzed by acetyl-CoA carboxylase. In yeast Saccharomyces cerevisiae, acetyl-CoA carboxylase is encoded by the ACC1 gene. In this study, we show that attenuated expression of ACC1 results in increased acetylation of bulk histones, globally increased acetylation of chromatin histones, and altered transcriptional regulation. Together, our data indicate that Acc1p activity regulates the availability of acetyl-CoA for histone acetyltransferases, thus representing a link between intermediary metabolism and epigenetic mechanisms of transcriptional regulation.
Collapse
Affiliation(s)
- Luciano Galdieri
- From the Department of Biological Sciences, St. John's University, Queens, New York 11439
| | - Ales Vancura
- From the Department of Biological Sciences, St. John's University, Queens, New York 11439
| |
Collapse
|
27
|
Acetylation of yeast AMPK controls intrinsic aging independently of caloric restriction. Cell 2011; 146:969-79. [PMID: 21906795 DOI: 10.1016/j.cell.2011.07.044] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 05/02/2011] [Accepted: 07/29/2011] [Indexed: 12/15/2022]
Abstract
Acetylation of histone and nonhistone proteins is an important posttranslational modification affecting many cellular processes. Here, we report that NuA4 acetylation of Sip2, a regulatory β subunit of the Snf1 complex (yeast AMP-activated protein kinase), decreases as cells age. Sip2 acetylation, controlled by antagonizing NuA4 acetyltransferase and Rpd3 deacetylase, enhances interaction with Snf1, the catalytic subunit of Snf1 complex. Sip2-Snf1 interaction inhibits Snf1 activity, thus decreasing phosphorylation of a downstream target, Sch9 (homolog of Akt/S6K), and ultimately leading to slower growth but extended replicative life span. Sip2 acetylation mimetics are more resistant to oxidative stress. We further demonstrate that the anti-aging effect of Sip2 acetylation is independent of extrinsic nutrient availability and TORC1 activity. We propose a protein acetylation-phosphorylation cascade that regulates Sch9 activity, controls intrinsic aging, and extends replicative life span in yeast.
Collapse
|
28
|
H3K4 trimethylation by Set1 promotes efficient termination by the Nrd1-Nab3-Sen1 pathway. Mol Cell Biol 2011; 31:3569-83. [PMID: 21709022 DOI: 10.1128/mcb.05590-11] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, the Nrd1-Nab3-Sen1 pathway mediates the termination of snoRNAs and cryptic unstable transcripts (CUTs). Both Nrd1 and the Set1 histone H3K4 methyltransferase complex interact with RNA polymerase II (Pol II) during early elongation, leading us to test whether these two processes are functionally linked. The deletion of SET1 exacerbates the growth rate and termination defects of nrd1 mutants. Set1 is important for the appropriate recruitment of Nrd1. Additionally, Set1 modulates histone acetylation levels in the promoter-proximal region via the Rpd3L deacetylase and NuA3 acetyltransferase complexes, both of which contain PHD finger proteins that bind methylated H3K4. Increased levels of histone acetylation reduce the efficiency of Nrd1-dependent termination. We speculate that Set1 promotes proper early termination by the Nrd1-Nab3-Sen1 complex by affecting the kinetics of Pol II transcription in early elongation.
Collapse
|
29
|
A dual role of H4K16 acetylation in the establishment of yeast silent chromatin. EMBO J 2011; 30:2610-21. [PMID: 21666601 DOI: 10.1038/emboj.2011.170] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 04/28/2011] [Indexed: 11/09/2022] Open
Abstract
Discrete regions of the eukaryotic genome assume heritable chromatin structure that is refractory to transcription. In budding yeast, silent chromatin is characterized by the binding of the Silent Information Regulatory (Sir) proteins to unmodified nucleosomes. Using an in vitro reconstitution assay, which allows us to load Sir proteins onto arrays of regularly spaced nucleosomes, we have examined the impact of specific histone modifications on Sir protein binding and linker DNA accessibility. Two typical marks for active chromatin, H3K79(me) and H4K16(ac) decrease the affinity of Sir3 for chromatin, yet only H4K16(ac) affects chromatin structure, as measured by nuclease accessibility. Surprisingly, we found that the Sir2-4 subcomplex, unlike Sir3, has higher affinity for chromatin carrying H4K16(ac). NAD-dependent deacetylation of H4K16(ac) promotes binding of the SIR holocomplex but not of the Sir2-4 heterodimer. This function of H4K16(ac) cannot be substituted by H3K56(ac). We conclude that acetylated H4K16 has a dual role in silencing: it recruits Sir2-4 and repels Sir3. Moreover, the deacetylation of H4K16(ac) by Sir2 actively promotes the high-affinity binding of the SIR holocomplex.
Collapse
|
30
|
Zhou BO, Wang SS, Zhang Y, Fu XH, Dang W, Lenzmeier BA, Zhou JQ. Histone H4 lysine 12 acetylation regulates telomeric heterochromatin plasticity in Saccharomyces cerevisiae. PLoS Genet 2011; 7:e1001272. [PMID: 21249184 PMCID: PMC3020936 DOI: 10.1371/journal.pgen.1001272] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 12/08/2010] [Indexed: 12/21/2022] Open
Abstract
Recent studies have established that the highly condensed and transcriptionally silent heterochromatic domains in budding yeast are virtually dynamic structures. The underlying mechanisms for heterochromatin dynamics, however, remain obscure. In this study, we show that histones are dynamically acetylated on H4K12 at telomeric heterochromatin, and this acetylation regulates several of the dynamic telomere properties. Using a de novo heterochromatin formation assay, we surprisingly found that acetylated H4K12 survived the formation of telomeric heterochromatin. Consistently, the histone acetyltransferase complex NuA4 bound to silenced telomeric regions and acetylated H4K12. H4K12 acetylation prevented the over-accumulation of Sir proteins at telomeric heterochromatin and elimination of this acetylation caused defects in multiple telomere-related processes, including transcription, telomere replication, and recombination. Together, these data shed light on a potential histone acetylation mark within telomeric heterochromatin that contributes to telomere plasticity.
Collapse
Affiliation(s)
- Bo O. Zhou
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shan-Shan Wang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yang Zhang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Hong Fu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Dang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Brian A. Lenzmeier
- School of Science, Buena Vista University, Storm Lake, Iowa, United States of America
| | - Jin-Qiu Zhou
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
31
|
Arnold KM, Lee S, Denu JM. Processing mechanism and substrate selectivity of the core NuA4 histone acetyltransferase complex. Biochemistry 2011; 50:727-37. [PMID: 21182309 DOI: 10.1021/bi101355a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Esa1, an essential MYST histone acetyltransferase found in the yeast piccolo NuA4 complex (picNuA4), is responsible for genome-wide histone H4 and histone H2A acetylation. picNuA4 uniquely catalyzes the rapid tetra-acetylation of nucleosomal H4, though the molecular determinants driving picNuA4 efficiency and specificity have not been defined. Here, we show through rapid substrate trapping experiments that picNuA4 utilizes a nonprocessive mechanism in which picNuA4 dissociates from the substrate after each acetylation event. Quantitative mass spectral analyses indicate that picNuA4 randomly acetylates free and nucleosomal H4, with a small preference for lysines 5, 8, and 12 over lysine 16. Using a series of 24 histone mutants of H4 and H2A, we investigated the parameters affecting catalytic efficiency. Most strikingly, removal of lysine residues did not substantially affect the ability of picNuA4 to acetylate remaining sites, and insertion of an additional lysine into the H4 tail led to rapid quintuple acetylation. Conversion of the native H2A tail to an H4-like sequence resulted in enhanced multisite acetylation. Collectively, the results suggest picNuA4's site selectivity is dictated by accessibility on the nucleosome surface, the relative proximity from the histone fold domain, and a preference for intervening glycine residues with a minimal (n + 2) spacing between lysines. Functionally distinct from other HAT families, the proposed model for picNuA4 represents a unique mechanism of substrate recognition and multisite acetylation.
Collapse
Affiliation(s)
- Kevin M Arnold
- Department of Biomolecular Chemistry, University of Wisconsin, 1300 University Avenue, Madison, Wisconsin 53706, United States
| | | | | |
Collapse
|
32
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|