1
|
Aiello U, Porrua O, Libri D. Sen1: The Varied Virtues of a Multifaceted Helicase. J Mol Biol 2024:168808. [PMID: 39357815 DOI: 10.1016/j.jmb.2024.168808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Several machineries concurrently work on the DNA, but among them RNA Polymerases (RNAPs) are the most widespread and active users. The homeostasis of such a busy genomic environment relies on the existence of mechanisms that allow limiting transcription to a functional level, both in terms of extent and rate. Sen1 is a central player in this sense: using its translocase activity this protein has evolved the specific function of dislodging RNAPs from the DNA template, thus ending the transcription cycle. Over the years, studies have shown that Sen1 uses this same mechanism in a multitude of situations, allowing termination of all three eukaryotic RNAPs in different contexts. In virtue of its helicase activity, Sen1 has also been proposed to have a prominent function in the resolution of co-transcriptional genotoxic R-loops, which can cause the stalling of replication forks. In this review, we provide a synopsis of past and recent findings on the functions of Sen1 in yeast and of its human homologue Senataxin (SETX).
Collapse
Affiliation(s)
- Umberto Aiello
- Stanford University School of Medicine, Department of Genetics, Stanford, CA, USA.
| | - Odil Porrua
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Domenico Libri
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
2
|
Monziani A, Ulitsky I. Noncoding snoRNA host genes are a distinct subclass of long noncoding RNAs. Trends Genet 2023; 39:908-923. [PMID: 37783604 DOI: 10.1016/j.tig.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 10/04/2023]
Abstract
Mammalian genomes are pervasively transcribed into different noncoding (nc)RNA classes, each one with its own hallmarks and exceptions. Some of them are nested into each other, such as host genes for small nucleolar RNAs (snoRNAs), which were long believed to simply act as molecular containers strictly facilitating snoRNA biogenesis. However, recent findings show that noncoding snoRNA host genes (ncSNHGs) display features different from those of 'regular' long ncRNAs (lncRNAs) and, more importantly, they can exert independent and unrelated functions to those of the encoded snoRNAs. Here, we review and summarize past and recent evidence that ncSNHGs form a defined subclass among the plethora of lncRNAs, and discuss future research that can further elucidate their biological relevance.
Collapse
Affiliation(s)
- Alan Monziani
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Igor Ulitsky
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| |
Collapse
|
3
|
Appel CD, Bermek O, Dandey VP, Wood M, Viverette E, Williams JG, Bouvette J, Riccio AA, Krahn JM, Borgnia MJ, Williams RS. Sen1 architecture: RNA-DNA hybrid resolution, autoregulation, and insights into SETX inactivation in AOA2. Mol Cell 2023; 83:3692-3706.e5. [PMID: 37832548 PMCID: PMC10629462 DOI: 10.1016/j.molcel.2023.09.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/25/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
The senataxin (SETX, Sen1 in yeasts) RNA-DNA hybrid resolving helicase regulates multiple nuclear transactions, including DNA replication, transcription, and DNA repair, but the molecular basis for Sen1 activities is ill defined. Here, Sen1 cryoelectron microscopy (cryo-EM) reconstructions reveal an elongated inchworm-like architecture. Sen1 is composed of an amino terminal helical repeat Sen1 N-terminal (Sen1N) regulatory domain that is flexibly linked to its C-terminal SF1B helicase motor core (Sen1Hel) via an intrinsically disordered tether. In an autoinhibited state, the Sen1Sen1N domain regulates substrate engagement by promoting occlusion of the RNA substrate-binding cleft. The X-ray structure of an activated Sen1Hel engaging single-stranded RNA and ADP-SO4 shows that the enzyme encircles RNA and implicates a single-nucleotide power stroke in the Sen1 RNA translocation mechanism. Together, our data unveil dynamic protein-protein and protein-RNA interfaces underpinning helicase regulation and inactivation of human SETX activity by RNA-binding-deficient mutants in ataxia with oculomotor apraxia 2 neurodegenerative disease.
Collapse
Affiliation(s)
- C Denise Appel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Oya Bermek
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Venkata P Dandey
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Makayla Wood
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Elizabeth Viverette
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Jason G Williams
- Epigenetics and Stem Cell Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Jonathan Bouvette
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Amanda A Riccio
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Juno M Krahn
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Mario J Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - R Scott Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
4
|
Haidara N, Giannini M, Porrua O. Modulated termination of non-coding transcription partakes in the regulation of gene expression. Nucleic Acids Res 2022; 50:1430-1448. [PMID: 35037029 PMCID: PMC8860598 DOI: 10.1093/nar/gkab1304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 12/25/2022] Open
Abstract
Pervasive transcription is a universal phenomenon leading to the production of a plethora of non-coding RNAs. If left uncontrolled, pervasive transcription can be harmful for genome expression and stability. However, non-coding transcription can also play important regulatory roles, for instance by promoting the repression of specific genes by a mechanism of transcriptional interference. The efficiency of transcription termination can strongly influence the regulatory capacity of non-coding transcription events, yet very little is known about the mechanisms modulating the termination of non-coding transcription in response to environmental cues. Here, we address this question by investigating the mechanisms that regulate the activity of the main actor in termination of non-coding transcription in budding yeast, the helicase Sen1. We identify a phosphorylation at a conserved threonine of the catalytic domain of Sen1 and we provide evidence that phosphorylation at this site reduces the efficiency of Sen1-mediated termination. Interestingly, we find that this phosphorylation impairs termination at an unannotated non-coding gene, thus repressing the expression of a downstream gene encoding the master regulator of Zn homeostasis, Zap1. Consequently, many additional genes exhibit an expression pattern mimicking conditions of Zn excess, where ZAP1 is naturally repressed. Our findings provide a novel paradigm of gene regulatory mechanism relying on the direct modulation of non-coding transcription termination.
Collapse
Affiliation(s)
- Nouhou Haidara
- Université de Paris, CNRS, Institut Jacques Monod, F-75013 Paris, France.,Université Paris-Saclay, Gif sur Yvette, France
| | - Marta Giannini
- Université de Paris, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Odil Porrua
- Université de Paris, CNRS, Institut Jacques Monod, F-75013 Paris, France
| |
Collapse
|
5
|
Abstract
The repair of DNA double-strand breaks occurs through a series of defined steps that are evolutionarily conserved and well-understood in most experimental organisms. However, it is becoming increasingly clear that repair does not occur in isolation from other DNA transactions. Transcription of DNA produces topological changes, RNA species, and RNA-dependent protein complexes that can dramatically influence the efficiency and outcomes of DNA double-strand break repair. The transcription-associated history of several double-strand break repair factors is reviewed here, with an emphasis on their roles in regulating R-loops and the emerging role of R-loops in coordination of repair events. Evidence for nucleolytic processing of R-loops is also discussed, as well as the molecular tools commonly used to measure RNA-DNA hybrids in cells.
Collapse
Affiliation(s)
- Tanya T Paull
- The Department of Molecular Biosciences and the Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
6
|
Sariki SK, Kumawat R, Singh V, Tomar RS. Flocculation ofSaccharomyces cerevisiaeis dependent on activation of Slt2 and Rlm1 regulated by the cell wall integrity pathway. Mol Microbiol 2019; 112:1350-1369. [DOI: 10.1111/mmi.14375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Santhosh Kumar Sariki
- Laboratory of Chromatin Biology, Department of Biological Sciences Indian Institute of Science Education and Research Bhopal India
| | - Ramesh Kumawat
- Laboratory of Chromatin Biology, Department of Biological Sciences Indian Institute of Science Education and Research Bhopal India
| | - Vikash Singh
- Laboratory of Chromatin Biology, Department of Biological Sciences Indian Institute of Science Education and Research Bhopal India
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences Indian Institute of Science Education and Research Bhopal India
| |
Collapse
|
7
|
Kufel J, Grzechnik P. Small Nucleolar RNAs Tell a Different Tale. Trends Genet 2018; 35:104-117. [PMID: 30563726 DOI: 10.1016/j.tig.2018.11.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 12/21/2022]
Abstract
Transcribing RNA Polymerase II interacts with multiple factors that orchestrate maturation and stabilisation of messenger RNA. For the majority of noncoding RNAs, the polymerase complex employs entirely different strategies, which usually direct the nascent transcript to ribonucleolytic degradation. However, some noncoding RNA classes use endo- and exonucleases to achieve functionality. Here we review processing of small nucleolar RNAs that are transcribed by RNA Polymerase II as precursors, and whose 5' and 3' ends undergo processing to release mature, functional molecules. The maturation strategies of these noncoding RNAs in various organisms follow a similar pattern but employ different factors and are strictly correlated with genomic organisation of their genes.
Collapse
Affiliation(s)
- Joanna Kufel
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Pawel Grzechnik
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
8
|
Makharashvili N, Arora S, Yin Y, Fu Q, Wen X, Lee JH, Kao CH, Leung JWC, Miller KM, Paull TT. Sae2/CtIP prevents R-loop accumulation in eukaryotic cells. eLife 2018; 7:e42733. [PMID: 30523780 PMCID: PMC6296784 DOI: 10.7554/elife.42733] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/30/2018] [Indexed: 02/06/2023] Open
Abstract
The Sae2/CtIP protein is required for efficient processing of DNA double-strand breaks that initiate homologous recombination in eukaryotic cells. Sae2/CtIP is also important for survival of single-stranded Top1-induced lesions and CtIP is known to associate directly with transcription-associated complexes in mammalian cells. Here we investigate the role of Sae2/CtIP at single-strand lesions in budding yeast and in human cells and find that depletion of Sae2/CtIP promotes the accumulation of stalled RNA polymerase and RNA-DNA hybrids at sites of highly expressed genes. Overexpression of the RNA-DNA helicase Senataxin suppresses DNA damage sensitivity and R-loop accumulation in Sae2/CtIP-deficient cells, and a catalytic mutant of CtIP fails to complement this sensitivity, indicating a role for CtIP nuclease activity in the repair process. Based on this evidence, we propose that R-loop processing by 5' flap endonucleases is a necessary step in the stabilization and removal of nascent R-loop initiating structures in eukaryotic cells.
Collapse
Affiliation(s)
- Nodar Makharashvili
- Howard Hughes Medical Institute, The University of Texas at AustinAustinUnited states
- Department of Molecular BiosciencesThe University of Texas at AustinAustinUnited States
| | - Sucheta Arora
- Howard Hughes Medical Institute, The University of Texas at AustinAustinUnited states
- Department of Molecular BiosciencesThe University of Texas at AustinAustinUnited States
| | - Yizhi Yin
- Howard Hughes Medical Institute, The University of Texas at AustinAustinUnited states
- Department of Molecular BiosciencesThe University of Texas at AustinAustinUnited States
| | - Qiong Fu
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaUnited States
| | - Xuemei Wen
- Department of Molecular BiosciencesThe University of Texas at AustinAustinUnited States
| | - Ji-Hoon Lee
- Department of Molecular BiosciencesThe University of Texas at AustinAustinUnited States
| | - Chung-Hsuan Kao
- Department of Molecular BiosciencesThe University of Texas at AustinAustinUnited States
| | - Justin WC Leung
- Department of Radiation OncologyUniversity of Arkansas for Medical SciencesLittle RockUnited States
| | - Kyle M Miller
- Department of Molecular BiosciencesThe University of Texas at AustinAustinUnited States
| | - Tanya T Paull
- Howard Hughes Medical Institute, The University of Texas at AustinAustinUnited states
- Department of Molecular BiosciencesThe University of Texas at AustinAustinUnited States
| |
Collapse
|
9
|
Ji D, Manavski N, Meurer J, Zhang L, Chi W. Regulated chloroplast transcription termination. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:69-77. [PMID: 30414934 DOI: 10.1016/j.bbabio.2018.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 10/15/2018] [Accepted: 11/07/2018] [Indexed: 11/16/2022]
Abstract
Transcription termination by the RNA polymerase (RNAP) is a fundamental step of gene expression that involves the release of the nascent transcript and dissociation of the RNAP from the DNA template. However, the functional importance of termination extends beyond the mere definition of the gene borders. Chloroplasts originate from cyanobacteria and possess their own gene expression system. Plastids have a unique hybrid transcription system consisting of two different types of RNAPs of dissimilar phylogenetic origin together with several additional nuclear encoded components. Although the basic components involved in chloroplast transcription have been identified, little attention has been paid to the chloroplast transcription termination. Recent identification and functional characterization of novel factors in regulating transcription termination in Arabidopsis chloroplasts via genetic and biochemical approaches have provided insights into the mechanisms and significance of transcription termination in chloroplast gene expression. This review provides an overview of the current knowledge of the transcription termination in chloroplasts.
Collapse
Affiliation(s)
- Daili Ji
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Nikolay Manavski
- Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Moleculaire des Plantes, 12 rue du General Zimmer, 67084 Strasbourg, France
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, D-82152 Planegg-Martinsried, Germany
| | - Lixin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
10
|
Grzechnik P, Szczepaniak SA, Dhir S, Pastucha A, Parslow H, Matuszek Z, Mischo HE, Kufel J, Proudfoot NJ. Nuclear fate of yeast snoRNA is determined by co-transcriptional Rnt1 cleavage. Nat Commun 2018; 9:1783. [PMID: 29725044 PMCID: PMC5934358 DOI: 10.1038/s41467-018-04094-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/04/2018] [Indexed: 01/30/2023] Open
Abstract
Small nucleolar RNA (snoRNA) are conserved and essential non-coding RNA that are transcribed by RNA Polymerase II (Pol II). Two snoRNA classes, formerly distinguished by their structure and ribonucleoprotein composition, act as guide RNA to target RNA such as ribosomal RNA, and thereby introduce specific modifications. We have studied the 5'end processing of individually transcribed snoRNA in S. cerevisiae to define their role in snoRNA biogenesis and functionality. Here we show that pre-snoRNA processing by the endonuclease Rnt1 occurs co-transcriptionally with removal of the m7G cap facilitating the formation of box C/D snoRNA. Failure of this process causes aberrant 3'end processing and mislocalization of snoRNA to the cytoplasm. Consequently, Rnt1-dependent 5'end processing of box C/D snoRNA is critical for snoRNA-dependent methylation of ribosomal RNA. Our results reveal that the 5'end processing of box C/D snoRNA defines their distinct pathway of maturation.
Collapse
Affiliation(s)
- Pawel Grzechnik
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Sylwia A Szczepaniak
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, 02-089, Warsaw, Poland
| | - Somdutta Dhir
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Anna Pastucha
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Hannah Parslow
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Zaneta Matuszek
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Hannah E Mischo
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Joanna Kufel
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland.
| | - Nicholas J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| |
Collapse
|
11
|
Grunseich C, Wang IX, Watts JA, Burdick JT, Guber RD, Zhu Z, Bruzel A, Lanman T, Chen K, Schindler AB, Edwards N, Ray-Chaudhury A, Yao J, Lehky T, Piszczek G, Crain B, Fischbeck KH, Cheung VG. Senataxin Mutation Reveals How R-Loops Promote Transcription by Blocking DNA Methylation at Gene Promoters. Mol Cell 2018; 69:426-437.e7. [PMID: 29395064 PMCID: PMC5815878 DOI: 10.1016/j.molcel.2017.12.030] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 12/11/2017] [Accepted: 12/28/2017] [Indexed: 12/15/2022]
Abstract
R-loops are three-stranded nucleic acid structures found abundantly and yet often viewed as by-products of transcription. Studying cells from patients with a motor neuron disease (amyotrophic lateral sclerosis 4 [ALS4]) caused by a mutation in senataxin, we uncovered how R-loops promote transcription. In ALS4 patients, the senataxin mutation depletes R-loops with a consequent effect on gene expression. With fewer R-loops in ALS4 cells, the expression of BAMBI, a negative regulator of transforming growth factor β (TGF-β), is reduced; that then leads to the activation of the TGF-β pathway. We uncovered that genome-wide R-loops influence promoter methylation of over 1,200 human genes. DNA methyl-transferase 1 favors binding to double-stranded DNA over R-loops. Thus, in forming R-loops, nascent RNA blocks DNA methylation and promotes further transcription. Hence, our results show that nucleic acid structures, in addition to sequences, influence the binding and activity of regulatory proteins.
Collapse
Affiliation(s)
- Christopher Grunseich
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Isabel X Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jason A Watts
- Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Joshua T Burdick
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Robert D Guber
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Zhengwei Zhu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Alan Bruzel
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Tyler Lanman
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Kelian Chen
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Alice B Schindler
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Nancy Edwards
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Abhik Ray-Chaudhury
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Jianhua Yao
- Department of Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, USA
| | - Tanya Lehky
- Electromyography Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Grzegorz Piszczek
- Biophysics Core, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Barbara Crain
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA.
| | - Vivian G Cheung
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
12
|
Han Z, Libri D, Porrua O. Biochemical characterization of the helicase Sen1 provides new insights into the mechanisms of non-coding transcription termination. Nucleic Acids Res 2017; 45:1355-1370. [PMID: 28180347 PMCID: PMC5388409 DOI: 10.1093/nar/gkw1230] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/10/2016] [Accepted: 11/28/2016] [Indexed: 01/02/2023] Open
Abstract
Pervasive transcription is widespread and needs to be controlled in order to avoid interference with gene expression. In Saccharomyces cerevisiae, the highly conserved helicase Sen1 plays a key role in restricting pervasive transcription by eliciting early termination of non-coding transcription. However, many aspects of the mechanism of termination remain unclear. In this study we characterize the biochemical activities of Sen1 and their role in termination. First, we demonstrate that the helicase domain (HD) is sufficient to dissociate the elongation complex (EC) in vitro. Both full-length Sen1 and its HD can translocate along single-stranded RNA and DNA in the 5΄ to 3΄ direction. Surprisingly, however, we show that Sen1 is a relatively poorly processive enzyme, implying that it must be recruited in close proximity to the RNA polymerase II (RNAPII) for efficient termination. We present evidence that Sen1 can promote forward translocation of stalled polymerases by acting on the nascent transcript. In addition, we find that dissociation of the EC by Sen1 is favoured by the reannealing of the DNA upstream of RNAPII. Taken together, our results provide new clues to understand the mechanism of Sen1-dependent transcription termination and a rationale for the kinetic competition between elongation and termination.
Collapse
Affiliation(s)
- Zhong Han
- Institut Jacques Monod, UMR7592, Centre Nationale pour la Recherche Scientifique (CNRS), Université Paris-Diderot, Sorbonne Paris Cité, F-75205 Paris, France.,Université Paris-Saclay, 91190 Gif sur Yvette, France
| | - Domenico Libri
- Institut Jacques Monod, UMR7592, Centre Nationale pour la Recherche Scientifique (CNRS), Université Paris-Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Odil Porrua
- Institut Jacques Monod, UMR7592, Centre Nationale pour la Recherche Scientifique (CNRS), Université Paris-Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| |
Collapse
|
13
|
Groh M, Albulescu LO, Cristini A, Gromak N. Senataxin: Genome Guardian at the Interface of Transcription and Neurodegeneration. J Mol Biol 2016; 429:3181-3195. [PMID: 27771483 DOI: 10.1016/j.jmb.2016.10.021] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/14/2016] [Accepted: 10/15/2016] [Indexed: 12/12/2022]
Abstract
R-loops comprise an RNA/DNA hybrid and a displaced single-stranded DNA. They play crucial biological functions and are implicated in neurological diseases, including ataxias, amyotrophic lateral sclerosis, nucleotide expansion disorders (Friedreich ataxia and fragile X syndrome), and cancer. Currently, it is unclear which mechanisms cause R-loop structures to become pathogenic. The RNA/DNA helicase senataxin (SETX) is one of the best characterised R-loop-binding factors in vivo. Mutations in SETX are linked to two neurodegenerative disorders: ataxia with oculomotor apraxia type 2 (AOA2) and amyotrophic lateral sclerosis type 4 (ALS4). SETX is known to play a role in transcription, neurogenesis, and antiviral response. Here, we review the causes of R-loop dysregulation in neurodegenerative diseases and how these structures contribute to pathomechanisms. We will discuss the importance of SETX as a genome guardian in suppressing aberrant R-loop formation and analyse how SETX mutations can lead to neurodegeneration in AOA2/ALS4. Finally, we will discuss the implications for other R-loop-associated neurodegenerative diseases and point to future therapeutic approaches to treat these disorders.
Collapse
Affiliation(s)
- Matthias Groh
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, UK
| | - Laura Oana Albulescu
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, UK
| | - Agnese Cristini
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, UK
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, UK.
| |
Collapse
|
14
|
Hindman R, Gollnick P. Nucleoside Triphosphate Phosphohydrolase I (NPH I) Functions as a 5' to 3' Translocase in Transcription Termination of Vaccinia Early Genes. J Biol Chem 2016; 291:14826-38. [PMID: 27189950 DOI: 10.1074/jbc.m116.730135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Indexed: 12/21/2022] Open
Abstract
Vaccinia virus early genes are transcribed immediately upon infection. Nucleoside triphosphate phosphohydrolase I (NPH I) is an essential component of the early gene transcription complex. NPH I hydrolyzes ATP to release transcripts during transcription termination. The ATPase activity of NPH I requires single-stranded (ss) DNA as a cofactor; however, the source of this cofactor within the transcription complex is not known. Based on available structures of transcription complexes it has been hypothesized that the ssDNA cofactor is obtained from the unpaired non-template strand within the transcription bubble. In vitro transcription on templates that lack portions of the non-template strand within the transcription bubble showed that the upstream portion of the transcription bubble is required for efficient NPH I-mediated transcript release. Complementarity between the template and non-template strands in this region is also required for NPH I-mediated transcript release. This observation complicates locating the source of the ssDNA cofactor within the transcription complex because removal of the non-template strand also disrupts transcription bubble reannealing. Prior studies have shown that ssRNA binds to NPH I, but it does not activate ATPase activity. Chimeric transcription templates with RNA in the non-template strand confirm that the source of the ssDNA cofactor for NPH I is the upstream portion of the non-template strand in the transcription bubble. Consistent with this conclusion we also show that isolated NPH I acts as a 5' to 3' translocase on single-stranded DNA.
Collapse
Affiliation(s)
- Ryan Hindman
- From the Department of Biological Sciences, University at Buffalo, Buffalo, New York 14260-4610
| | - Paul Gollnick
- From the Department of Biological Sciences, University at Buffalo, Buffalo, New York 14260-4610
| |
Collapse
|
15
|
Characterization of the mechanisms of transcription termination by the helicase Sen1. Methods Mol Biol 2015; 1259:313-31. [PMID: 25579594 DOI: 10.1007/978-1-4939-2214-7_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In vitro transcription systems have been widely used to study all the steps of transcription from initiation to termination and many transcription-coupled processes. Here we describe an in vitro transcription-termination assay that we have used for the analysis of the mechanism of termination by the yeast helicase Sen1. In this system, we use highly purified proteins to assemble ternary elongation complexes (RNA polymerase, DNA template, and nascent RNA) on biotinylated DNA that is subsequently immobilized on streptavidin beads. After allowing transcription by the addition of nucleotides, the termination events can be detected and quantified by comparing the amounts of polymerases and transcripts released from the DNA templates in reactions performed in the absence or in the presence of purified Sen1. By modifying different parameters of the assay, this technique allows the study of several aspects of the termination reaction.
Collapse
|
16
|
Flocculation inSaccharomyces cerevisiaeis regulated by RNA/DNA helicase Sen1p. FEBS Lett 2015; 589:3165-74. [DOI: 10.1016/j.febslet.2015.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 12/13/2022]
|
17
|
Srivastava R, Ahn SH. Modifications of RNA polymerase II CTD: Connections to the histone code and cellular function. Biotechnol Adv 2015; 33:856-72. [PMID: 26241863 DOI: 10.1016/j.biotechadv.2015.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/08/2015] [Accepted: 07/28/2015] [Indexed: 12/24/2022]
Abstract
At the onset of transcription, many protein machineries interpret the cellular signals that regulate gene expression. These complex signals are mostly transmitted to the indispensable primary proteins involved in transcription, RNA polymerase II (RNAPII) and histones. RNAPII and histones are so well coordinated in this cellular function that each cellular signal is precisely allocated to specific machinery depending on the stage of transcription. The carboxy-terminal domain (CTD) of RNAPII in eukaryotes undergoes extensive posttranslational modification, called the 'CTD code', that is indispensable for coupling transcription with many cellular processes, including mRNA processing. The posttranslational modification of histones, known as the 'histone code', is also critical for gene transcription through the reversible and dynamic remodeling of chromatin structure. Notably, the histone code is closely linked with the CTD code, and their combinatorial effects enable the delicate regulation of gene transcription. This review elucidates recent findings regarding the CTD modifications of RNAPII and their coordination with the histone code, providing integrative pathways for the fine-tuned regulation of gene expression and cellular function.
Collapse
Affiliation(s)
- Rakesh Srivastava
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Seong Hoon Ahn
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, Republic of Korea.
| |
Collapse
|
18
|
Grzechnik P, Gdula MR, Proudfoot NJ. Pcf11 orchestrates transcription termination pathways in yeast. Genes Dev 2015; 29:849-61. [PMID: 25877920 PMCID: PMC4403260 DOI: 10.1101/gad.251470.114] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 03/19/2015] [Indexed: 11/25/2022]
Abstract
In Saccharomyces cerevisiae, short noncoding RNA (ncRNA) generated by RNA polymerase II (Pol II) are terminated by the NRD complex consisting of Nrd1, Nab3, and Sen1. We now show that Pcf11, a component of the cleavage and polyadenylation complex (CPAC), is also generally required for NRD-dependent transcription termination through the action of its C-terminal domain (CTD)-interacting domain (CID). Pcf11 localizes downstream from Nrd1 on NRD terminators, and its recruitment depends on Nrd1. Furthermore, mutation of the Pcf11 CID results in Nrd1 retention on chromatin, delayed degradation of ncRNA, and restricted Pol II CTD Ser2 phosphorylation and Sen1-Pol II interaction. Finally, the pcf11-13 and sen1-1 mutant phenotypes are very similar, as both accumulate RNA:DNA hybrids and display Pol II pausing downstream from NRD terminators. We predict a mechanism by which the exchange of Nrd1 and Pcf11 on chromatin facilitates Pol II pausing and CTD Ser2-P phosphorylation. This in turn promotes Sen1 activity that is required for NRD-dependent transcription termination in vivo.
Collapse
Affiliation(s)
- Pawel Grzechnik
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Michal Ryszard Gdula
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Nick J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom;
| |
Collapse
|
19
|
Saccharomyces cerevisiae Sen1 as a model for the study of mutations in human Senataxin that elicit cerebellar ataxia. Genetics 2014; 198:577-90. [PMID: 25116135 DOI: 10.1534/genetics.114.167585] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The nuclear RNA and DNA helicase Sen1 is essential in the yeast Saccharomyces cerevisiae and is required for efficient termination of RNA polymerase II transcription of many short noncoding RNA genes. However, the mechanism of Sen1 function is not understood. We created a plasmid-based genetic system to study yeast Sen1 in vivo. Using this system, we show that (1) the minimal essential region of Sen1 corresponds to the helicase domain and one of two flanking nuclear localization sequences; (2) a previously isolated terminator readthrough mutation in the Sen1 helicase domain, E1597K, is rescued by a second mutation designed to restore a salt bridge within the first RecA domain; and (3) the human ortholog of yeast Sen1, Senataxin, cannot functionally replace Sen1 in yeast. Guided by sequence homology between the conserved helicase domains of Sen1 and Senataxin, we tested the effects of 13 missense mutations that cosegregate with the inherited disorder ataxia with oculomotor apraxia type 2 on Sen1 function. Ten of the disease mutations resulted in transcription readthrough of at least one of three Sen1-dependent termination elements tested. Our genetic system will facilitate the further investigation of structure-function relationships in yeast Sen1 and its orthologs.
Collapse
|
20
|
Fogel BL, Cho E, Wahnich A, Gao F, Becherel OJ, Wang X, Fike F, Chen L, Criscuolo C, De Michele G, Filla A, Collins A, Hahn AF, Gatti RA, Konopka G, Perlman S, Lavin MF, Geschwind DH, Coppola G. Mutation of senataxin alters disease-specific transcriptional networks in patients with ataxia with oculomotor apraxia type 2. Hum Mol Genet 2014; 23:4758-69. [PMID: 24760770 DOI: 10.1093/hmg/ddu190] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Senataxin, encoded by the SETX gene, contributes to multiple aspects of gene expression, including transcription and RNA processing. Mutations in SETX cause the recessive disorder ataxia with oculomotor apraxia type 2 (AOA2) and a dominant juvenile form of amyotrophic lateral sclerosis (ALS4). To assess the functional role of senataxin in disease, we examined differential gene expression in AOA2 patient fibroblasts, identifying a core set of genes showing altered expression by microarray and RNA-sequencing. To determine whether AOA2 and ALS4 mutations differentially affect gene expression, we overexpressed disease-specific SETX mutations in senataxin-haploinsufficient fibroblasts and observed changes in distinct sets of genes. This implicates mutation-specific alterations of senataxin function in disease pathogenesis and provides a novel example of allelic neurogenetic disorders with differing gene expression profiles. Weighted gene co-expression network analysis (WGCNA) demonstrated these senataxin-associated genes to be involved in both mutation-specific and shared functional gene networks. To assess this in vivo, we performed gene expression analysis on peripheral blood from members of 12 different AOA2 families and identified an AOA2-specific transcriptional signature. WGCNA identified two gene modules highly enriched for this transcriptional signature in the peripheral blood of all AOA2 patients studied. These modules were disease-specific and preserved in patient fibroblasts and in the cerebellum of Setx knockout mice demonstrating conservation across species and cell types, including neurons. These results identify novel genes and cellular pathways related to senataxin function in normal and disease states, and implicate alterations in gene expression as underlying the phenotypic differences between AOA2 and ALS4.
Collapse
Affiliation(s)
- Brent L Fogel
- Program in Neurogenetics, Department of Neurology and
| | - Ellen Cho
- Program in Neurogenetics, Department of Neurology and
| | | | - Fuying Gao
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Olivier J Becherel
- Radiation Biology and Oncology Laboratory, University of Queensland, UQ Centre for Clinical Research, Herston, Australia
| | - Xizhe Wang
- Program in Neurogenetics, Department of Neurology and
| | | | - Leslie Chen
- Program in Neurogenetics, Department of Neurology and
| | - Chiara Criscuolo
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, Federico II University, Napoli, Italy
| | - Giuseppe De Michele
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, Federico II University, Napoli, Italy
| | - Alessandro Filla
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, Federico II University, Napoli, Italy
| | - Abigail Collins
- Department of Pediatrics and Department of Neurology, Children's Hospital Colorado, University of Colorado, Denver, School of Medicine, Aurora, CO, USA
| | - Angelika F Hahn
- Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada and
| | - Richard A Gatti
- Department of Pathology and Laboratory Medicine and Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Susan Perlman
- Program in Neurogenetics, Department of Neurology and
| | - Martin F Lavin
- Radiation Biology and Oncology Laboratory, University of Queensland, UQ Centre for Clinical Research, Herston, Australia
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology and Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Giovanni Coppola
- Program in Neurogenetics, Department of Neurology and Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| |
Collapse
|
21
|
Gwynn EJ, Smith AJ, Guy CP, Savery NJ, McGlynn P, Dillingham MS. The conserved C-terminus of the PcrA/UvrD helicase interacts directly with RNA polymerase. PLoS One 2013; 8:e78141. [PMID: 24147116 PMCID: PMC3797733 DOI: 10.1371/journal.pone.0078141] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/13/2013] [Indexed: 12/31/2022] Open
Abstract
UvrD-like helicases play diverse roles in DNA replication, repair and recombination pathways. An emerging body of evidence suggests that their different cellular functions are directed by interactions with partner proteins that target unwinding activity to appropriate substrates. Recent studies in E. coli have shown that UvrD can act as an accessory replicative helicase that resolves conflicts between the replisome and transcription complexes, but the mechanism is not understood. Here we show that the UvrD homologue PcrA interacts physically with B. subtilis RNA polymerase, and that an equivalent interaction is conserved in E. coli where UvrD, but not the closely related helicase Rep, also interacts with RNA polymerase. The PcrA-RNAP interaction is direct and independent of nucleic acids or additional mediator proteins. A disordered but highly conserved C-terminal region of PcrA, which distinguishes PcrA/UvrD from otherwise related enzymes such as Rep, is both necessary and sufficient for interaction with RNA polymerase.
Collapse
Affiliation(s)
- Emma J. Gwynn
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Abigail J. Smith
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Colin P. Guy
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Nigel J. Savery
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Peter McGlynn
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Department of Biology, University of York, York, United Kingdom
| | - Mark S. Dillingham
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
O'Reilly D, Kuznetsova OV, Laitem C, Zaborowska J, Dienstbier M, Murphy S. Human snRNA genes use polyadenylation factors to promote efficient transcription termination. Nucleic Acids Res 2013; 42:264-75. [PMID: 24097444 PMCID: PMC3874203 DOI: 10.1093/nar/gkt892] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA polymerase II transcribes both protein coding and non-coding RNA genes and, in yeast, different mechanisms terminate transcription of the two gene types. Transcription termination of mRNA genes is intricately coupled to cleavage and polyadenylation, whereas transcription of small nucleolar (sno)/small nuclear (sn)RNA genes is terminated by the RNA-binding proteins Nrd1, Nab3 and Sen1. The existence of an Nrd1-like pathway in humans has not yet been demonstrated. Using the U1 and U2 genes as models, we show that human snRNA genes are more similar to mRNA genes than yeast snRNA genes with respect to termination. The Integrator complex substitutes for the mRNA cleavage and polyadenylation specificity factor complex to promote cleavage and couple snRNA 3′-end processing with termination. Moreover, members of the associated with Pta1 (APT) and cleavage factor I/II complexes function as transcription terminators for human snRNA genes with little, if any, role in snRNA 3′-end processing. The gene-specific factor, proximal sequence element-binding transcription factor (PTF), helps clear the U1 and U2 genes of nucleosomes, which provides an easy passage for pol II, and the negative elongation factor facilitates termination at the end of the genes where nucleosome levels increase. Thus, human snRNA genes may use chromatin structure as an additional mechanism to promote efficient transcription termination in vivo.
Collapse
Affiliation(s)
- Dawn O'Reilly
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK and CGAT, MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | | | | | | | | | | |
Collapse
|
23
|
Craigen WJ, Graham BH, Wong LJ, Scaglia F, Lewis RA, Bonnen PE. Exome sequencing of a patient with suspected mitochondrial disease reveals a likely multigenic etiology. BMC MEDICAL GENETICS 2013; 14:83. [PMID: 23947751 PMCID: PMC3751849 DOI: 10.1186/1471-2350-14-83] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 08/06/2013] [Indexed: 12/04/2022]
Abstract
Background The clinical features of mitochondrial disease are complex and highly variable, leading to challenges in establishing a specific diagnosis. Despite being one of the most commonly occurring inherited genetic diseases with an incidence of 1/5000, ~90% of these complex patients remain without a DNA-based diagnosis. We report our efforts to identify the pathogenetic cause for a patient with typical features of mitochondrial disease including infantile cataracts, CPEO, ptosis, progressive distal muscle weakness, and ataxia who carried a diagnosis of mitochondrial disease for over a decade. Methods Whole exome sequencing and bioinformatic analysis of these data were conducted on the proband. Results Exome sequencing studies showed a homozygous splice site mutation in SETX, which is known to cause Spinocerebellar Ataxia, Autosomal Recessive 1 (SCAR1). Additionally a missense mutation was identified in a highly conserved position of the OCRL gene, which causes Lowe Syndrome and Dent Disease 2. Conclusions This patient’s complex phenotype reflects a complex genetic etiology in which no single gene explained the complete clinical presentation. These genetic studies reveal that this patient does not have mitochondrial disease but rather a genocopy caused by more than one mutant locus. This study demonstrates the benefit of exome sequencing in providing molecular diagnosis to individuals with complex clinical presentations.
Collapse
Affiliation(s)
- William J Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | |
Collapse
|
24
|
Jeronimo C, Bataille AR, Robert F. The Writers, Readers, and Functions of the RNA Polymerase II C-Terminal Domain Code. Chem Rev 2013; 113:8491-522. [DOI: 10.1021/cr4001397] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Célia Jeronimo
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
| | - Alain R. Bataille
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
| | - François Robert
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
- Département
de Médecine,
Faculté de Médecine, Université de Montréal, Montréal, Québec,
Canada H3T 1J4
| |
Collapse
|
25
|
Porrua O, Libri D. A bacterial-like mechanism for transcription termination by the Sen1p helicase in budding yeast. Nat Struct Mol Biol 2013; 20:884-91. [PMID: 23748379 DOI: 10.1038/nsmb.2592] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/22/2013] [Indexed: 12/25/2022]
Abstract
Transcription termination is essential to generate functional RNAs and to prevent disruptive polymerase collisions resulting from concurrent transcription. The yeast Sen1p helicase is involved in termination of most noncoding RNAs transcribed by RNA polymerase II (RNAPII). However, the mechanism of termination and the role of this protein have remained enigmatic. Here we address the mechanism of Sen1p-dependent termination by using a highly purified in vitro system. We show that Sen1p is the key enzyme of the termination reaction and reveal features of the termination mechanism. Like the bacterial termination factor Rho, Sen1p recognizes the nascent RNA and hydrolyzes ATP to dissociate the elongation complex. Sen1p-dependent termination is highly specific and, notably, does not require the C-terminal domain of RNAPII. We also show that termination is inhibited by RNA-DNA hybrids. Our results elucidate the role of Sen1p in controlling pervasive transcription.
Collapse
Affiliation(s)
- Odil Porrua
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, Gif sur Yvette, France.
| | | |
Collapse
|
26
|
Golla U, Singh V, Azad GK, Singh P, Verma N, Mandal P, Chauhan S, Tomar RS. Sen1p contributes to genomic integrity by regulating expression of ribonucleotide reductase 1 (RNR1) in Saccharomyces cerevisiae. PLoS One 2013; 8:e64798. [PMID: 23741394 PMCID: PMC3669351 DOI: 10.1371/journal.pone.0064798] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/18/2013] [Indexed: 12/29/2022] Open
Abstract
Gene expression is a multi-step process which requires recruitment of several factors to promoters. One of the factors, Sen1p is an RNA/DNA helicase implicated in transcriptional termination and RNA processing in yeast. In the present study, we have identified a novel function of Sen1p that regulates the expression of ribonucleotide reductase RNR1 gene, which is essential for maintaining genomic integrity. Cells with mutation in the helicase domain or lacking N-terminal domain of Sen1p displayed a drastic decrease in the basal level transcription of RNR1 gene and showed enhanced sensitivity to various DNA damaging agents. Moreover, SEN1 mutants [Sen1-1 (G1747D), Sen1-2 (Δ1-975)] exhibited defects in DNA damage checkpoint activation. Surprisingly, CRT1 deletion in Sen1p mutants (Sen1-1, Sen1-2) was partly able to rescue the slow growth phenotype upon genotoxic stress. Altogether, our observations suggest that Sen1p is required for cell protection against DNA damage by regulating the expression of DNA repair gene RNR1. Thus, the misregulation of Sen1p regulated genes can cause genomic instability that may lead to neurological disorders and premature aging.
Collapse
Affiliation(s)
- Upendarrao Golla
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Vikash Singh
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Gajendra Kumar Azad
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Prabhat Singh
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Naveen Verma
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Papita Mandal
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Sakshi Chauhan
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Raghuvir S. Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
- * E-mail:
| |
Collapse
|
27
|
Reynolds JJ, Stewart GS. A single strand that links multiple neuropathologies in human disease. ACTA ACUST UNITED AC 2013; 136:14-27. [PMID: 23365091 DOI: 10.1093/brain/aws310] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The development of the human central nervous system is a complex process involving highly coordinated periods of neuronal proliferation, migration and differentiation. Disruptions in these neurodevelopmental processes can result in microcephaly, a neuropathological disorder characterized by a reduction in skull circumference and total brain volume, whereas a failure to maintain neuronal health in the adult brain can lead to progressive neurodegeneration. Defects in the cellular pathways that detect and repair DNA damage are a common cause of both these neuropathologies and are associated with a growing number of hereditary human disorders. In particular, defects in the repair of DNA single strand breaks, one of the most commonly occurring types of DNA lesion, have been associated with three neuropathological diseases: ataxia oculomotor apraxia 1, spinocerebellar ataxia with neuronal neuropathy 1 and microcephaly, early-onset, intractable seizures and developmental delay. A striking similarity between these three human diseases is that they are all caused by mutations in DNA end processing factors, suggesting that a particularly crucial stage of DNA single strand break repair is the repair of breaks with 'damaged' termini. Additionally all three disorders lack any extraneurological symptoms, such as immunodeficiency and cancer predisposition, which are typically found in other human diseases associated with defective DNA repair. However despite these similarities, two of these disorders present with progressive cerebellar degeneration, whereas the third presents with severe microcephaly. This review discusses the molecular defects behind these disorders and presents several hypotheses based on current literature on a number of important questions, in particular, how do mutations in different end processing factors within the same DNA repair pathway lead to such different neuropathologies?
Collapse
Affiliation(s)
- John J Reynolds
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
28
|
Yüce Ö, West SC. Senataxin, defective in the neurodegenerative disorder ataxia with oculomotor apraxia 2, lies at the interface of transcription and the DNA damage response. Mol Cell Biol 2013; 33:406-17. [PMID: 23149945 PMCID: PMC3554130 DOI: 10.1128/mcb.01195-12] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 11/05/2012] [Indexed: 12/11/2022] Open
Abstract
The neurodegenerative disorder ataxia with oculomotor apraxia 2 (AOA-2) is caused by defects in senataxin, a putative RNA/DNA helicase thought to be involved in the termination of transcription at RNA polymerase pause sites. RNA/DNA hybrids (R loops) that arise during transcription pausing lead to genome instability unless they are resolved efficiently. We found that senataxin forms distinct nuclear foci in S/G(2)-phase human cells and that the number of these foci increases in response to impaired DNA replication or DNA damage. Senataxin colocalizes with 53BP1, a key DNA damage response protein, and with other factors involved in DNA repair. Inhibition of transcription using α-amanitin, or the dissolution of R loops by transient expression of RNase H1, leads to the loss of senataxin foci. These results indicate that senataxin localizes to sites of collision between components of the replisome and the transcription apparatus and that it is targeted to R loops, where it plays an important role at the interface of transcription and the DNA damage response.
Collapse
Affiliation(s)
- Özlem Yüce
- London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms, Herts, United Kingdom
| | | |
Collapse
|
29
|
Mischo HE, Proudfoot NJ. Disengaging polymerase: terminating RNA polymerase II transcription in budding yeast. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:174-85. [PMID: 23085255 PMCID: PMC3793857 DOI: 10.1016/j.bbagrm.2012.10.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 11/29/2022]
Abstract
Termination of transcription by RNA polymerase II requires two distinct processes: The formation of a defined 3′ end of the transcribed RNA, as well as the disengagement of RNA polymerase from its DNA template. Both processes are intimately connected and equally pivotal in the process of functional messenger RNA production. However, research in recent years has elaborated how both processes can additionally be employed to control gene expression in qualitative and quantitative ways. This review embraces these new findings and attempts to paint a broader picture of how this final step in the transcription cycle is of critical importance to many aspects of gene regulation. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Hannah E Mischo
- Cancer Research UK London Research Institute, Blanche Lane South Mimms, Herts, UK.
| | | |
Collapse
|
30
|
Mattiazzi M, Petrovič U, Križaj I. Yeast as a model eukaryote in toxinology: a functional genomics approach to studying the molecular basis of action of pharmacologically active molecules. Toxicon 2012; 60:558-71. [PMID: 22465496 DOI: 10.1016/j.toxicon.2012.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 03/13/2012] [Indexed: 10/28/2022]
Abstract
Yeast Saccharomyces cerevisiae has proven to be a relevant and convenient model organism for the study of diverse biological phenomena, due to its straightforward genetics, cost-effectiveness and rapid growth, combined with the typical characteristics of a eukaryotic cell. More than 40% of yeast proteins share at least part of their primary amino acid sequence with the corresponding human protein, making yeast a valuable model in biomedical research. In the last decade, high-throughput and genome-wide experimental approaches developed in yeast have paved the way to functional genomics that aims at a global understanding of the relationship between genotype and phenotype. In this review we first present the yeast strain and plasmid collections for genome-wide experimental approaches to study complex interactions between genes, proteins and endo- or exogenous small molecules. We describe methods for protein-protein, protein-DNA, genetic and chemo-genetic interactions, as well as localization studies, focussing on their application in research on small pharmacologically active molecules. Next we review the use of yeast as a model organism in neurobiology, emphasizing work done towards elucidating the pathogenesis of neurodegenerative diseases and the mechanism of action of neurotoxic phospholipases A(2).
Collapse
Affiliation(s)
- Mojca Mattiazzi
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | | | | |
Collapse
|
31
|
Zhang DW, Rodríguez-Molina JB, Tietjen JR, Nemec CM, Ansari AZ. Emerging Views on the CTD Code. GENETICS RESEARCH INTERNATIONAL 2012; 2012:347214. [PMID: 22567385 PMCID: PMC3335543 DOI: 10.1155/2012/347214] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/03/2011] [Indexed: 12/21/2022]
Abstract
The C-terminal domain (CTD) of RNA polymerase II (Pol II) consists of conserved heptapeptide repeats that function as a binding platform for different protein complexes involved in transcription, RNA processing, export, and chromatin remodeling. The CTD repeats are subject to sequential waves of posttranslational modifications during specific stages of the transcription cycle. These patterned modifications have led to the postulation of the "CTD code" hypothesis, where stage-specific patterns define a spatiotemporal code that is recognized by the appropriate interacting partners. Here, we highlight the role of CTD modifications in directing transcription initiation, elongation, and termination. We examine the major readers, writers, and erasers of the CTD code and examine the relevance of describing patterns of posttranslational modifications as a "code." Finally, we discuss major questions regarding the function of the newly discovered CTD modifications and the fundamental insights into transcription regulation that will necessarily emerge upon addressing those challenges.
Collapse
Affiliation(s)
- David W. Zhang
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Juan B. Rodríguez-Molina
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Joshua R. Tietjen
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Corey M. Nemec
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Aseem Z. Ansari
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
- Genome Center of Wisconsin, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| |
Collapse
|
32
|
Interactions of Sen1, Nrd1, and Nab3 with multiple phosphorylated forms of the Rpb1 C-terminal domain in Saccharomyces cerevisiae. EUKARYOTIC CELL 2012; 11:417-29. [PMID: 22286094 DOI: 10.1128/ec.05320-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Saccharomyces cerevisiae SEN1 gene codes for a nuclear, ATP-dependent helicase which is embedded in a complex network of protein-protein interactions. Pleiotropic phenotypes of mutations in SEN1 suggest that Sen1 functions in many nuclear processes, including transcription termination, DNA repair, and RNA processing. Sen1, along with termination factors Nrd1 and Nab3, is required for the termination of noncoding RNA transcripts, but Sen1 is associated during transcription with coding and noncoding genes. Sen1 and Nrd1 both interact directly with Nab3, as well as with the C-terminal domain (CTD) of Rpb1, the largest subunit of RNA polymerase II. It has been proposed that Sen1, Nab3, and Nrd1 form a complex that associates with Rpb1 through an interaction between Nrd1 and the Ser5-phosphorylated (Ser5-P) CTD. To further study the relationship between the termination factors and Rpb1, we used two-hybrid analysis and immunoprecipitation to characterize sen1-R302W, a mutation that impairs an interaction between Sen1 and the Ser2-phosphorylated CTD. Chromatin immunoprecipitation indicates that the impairment of the interaction between Sen1 and Ser2-P causes the reduced occupancy of mutant Sen1 across the entire length of noncoding genes. For protein-coding genes, mutant Sen1 occupancy is reduced early and late in transcription but is similar to that of the wild type across most of the coding region. The combined data suggest a handoff model in which proteins differentially transfer from the Ser5- to the Ser2-phosphorylated CTD to promote the termination of noncoding transcripts or other cotranscriptional events for protein-coding genes.
Collapse
|
33
|
Al Tassan N, Khalil D, Shinwari J, Al Sharif L, Bavi P, Abduljaleel Z, Abu Dhaim N, Magrashi A, Bobis S, Ahmed H, Alahmed S, Bohlega S. A missense mutation in PIK3R5 gene in a family with ataxia and oculomotor apraxia. Hum Mutat 2011; 33:351-4. [PMID: 22065524 DOI: 10.1002/humu.21650] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 10/24/2011] [Indexed: 01/23/2023]
Abstract
Autosomal recessive ataxias are heterogeneous group of disorders characterized by cerebellar atrophy and peripheral sensorimotor neuropathy. Molecular characterization of this group of disorders identified a number of genes contributing to these overlapping phenotypes. Ataxia with oculomotor apraxia type 2 (AOA2) is an autosomal recessive form of ataxia caused by mutations in the SETX gene. We report on a consanguineous family with autosomal recessive inheritance and clinical characteristics of AOA2, and no mutations in the SETX gene. We mapped the AOA locus in this family to chromosome 17p12-p13. Sequencing of all genes in the refined region identified a homozygous missense mutation in PIK3R5 that was absent in 477 normal controls. Our characterization of the PIK3R5 protein and findings suggest that it may play a role in the development of the cerebellum and vermis.
Collapse
Affiliation(s)
- Nada Al Tassan
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Beggs S, James TC, Bond U. The PolyA tail length of yeast histone mRNAs varies during the cell cycle and is influenced by Sen1p and Rrp6p. Nucleic Acids Res 2011; 40:2700-11. [PMID: 22123738 PMCID: PMC3315300 DOI: 10.1093/nar/gkr1108] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Yeast histone mRNAs are polyadenylated, yet factors such as Rrp6p and Trf4p, required for the 3'-end processing of non-polyadenylated RNAs, contribute to the cell cycle regulation of these transcripts. Here, we investigated the role of other known 3'-end processing/transcription termination factors of non-polyadenylated RNA in the biogenesis of histone mRNAs, specifically the Nab3p/Nrd1p/Sen1p complex. We also re-evaluated the polyadenylation status of these mRNAs during the cell cycle. Our analysis reveals that yeast histone mRNAs have shorter than average PolyA tails and the length of the PolyA tail varies during the cell cycle; S-phase histone mRNAs possess very short PolyA tails while in G1, the tail length is relatively longer. Inactivation of either Sen1p or Rrp6p leads to a decrease in the PolyA tail length of histone mRNAs. Our data also show that Sen1p contributes to 3'-end processing of histone primary transcripts. Thus, histone mRNAs are distinct from the general pool of yeast mRNAs and 3'-end processing and polyadenylation contribute to the cell cycle regulation of these transcripts.
Collapse
Affiliation(s)
- Suzanne Beggs
- School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin 2, Ireland
| | | | | |
Collapse
|
35
|
Jamonnak N, Creamer TJ, Darby MM, Schaughency P, Wheelan SJ, Corden JL. Yeast Nrd1, Nab3, and Sen1 transcriptome-wide binding maps suggest multiple roles in post-transcriptional RNA processing. RNA (NEW YORK, N.Y.) 2011; 17:2011-2025. [PMID: 21954178 PMCID: PMC3198594 DOI: 10.1261/rna.2840711] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 08/16/2011] [Indexed: 05/29/2023]
Abstract
RNA polymerase II transcribes both coding and noncoding genes, and termination of these different classes of transcripts is facilitated by different sets of termination factors. Pre-mRNAs are terminated through a process that is coupled to the cleavage/polyadenylation machinery, and noncoding RNAs in the yeast Saccharomyces cerevisiae are terminated through a pathway directed by the RNA-binding proteins Nrd1, Nab3, and the RNA helicase Sen1. We have used an in vivo cross-linking approach to map the binding sites of components of the yeast non-poly(A) termination pathway. We show here that Nrd1, Nab3, and Sen1 bind to a number of noncoding RNAs in an unexpected manner. Sen1 shows a preference for H/ACA over box C/D snoRNAs. Nrd1, which binds to snoRNA terminators, also binds to the upstream region of some snoRNA transcripts and to snoRNAs embedded in introns. We present results showing that several RNAs, including the telomerase RNA TLC1, require Nrd1 for proper processing. Binding of Nrd1 to transcripts from tRNA genes is another unexpected observation. We also observe RNA polymerase II binding to transcripts from RNA polymerase III genes, indicating a possible role for the Nrd1 pathway in surveillance of transcripts synthesized by the wrong polymerase. The binding targets of Nrd1 pathway components change in the absence of glucose, with Nrd1 and Nab3 showing a preference for binding to sites in the mature snoRNA and tRNAs. This suggests a novel role for Nrd1 and Nab3 in destruction of ncRNAs in response to nutrient limitation.
Collapse
Affiliation(s)
- Nuttara Jamonnak
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Tyler J. Creamer
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Miranda M. Darby
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Paul Schaughency
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Sarah J. Wheelan
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Biostatistics, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Jeffry L. Corden
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
36
|
Kim KY, Levin DE. Mpk1 MAPK association with the Paf1 complex blocks Sen1-mediated premature transcription termination. Cell 2011; 144:745-56. [PMID: 21376235 DOI: 10.1016/j.cell.2011.01.034] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 11/16/2010] [Accepted: 01/26/2011] [Indexed: 12/29/2022]
Abstract
The Mpk1 MAPK of the yeast cell wall integrity pathway uses a noncatalytic mechanism to activate transcription of stress-induced genes by recruitment of initiation factors to target promoters. We show here that Mpk1 additionally serves a function in transcription elongation that is also independent of its catalytic activity. This function is mediated by an interaction between Mpk1 and the Paf1 subunit of the Paf1C elongation complex. A mutation in Paf1 that blocks this interaction causes a specific defect in transcription elongation of an Mpk1-induced gene, which results from Sen1-dependent premature termination through a Nab3-binding site within the promoter-proximal region of the gene. Our findings reveal a regulatory mechanism in which Mpk1 overcomes transcriptional attenuation by blocking recruitment of the Sen1-Nrd1-Nab3 termination complex to the elongating polymerase. Finally, we demonstrate that this mechanism is conserved in an interaction between the human ERK5 MAPK and human Paf1.
Collapse
Affiliation(s)
- Ki-Young Kim
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | | |
Collapse
|
37
|
Unravelling the means to an end: RNA polymerase II transcription termination. Nat Rev Mol Cell Biol 2011; 12:283-94. [PMID: 21487437 DOI: 10.1038/nrm3098] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The pervasiveness of RNA synthesis in eukaryotes is largely the result of RNA polymerase II (Pol II)-mediated transcription, and termination of its activity is necessary to partition the genome and maintain the proper expression of neighbouring genes. Despite its ever-increasing biological significance, transcription termination remains one of the least understood processes in gene expression. However, recent mechanistic studies have revealed a striking convergence among several overlapping models of termination, including the poly(A)- and Sen1-dependent pathways, as well as new insights into the specificity of Pol II termination among its diverse gene targets. Broader knowledge of the role of Pol II carboxy-terminal domain phosphorylation in promoting alternative mechanisms of termination has also been gained.
Collapse
|