1
|
Horton JS, Taylor TB. Mutation bias and adaptation in bacteria. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001404. [PMID: 37943288 PMCID: PMC10710837 DOI: 10.1099/mic.0.001404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023]
Abstract
Genetic mutation, which provides the raw material for evolutionary adaptation, is largely a stochastic force. However, there is ample evidence showing that mutations can also exhibit strong biases, with some mutation types and certain genomic positions mutating more often than others. It is becoming increasingly clear that mutational bias can play a role in determining adaptive outcomes in bacteria in both the laboratory and the clinic. As such, understanding the causes and consequences of mutation bias can help microbiologists to anticipate and predict adaptive outcomes. In this review, we provide an overview of the mechanisms and features of the bacterial genome that cause mutational biases to occur. We then describe the environmental triggers that drive these mechanisms to be more potent and outline the adaptive scenarios where mutation bias can synergize with natural selection to define evolutionary outcomes. We conclude by describing how understanding mutagenic genomic features can help microbiologists predict areas sensitive to mutational bias, and finish by outlining future work that will help us achieve more accurate evolutionary forecasts.
Collapse
Affiliation(s)
- James S. Horton
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, BA2 7AY, UK
| | - Tiffany B. Taylor
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, BA2 7AY, UK
| |
Collapse
|
2
|
Hu G, Wang Y, Liu X, Strube ML, Wang B, Kovács ÁT. Species and condition shape the mutational spectrum in experimentally evolved biofilms. mSystems 2023; 8:e0054823. [PMID: 37768063 PMCID: PMC10654089 DOI: 10.1128/msystems.00548-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/11/2023] [Indexed: 09/29/2023] Open
Abstract
IMPORTANCE Biofilm formation is a vital factor for the survival and adaptation of bacteria in diverse environmental niches. Experimental evolution combined with the advancement of whole-population genome sequencing provides us a powerful tool to understand the genomic dynamic of evolutionary adaptation to different environments, such as during biofilm development. Previous studies described the genetic and phenotypic changes of selected clones from experimentally evolved Bacillus thuringiensis and Bacillus subtilis that were adapted under abiotic and biotic biofilm conditions. However, the full understanding of the dynamic evolutionary landscapes was lacking. Furthermore, the differences and similarities of adaptive mechanisms in B. thuringiensis and B. subtilis were not identified. To overcome these limitations, we performed longitudinal whole-population genome sequencing to study the underlying genetic dynamics at high resolution. Our study provides the first comprehensive mutational landscape of two bacterial species' biofilms that is adapted to an abiotic and biotic surface.
Collapse
Affiliation(s)
- Guohai Hu
- China National GeneBank, BGI, Shenzhen, China
- BGI Research, Shenzhen, China
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | - Yue Wang
- China National GeneBank, BGI, Shenzhen, China
- BGI Research, Shenzhen, China
- BGI Research, Beijing, China
| | - Xin Liu
- China National GeneBank, BGI, Shenzhen, China
- BGI Research, Shenzhen, China
- BGI Research, Beijing, China
| | - Mikael Lenz Strube
- Bacterial Ecophysiology and Biotechnology Group, DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | - Bo Wang
- China National GeneBank, BGI, Shenzhen, China
- BGI Research, Shenzhen, China
- Shenzhen Key Laboratory of Environmental Microbial Genomics and Application, BGI Research, Shenzhen, China
| | - Ákos T. Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark
- Institute of Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
3
|
Bohlin J. A simple stochastic model describing the evolution of genomic GC content in asexually reproducing organisms. Sci Rep 2022; 12:18569. [PMID: 36329129 PMCID: PMC9631610 DOI: 10.1038/s41598-022-21709-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
A genome's nucleotide composition can usually be summarized with (G)uanine + (C)ytosine (GC) or (A)denine + (T)hymine (AT) frequencies as GC% = 100% - AT%. Genomic AT/GC content has been linked to environment and selective processes in asexually reproducing organisms. A model is presented relating the evolution of genomic GC content over time to AT [Formula: see text] GC and GC [Formula: see text] AT mutation rates. By employing Itô calculus it is shown that if mutation rates are subject to random perturbations, that can vary over time, several implications follow. In particular, an extra Brownian motion term appears influencing genomic nucleotide variability; the greater the random perturbations the more genomic nucleotide variability. This can have several interpretations depending on the context. For instance, reducing the influence of the random perturbations on the AT/GC mutation rates and thus genomic nucleotide variability, to limit fitness decreasing and deleterious mutations, will likely suggest channeling of resources. On the other hand, increased genomic nucleotide diversity may be beneficial in variable environments. In asexually reproducing organisms, the Brownian motion term can be considered to be inversely reflective of the selective pressures an organism is subjected to at the molecular level. The presented model is a generalization of a previous model, limited to microbial symbionts, to all asexually reproducing, non-recombining organisms. Last, a connection between the presented model and the classical Luria-Delbrück mutation model is presented in an Itô calculus setting.
Collapse
Affiliation(s)
- Jon Bohlin
- grid.418193.60000 0001 1541 4204Division of Infection Control, Department of Methods Development and Analysis, Norwegian Institute of Public Health, Oslo, Norway ,grid.418193.60000 0001 1541 4204Centre for Fertility and Health, Norwegian Institute of Public Health, P.O. Box 4404, Lovisenberggata 8, 0403 Oslo, Norway
| |
Collapse
|
4
|
Visher E, Uricchio L, Bartlett L, DeNamur N, Yarcan A, Alhassani D, Boots M. The evolution of host specialization in an insect pathogen. Evolution 2022; 76:2375-2388. [PMID: 35946063 DOI: 10.1111/evo.14594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/21/2022] [Accepted: 06/06/2022] [Indexed: 01/22/2023]
Abstract
Niche breadth coevolution between biotic partners underpins theories of diversity and co-existence and influences patterns of disease emergence and transmission in host-parasite systems. Despite these broad implications, we still do not fully understand how the breadth of parasites' infectivity evolves, the nature of any associated costs, or the genetic basis of specialization. Here, we serially passage a granulosis virus on multiple inbred populations of its Plodia interpunctella host to explore the dynamics and outcomes of specialization. In particular, we collect time series of phenotypic and genetic data to explore the dynamics of host genotype specialization throughout the course of experimental evolution and examine two fitness components. We find that the Plodia interpunctella granulosis virus consistently evolves and increases in overall specialization, but that our two fitness components evolve independently such that lines can specialize in productivity or infectivity. Furthermore, we find that specialization in our experiment is a highly polygenic trait best explained by a combination of evolutionary mechanisms. These results are important for understanding the evolution of specialization in host-parasite interactions and its broader implications for co-existence, diversification, and infectious disease management.
Collapse
Affiliation(s)
- Elisa Visher
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | | | - Lewis Bartlett
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA
| | | | - Aren Yarcan
- University of California, Berkeley, CA, 94720, USA
| | | | - Mike Boots
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA.,Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter Penryn Campus, Penryn, TR10 9FE, UK
| |
Collapse
|
5
|
Suyal DC, Joshi D, Kumar S, Bhatt P, Narayan A, Giri K, Singh M, Soni R, Kumar R, Yadav A, Devi R, Kaur T, Kour D, Yadav AN. Himalayan Microbiomes for Agro-environmental Sustainability: Current Perspectives and Future Challenges. MICROBIAL ECOLOGY 2022; 84:643-675. [PMID: 34647148 DOI: 10.1007/s00248-021-01849-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
The Himalayas are one of the most mystical, yet least studied terrains of the world. One of Earth's greatest multifaceted and diverse montane ecosystems is also one of the thirty-four global biodiversity hotspots of the world. These are supposed to have been uplifted about 60-70 million years ago and support, distinct environments, physiography, a variety of orogeny, and great biological diversity (plants, animals, and microbes). Microbes are the pioneer colonizer of the Himalayas that are involved in various bio-geological cycles and play various significant roles. The applications of Himalayan microbiomes inhabiting in lesser to greater Himalayas have been recognized. The researchers explored the applications of indigenous microbiomes in both agricultural and environmental sectors. In agriculture, microbiomes from Himalayan regions have been suggested as better biofertilizers and biopesticides for the crops growing at low temperature and mountainous areas as they help in the alleviation of cold stress and other biotic stresses. Along with alleviation of low temperature, Himalayan microbes also have the capability to enhance plant growth by availing the soluble form of nutrients like nitrogen, phosphorus, potassium, zinc, and iron. These microbes have been recognized for producing plant growth regulators (abscisic acid, auxin, cytokinin, ethylene, and gibberellins). These microbes have been reported for bioremediating the diverse pollutants (pesticides, heavy metals, and xenobiotics) for environmental sustainability. In the current perspectives, present review provides a detailed discussion on the ecology, biodiversity, and adaptive features of the native Himalayan microbiomes in view to achieve agro-environmental sustainability.
Collapse
Affiliation(s)
- Deep Chandra Suyal
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Sirmaur, Himachal Pradesh, India
| | - Divya Joshi
- Uttarakhand Pollution Control Board, Regional Office, Kashipur, Uttarakhand, India
| | - Saurabh Kumar
- Division of Crop Research, Research Complex for Eastern Region, Patna, Bihar, India
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Arun Narayan
- Forest Research Institute, Dehradun, 2480 06, India
| | - Krishna Giri
- Rain Forest Research Institute, Jorhat, 785 010, India
| | - Manali Singh
- Department of Biotechnology, Invertis Institute of Engineering and Technology (IIET), Invertis University, Bareilly, 243123, Uttar Pradesh, India
| | - Ravindra Soni
- Department of Agricultural Microbiology, College of Agriculture, Indira Gandhi Krishi Vishwa Vidyalaya, Raipur, Chhattisgarh, India
| | - Rakshak Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Ashok Yadav
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rubee Devi
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Tanvir Kaur
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Divjot Kour
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Ajar Nath Yadav
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India.
| |
Collapse
|
6
|
Bisschop K, Blankers T, Mariën J, Wortel MT, Egas M, Groot AT, Visser ME, Ellers J. Population bottleneck has only marginal effect on fitness evolution and its repeatability in dioecious Caenorhabditis elegans. Evolution 2022; 76:1896-1904. [PMID: 35795889 PMCID: PMC9545033 DOI: 10.1111/evo.14556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 01/22/2023]
Abstract
The predictability of evolution is expected to depend on the relative contribution of deterministic and stochastic processes. This ratio is modulated by effective population size. Smaller effective populations harbor less genetic diversity and stochastic processes are generally expected to play a larger role, leading to less repeatable evolutionary trajectories. Empirical insight into the relationship between effective population size and repeatability is limited and focused mostly on asexual organisms. Here, we tested whether fitness evolution was less repeatable after a population bottleneck in obligately outcrossing populations of Caenorhabditis elegans. Replicated populations founded by 500, 50, or five individuals (no/moderate/strong bottleneck) were exposed to a novel environment with a different bacterial prey. As a proxy for fitness, population size was measured after one week of growth before and after 15 weeks of evolution. Surprisingly, we found no significant differences among treatments in their fitness evolution. Even though the strong bottleneck reduced the relative contribution of selection to fitness variation, this did not translate to a significant reduction in the repeatability of fitness evolution. Thus, although a bottleneck reduced the contribution of deterministic processes, we conclude that the predictability of evolution may not universally depend on effective population size, especially in sexual organisms.
Collapse
Affiliation(s)
- Karen Bisschop
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdam1090 GEThe Netherlands,Origins CenterGroningenThe Netherlands,Terrestrial Ecology UnitGhent UniversityGhent9000Belgium,Laboratory of Aquatic BiologyKU Leuven KulakKortrijk8500Belgium
| | - Thomas Blankers
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdam1090 GEThe Netherlands,Origins CenterGroningenThe Netherlands
| | - Janine Mariën
- Animal EcologyVU AmsterdamAmsterdam1081 HVThe Netherlands
| | - Meike T. Wortel
- Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdam1090 GEThe Netherlands
| | - Martijn Egas
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdam1090 GEThe Netherlands
| | - Astrid T. Groot
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdam1090 GEThe Netherlands
| | - Marcel E. Visser
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Wageningen6700 ABThe Netherlands
| | | |
Collapse
|
7
|
Population size mediates the contribution of high-rate and large-benefit mutations to parallel evolution. Nat Ecol Evol 2022; 6:439-447. [PMID: 35241808 DOI: 10.1038/s41559-022-01669-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/11/2022] [Indexed: 12/15/2022]
Abstract
Mutations with large fitness benefits and mutations occurring at high rates may both cause parallel evolution, but their contribution is predicted to depend on population size. Moreover, high-rate and large-benefit mutations may have different long-term adaptive consequences. We show that small and 100-fold larger bacterial populations evolve resistance to a β-lactam antibiotic by using similar numbers, but different types of mutations. Small populations frequently substitute similar high-rate structural variants and loss-of-function point mutations, including the deletion of a low-activity β-lactamase, and evolve modest resistance levels. Large populations more often use low-rate, large-benefit point mutations affecting the same targets, including mutations activating the β-lactamase and other gain-of-function mutations, leading to much higher resistance levels. Our results demonstrate the separation by clonal interference of mutation classes with divergent adaptive consequences, causing a shift from high-rate to large-benefit mutations with increases in population size.
Collapse
|
8
|
Intra-Population Competition during Adaptation to Increased Temperature in an RNA Bacteriophage. Int J Mol Sci 2021; 22:ijms22136815. [PMID: 34202838 PMCID: PMC8268601 DOI: 10.3390/ijms22136815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 01/21/2023] Open
Abstract
Evolution of RNA bacteriophages of the family Leviviridae is governed by the high error rates of their RNA-dependent RNA polymerases. This fact, together with their large population sizes, leads to the generation of highly heterogeneous populations that adapt rapidly to most changes in the environment. Throughout adaptation, the different mutants that make up a viral population compete with each other in a non-trivial process in which their selective values change over time due to the generation of new mutations. In this work we have characterised the intra-population dynamics of a well-studied levivirus, Qβ, when it is propagated at a higher-than-optimal temperature. Our results show that adapting populations experienced rapid changes that involved the ascent of particular genotypes and the loss of some beneficial mutations of early generation. Artificially reconstructed populations, containing a fraction of the diversity present in actual populations, fixed mutations more rapidly, illustrating how population bottlenecks may guide the adaptive pathways. The conclusion is that, when the availability of beneficial mutations under a particular selective condition is elevated, the final outcome of adaptation depends more on the occasional occurrence of population bottlenecks and how mutations combine in genomes than on the selective value of particular mutations.
Collapse
|
9
|
Freitas O, Wahl LM, Campos PRA. Robustness and predictability of evolution in bottlenecked populations. Phys Rev E 2021; 103:042415. [PMID: 34005989 DOI: 10.1103/physreve.103.042415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/02/2021] [Indexed: 01/02/2023]
Abstract
Deterministic and stochastic evolutionary processes drive adaptation in natural populations. The strength of each component process is determined by the population size: deterministic components prevail in very large populations, while stochastic components are the driving mechanisms in small ones. Many natural populations, however, experience intermittent periods of growth, moving through states in which either stochastic or deterministic processes prevail. This growth is often countered by population bottlenecks, which abound in both natural and laboratory populations. Here we investigate how population bottlenecks shape the process of adaptation. We demonstrate that adaptive trajectories in populations experiencing regular bottlenecks can be naturally scaled in time units of generations; with this scaling the time courses of adaptation, fitness variance, and genetic diversity all become relatively insensitive to the timing of population bottlenecks, provided the bottleneck size exceeds a few thousand individuals. We also include analyses at the genotype level to investigate the impact of population bottlenecks on the predictability and distribution of evolutionary pathways. Irrespective of the timing of population bottlenecks, we find that predictability increases with population size. We also find that predictability of the adaptive pathways increases in increasingly rugged fitness landscapes. Overall, our work reveals that both the adaptation rate and the predictability of evolutionary trajectories are relatively robust to population bottlenecks.
Collapse
Affiliation(s)
- Osmar Freitas
- Evolutionary Dynamics Lab, Physics Department, Federal University of Pernambuco, Recife-PE, 50670-901, Brazil
| | - Lindi M Wahl
- Applied Mathematics, Western University, London, Ontario N6A 5B7, Canada
| | - Paulo R A Campos
- Evolutionary Dynamics Lab, Physics Department, Federal University of Pernambuco, Recife-PE, 50670-901, Brazil
| |
Collapse
|
10
|
Gomez K, Bertram J, Masel J. Mutation bias can shape adaptation in large asexual populations experiencing clonal interference. Proc Biol Sci 2020; 287:20201503. [PMID: 33081612 DOI: 10.1098/rspb.2020.1503] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The extended evolutionary synthesis invokes a role for development in shaping adaptive evolution, which in population genetics terms corresponds to mutation-biased adaptation. Critics have claimed that clonal interference makes mutation-biased adaptation rare. We consider the behaviour of two simultaneously adapting traits, one with larger mutation rate U, the other with larger selection coefficient s, using asexual travelling wave models. We find that adaptation is dominated by whichever trait has the faster rate of adaptation v in isolation, with the other trait subject to evolutionary stalling. Reviewing empirical claims for mutation-biased adaptation, we find that not all occur in the 'origin-fixation' regime of population genetics where v is only twice as sensitive to s as to U. In some cases, differences in U are at least ten to twelve times larger than differences in s, as needed to cause mutation-biased adaptation even in the 'multiple mutations' regime. Surprisingly, when U > s in the 'diffusive-mutation' regime, the required sensitivity ratio is also only two, despite pervasive clonal interference. Given two traits with identical v, the benefit of having higher s is surprisingly small, occurring largely when one trait is at the boundary between the origin-fixation and multiple mutations regimes.
Collapse
Affiliation(s)
- Kevin Gomez
- Graduate Interdisciplinary Program in Applied Mathematics, University of Arizona, Tucson, AZ, USA
| | - Jason Bertram
- Environmental Resilience Institute, Indiana University, Bloomington, IN, USA.,Department of Biology, Indiana University, Bloomington, IN, USA
| | - Joanna Masel
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
11
|
Mei H, Arbeithuber B, Cremona MA, DeGiorgio M, Nekrutenko A. A High-Resolution View of Adaptive Event Dynamics in a Plasmid. Genome Biol Evol 2020; 11:3022-3034. [PMID: 31539047 PMCID: PMC6827461 DOI: 10.1093/gbe/evz197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2019] [Indexed: 11/30/2022] Open
Abstract
Coadaptation between bacterial hosts and plasmids frequently results in adaptive changes restricted exclusively to host genome leaving plasmids unchanged. To better understand this remarkable stability, we transformed naïve Escherichia coli cells with a plasmid carrying an antibiotic-resistance gene and forced them to adapt in a turbidostat environment. We then drew population samples at regular intervals and subjected them to duplex sequencing—a technique specifically designed for identification of low-frequency mutations. Variants at ten sites implicated in plasmid copy number control emerged almost immediately, tracked consistently across the experiment’s time points, and faded below detectable frequencies toward the end. This variation crash coincided with the emergence of mutations on the host chromosome. Mathematical modeling of trajectories for adaptive changes affecting plasmid copy number showed that such mutations cannot readily fix or even reach appreciable frequencies. We conclude that there is a strong selection against alterations of copy number even if it can provide a degree of growth advantage. This incentive is likely rooted in the complex interplay between mutated and wild-type plasmids constrained within a single cell and underscores the importance of understanding of intracellular plasmid variability.
Collapse
Affiliation(s)
- Han Mei
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University
| | | | - Marzia A Cremona
- Department of Statistics, The Pennsylvania State University.,Department of Operations and Decision Systems, Université Laval
| | - Michael DeGiorgio
- Department of Biology, The Pennsylvania State University.,Department of Statistics, The Pennsylvania State University.,Institute for CyberScience, The Pennsylvania State University
| | - Anton Nekrutenko
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University
| |
Collapse
|
12
|
Bosshard L, Peischl S, Ackermann M, Excoffier L. Dissection of the mutation accumulation process during bacterial range expansions. BMC Genomics 2020; 21:253. [PMID: 32293258 PMCID: PMC7092555 DOI: 10.1186/s12864-020-6676-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/13/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Recent experimental work has shown that the evolutionary dynamics of bacteria expanding across space can differ dramatically from what we expect under well-mixed conditions. During spatial expansion, deleterious mutations can accumulate due to inefficient selection on the expansion front, potentially interfering with and modifying adaptive evolutionary processes. RESULTS We used whole genome sequencing to follow the genomic evolution of 10 mutator Escherichia coli lines during 39 days ( ~ 1650 generations) of a spatial expansion, which allowed us to gain a temporal perspective on the interaction of adaptive and non-adaptive evolutionary processes during range expansions. We used elastic net regression to infer the positive or negative effects of mutations on colony growth. The colony size, measured after three day of growth, decreased at the end of the experiment in all 10 lines, and mutations accumulated at a nearly constant rate over the whole experiment. We find evidence that beneficial mutations accumulate primarily at an early stage of the experiment, leading to a non-linear change of colony size over time. Indeed, the rate of colony size expansion remains almost constant at the beginning of the experiment and then decreases after ~ 12 days of evolution. We also find that beneficial mutations are enriched in genes encoding transport proteins, and genes coding for the membrane structure, whereas deleterious mutations show no enrichment for any biological process. CONCLUSIONS Our experiment shows that beneficial mutations target specific biological functions mostly involved in inter or extra membrane processes, whereas deleterious mutations are randomly distributed over the whole genome. It thus appears that the interaction between genetic drift and the availability or depletion of beneficial mutations determines the change in fitness of bacterial populations during range expansion.
Collapse
Affiliation(s)
- Lars Bosshard
- CMPG, Institute of Ecology an Evolution, University of Berne, Baltzerstrasse 6, 3012, Berne, Switzerland. .,Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.
| | - Stephan Peischl
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.,Interfaculty Bioinformatics Unit, University of Berne, 3012, Berne, Switzerland
| | - Martin Ackermann
- Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology Zurich (ETH Zürich), 8092, Zürich, Switzerland.,Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland
| | - Laurent Excoffier
- CMPG, Institute of Ecology an Evolution, University of Berne, Baltzerstrasse 6, 3012, Berne, Switzerland. .,Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.
| |
Collapse
|
13
|
Nguyen Ba AN, Cvijović I, Rojas Echenique JI, Lawrence KR, Rego-Costa A, Liu X, Levy SF, Desai MM. High-resolution lineage tracking reveals travelling wave of adaptation in laboratory yeast. Nature 2019; 575:494-499. [PMID: 31723263 PMCID: PMC6938260 DOI: 10.1038/s41586-019-1749-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/04/2019] [Indexed: 11/09/2022]
Abstract
In rapidly adapting asexual populations, including many microbial pathogens and viruses, numerous mutant lineages often compete for dominance within the population1-5. These complex evolutionary dynamics determine the outcomes of adaptation, but have been difficult to observe directly. Previous studies have used whole-genome sequencing to follow molecular adaptation6-10; however, these methods have limited resolution in microbial populations. Here we introduce a renewable barcoding system to observe evolutionary dynamics at high resolution in laboratory budding yeast. We find nested patterns of interference and hitchhiking even at low frequencies. These events are driven by the continuous appearance of new mutations that modify the fates of existing lineages before they reach substantial frequencies. We observe how the distribution of fitness within the population changes over time, and find a travelling wave of adaptation that has been predicted by theory11-17. We show that clonal competition creates a dynamical 'rich-get-richer' effect: fitness advantages that are acquired early in evolution drive clonal expansions, which increase the chances of acquiring future mutations. However, less-fit lineages also routinely leapfrog over strains of higher fitness. Our results demonstrate that this combination of factors, which is not accounted for in existing models of evolutionary dynamics, is critical in determining the rate, predictability and molecular basis of adaptation.
Collapse
Affiliation(s)
- Alex N Nguyen Ba
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Ivana Cvijović
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Graduate Program in Systems Biology, Harvard University, Cambridge, MA, USA.,NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard University, Cambridge, MA, USA.,Quantitative Biology Initiative, Harvard University, Cambridge, MA, USA
| | - José I Rojas Echenique
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Katherine R Lawrence
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Artur Rego-Costa
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Xianan Liu
- Joint Initiative for Metrology in Biology, SLAC National Accelerator Laboratory, Stanford University, Stanford, CA, USA.,Laufer Center for Physical and Quantitative Biology, Department of Biochemistry, Stony Brook University, Stony Brook, NY, USA
| | - Sasha F Levy
- Joint Initiative for Metrology in Biology, SLAC National Accelerator Laboratory, Stanford University, Stanford, CA, USA.,Laufer Center for Physical and Quantitative Biology, Department of Biochemistry, Stony Brook University, Stony Brook, NY, USA
| | - Michael M Desai
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA. .,NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard University, Cambridge, MA, USA. .,Quantitative Biology Initiative, Harvard University, Cambridge, MA, USA. .,Department of Physics, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
14
|
Bruckbauer ST, Trimarco JD, Martin J, Bushnell B, Senn KA, Schackwitz W, Lipzen A, Blow M, Wood EA, Culberson WS, Pennacchio C, Cox MM. Experimental Evolution of Extreme Resistance to Ionizing Radiation in Escherichia coli after 50 Cycles of Selection. J Bacteriol 2019; 201:e00784-18. [PMID: 30692176 PMCID: PMC6436341 DOI: 10.1128/jb.00784-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/24/2019] [Indexed: 02/06/2023] Open
Abstract
In previous work (D. R. Harris et al., J Bacteriol 191:5240-5252, 2009, https://doi.org/10.1128/JB.00502-09; B. T. Byrne et al., Elife 3:e01322, 2014, https://doi.org/10.7554/eLife.01322), we demonstrated that Escherichia coli could acquire substantial levels of resistance to ionizing radiation (IR) via directed evolution. Major phenotypic contributions involved adaptation of organic systems for DNA repair. We have now undertaken an extended effort to generate E. coli populations that are as resistant to IR as Deinococcus radiodurans After an initial 50 cycles of selection using high-energy electron beam IR, four replicate populations exhibit major increases in IR resistance but have not yet reached IR resistance equivalent to D. radiodurans Regular deep sequencing reveals complex evolutionary patterns with abundant clonal interference. Prominent IR resistance mechanisms involve novel adaptations to DNA repair systems and alterations in RNA polymerase. Adaptation is highly specialized to resist IR exposure, since isolates from the evolved populations exhibit highly variable patterns of resistance to other forms of DNA damage. Sequenced isolates from the populations possess between 184 and 280 mutations. IR resistance in one isolate, IR9-50-1, is derived largely from four novel mutations affecting DNA and RNA metabolism: RecD A90E, RecN K429Q, and RpoB S72N/RpoC K1172I. Additional mechanisms of IR resistance are evident.IMPORTANCE Some bacterial species exhibit astonishing resistance to ionizing radiation, with Deinococcus radiodurans being the archetype. As natural IR sources rarely exceed mGy levels, the capacity of Deinococcus to survive 5,000 Gy has been attributed to desiccation resistance. To understand the molecular basis of true extreme IR resistance, we are using experimental evolution to generate strains of Escherichia coli with IR resistance levels comparable to Deinococcus Experimental evolution has previously generated moderate radioresistance for multiple bacterial species. However, these efforts could not take advantage of modern genomic sequencing technologies. In this report, we examine four replicate bacterial populations after 50 selection cycles. Genomic sequencing allows us to follow the genesis of mutations in populations throughout selection. Novel mutations affecting genes encoding DNA repair proteins and RNA polymerase enhance radioresistance. However, more contributors are apparent.
Collapse
Affiliation(s)
- Steven T Bruckbauer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joseph D Trimarco
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Duke Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Joel Martin
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Brian Bushnell
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Katherine A Senn
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Anna Lipzen
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Matthew Blow
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wesley S Culberson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
15
|
Zhao L, Abbasi AB, Illingworth CJR. Mutational load causes stochastic evolutionary outcomes in acute RNA viral infection. Virus Evol 2019; 5:vez008. [PMID: 31024738 PMCID: PMC6476161 DOI: 10.1093/ve/vez008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mutational load is known to be of importance for the evolution of RNA viruses, the combination of a high mutation rate and large population size leading to an accumulation of deleterious mutations. However, while the effects of mutational load on global viral populations have been considered, its quantitative effects at the within-host scale of infection are less well understood. We here show that even on the rapid timescale of acute disease, mutational load has an effect on within-host viral adaptation, reducing the effective selection acting upon beneficial variants by ∼10 per cent. Furthermore, mutational load induces considerable stochasticity in the pattern of evolution, causing a more than five-fold uncertainty in the effective fitness of a transmitted beneficial variant. Our work aims to bridge the gap between classic models from population genetic theory and the biology of viral infection. In an advance on some previous models of mutational load, we replace the assumption of a constant variant fitness cost with an experimentally-derived distribution of fitness effects. Expanding previous frameworks for evolutionary simulation, we introduce the Wright-Fisher model with continuous mutation, which describes a continuum of possible modes of replication within a cell. Our results advance our understanding of adaptation in the context of strong selection and a high mutation rate. Despite viral populations having large absolute sizes, critical events in viral adaptation, including antigenic drift and the onset of drug resistance, arise through stochastic evolutionary processes.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Ali B Abbasi
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Christopher J R Illingworth
- Department of Genetics, University of Cambridge, Cambridge, UK
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| |
Collapse
|
16
|
Christy SF, Wernick RI, Lue MJ, Velasco G, Howe DK, Denver DR, Estes S. Adaptive Evolution under Extreme Genetic Drift in Oxidatively Stressed Caenorhabditis elegans. Genome Biol Evol 2018; 9:3008-3022. [PMID: 29069345 PMCID: PMC5714194 DOI: 10.1093/gbe/evx222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2017] [Indexed: 12/30/2022] Open
Abstract
A mutation-accumulation (MA) experiment with Caenorhabditis elegans nematodes was conducted in which replicate, independently evolving lines were initiated from a low-fitness mitochondrial electron transport chain mutant, gas-1. The original intent of the study was to assess the effect of electron transport chain dysfunction involving elevated reactive oxygen species production on patterns of spontaneous germline mutation. In contrast to results of standard MA experiments, gas-1 MA lines evolved slightly higher mean fitness alongside reduced among-line genetic variance compared with their ancestor. Likewise, the gas-1 MA lines experienced partial recovery to wildtype reactive oxygen species levels. Whole-genome sequencing and analysis revealed that the molecular spectrum but not the overall rate of nuclear DNA mutation differed from wildtype patterns. Further analysis revealed an enrichment of mutations in loci that occur in a gas-1-centric region of the C. elegans interactome, and could be classified into a small number of functional-genomic categories. Characterization of a backcrossed four-mutation set isolated from one gas-1 MA line revealed this combination to be beneficial on both gas-1 mutant and wildtype genetic backgrounds. Our combined results suggest that selection favoring beneficial mutations can be powerful even under unfavorable population genetic conditions, and agree with fitness landscape theory predicting an inverse relationship between population fitness and the likelihood of adaptation.
Collapse
Affiliation(s)
| | | | | | | | - Dana K Howe
- Department of Integrative Biology, Oregon State University
| | - Dee R Denver
- Department of Integrative Biology, Oregon State University
| | | |
Collapse
|
17
|
Vogwill T, Phillips RL, Gifford DR, MacLean RC. Divergent evolution peaks under intermediate population bottlenecks during bacterial experimental evolution. Proc Biol Sci 2017; 283:rspb.2016.0749. [PMID: 27466449 PMCID: PMC4971204 DOI: 10.1098/rspb.2016.0749] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/04/2016] [Indexed: 12/30/2022] Open
Abstract
There is growing evidence that parallel molecular evolution is common, but its causes remain poorly understood. Demographic parameters such as population bottlenecks are predicted to be major determinants of parallelism. Here, we test the hypothesis that bottleneck intensity shapes parallel evolution by elucidating the genomic basis of adaptation to antibiotic-supplemented media in hundreds of populations of the bacterium Pseudomonas fluorescens Pf0-1. As expected, bottlenecking decreased the rate of phenotypic and molecular adaptation. Surprisingly, bottlenecking had no impact on the likelihood of parallel adaptive molecular evolution at a genome-wide scale. However, bottlenecking had a profound impact on the genes involved in antibiotic resistance. Specifically, under either intense or weak bottlenecking, resistance predominantly evolved by strongly beneficial mutations which provide high levels of antibiotic resistance. In contrast with intermediate bottlenecking regimes, resistance evolved by a greater diversity of genetic mechanisms, significantly reducing the observed levels of parallel genetic evolution. Our results demonstrate that population bottlenecking can be a major predictor of parallel evolution, but precisely how may be more complex than many simple theoretical predictions.
Collapse
Affiliation(s)
- Tom Vogwill
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Robyn L Phillips
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Danna R Gifford
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - R Craig MacLean
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
18
|
Miller CR, Van Leuven JT, Wichman HA, Joyce P. Selecting among three basic fitness landscape models: Additive, multiplicative and stickbreaking. Theor Popul Biol 2017; 122:97-109. [PMID: 29198859 DOI: 10.1016/j.tpb.2017.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022]
Abstract
Fitness landscapes map genotypes to organismal fitness. Their topographies depend on how mutational effects interact - epistasis - andare important for understanding evolutionary processes such as speciation, the rate of adaptation, the advantage of recombination, and the predictability versus stochasticity of evolution. The growing amount of data has made it possible to better test landscape models empirically. We argue that this endeavor will benefit from the development and use of meaningful basic models against which to compare more complex models. Here we develop statistical and computational methods for fitting fitness data from mutation combinatorial networks to three simple models: additive, multiplicative and stickbreaking. We employ a Bayesian framework for doing model selection. Using simulations, we demonstrate that our methods work and we explore their statistical performance: bias, error, and the power to discriminate among models. We then illustrate our approach and its flexibility by analyzing several previously published datasets. An R-package that implements our methods is available in the CRAN repository under the name Stickbreaker.
Collapse
Affiliation(s)
- Craig R Miller
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID 84844, United States; Department of Biological Sciences, University of Idaho, Moscow, ID 83844, United States; Department of Mathematics, University of Idaho, Moscow, ID 83844, United States.
| | - James T Van Leuven
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID 84844, United States
| | - Holly A Wichman
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID 84844, United States; Department of Biological Sciences, University of Idaho, Moscow, ID 83844, United States
| | - Paul Joyce
- Department of Mathematics, University of Idaho, Moscow, ID 83844, United States
| |
Collapse
|
19
|
The dynamics of molecular evolution over 60,000 generations. Nature 2017; 551:45-50. [PMID: 29045390 PMCID: PMC5788700 DOI: 10.1038/nature24287] [Citation(s) in RCA: 376] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/21/2017] [Indexed: 12/27/2022]
Abstract
The outcomes of evolution are determined by a stochastic dynamical process that governs how mutations arise and spread through a population. However, it is difficult to observe these dynamics directly over long periods and across entire genomes. Here we analyse the dynamics of molecular evolution in twelve experimental populations of Escherichia coli, using whole-genome metagenomic sequencing at five hundred-generation intervals through sixty thousand generations. Although the rate of fitness gain declines over time, molecular evolution is characterized by signatures of rapid adaptation throughout the duration of the experiment, with multiple beneficial variants simultaneously competing for dominance in each population. Interactions between ecological and evolutionary processes play an important role, as long-term quasi-stable coexistence arises spontaneously in most populations, and evolution continues within each clade. We also present evidence that the targets of natural selection change over time, as epistasis and historical contingency alter the strength of selection on different genes. Together, these results show that long-term adaptation to a constant environment can be a more complex and dynamic process than is often assumed.
Collapse
|
20
|
Bedhomme S, Perez Pantoja D, Bravo IG. Plasmid and clonal interference during post horizontal gene transfer evolution. Mol Ecol 2017; 26:1832-1847. [PMID: 28206693 DOI: 10.1111/mec.14056] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/31/2017] [Accepted: 02/08/2017] [Indexed: 01/12/2023]
Abstract
Plasmids are nucleic acid molecules that can drive their own replication in a living cell. They can be transmitted horizontally and can thrive in the host cell to high-copy numbers. Plasmid replication and gene expression consume cellular resources and cells carrying plasmids incur fitness costs. But many plasmids carry genes that can be beneficial under certain conditions, allowing the cell to endure in the presence of antibiotics, toxins, competitors or parasites. Horizontal transfer of plasmid-encoded genes can thus instantaneously confer differential adaptation to local or transient selection conditions. This conflict between cellular fitness and plasmid spread sets the scene for multilevel selection processes. We have engineered a system to study the short-term evolutionary impact of different synonymous versions of a plasmid-encoded antibiotic resistance gene. Applying experimental evolution under different selection conditions and deep sequencing allowed us to show rapid local adaptation to the presence of antibiotic and to the specific version of the resistance gene transferred. We describe the presence of clonal interference at two different levels: at the within-cell level, because a single cell can carry several plasmids, and at the between-cell level, because a bacterial population may contain several clones carrying different plasmids and displaying different fitness in the presence/absence of antibiotic. Understanding the within-cell and between-cell dynamics of plasmids after horizontal gene transfer is essential to unravel the dense network of mobile elements underlying the worldwide threat to public health of antibiotic resistance.
Collapse
Affiliation(s)
- S Bedhomme
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR CNRS 5175, 34293, Montpellier, France.,Laboratory MIVEGEC, UMR CNRS 5290, IRD 224, UM, Centre National de la Recherche Scientifique, 911 avenue Agropolis, BP64501, 34394, Montpellier Cedex 05, France
| | - D Perez Pantoja
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, P.O. Box 8940577, San Joaquín, Santiago, Chile
| | - I G Bravo
- Laboratory MIVEGEC, UMR CNRS 5290, IRD 224, UM, Centre National de la Recherche Scientifique, 911 avenue Agropolis, BP64501, 34394, Montpellier Cedex 05, France
| |
Collapse
|
21
|
Lourenço M, Ramiro RS, Güleresi D, Barroso-Batista J, Xavier KB, Gordo I, Sousa A. A Mutational Hotspot and Strong Selection Contribute to the Order of Mutations Selected for during Escherichia coli Adaptation to the Gut. PLoS Genet 2016; 12:e1006420. [PMID: 27812114 PMCID: PMC5094792 DOI: 10.1371/journal.pgen.1006420] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/11/2016] [Indexed: 12/31/2022] Open
Abstract
The relative role of drift versus selection underlying the evolution of bacterial species within the gut microbiota remains poorly understood. The large sizes of bacterial populations in this environment suggest that even adaptive mutations with weak effects, thought to be the most frequently occurring, could substantially contribute to a rapid pace of evolutionary change in the gut. We followed the emergence of intra-species diversity in a commensal Escherichia coli strain that previously acquired an adaptive mutation with strong effect during one week of colonization of the mouse gut. Following this first step, which consisted of inactivating a metabolic operon, one third of the subsequent adaptive mutations were found to have a selective effect as high as the first. Nevertheless, the order of the adaptive steps was strongly affected by a mutational hotspot with an exceptionally high mutation rate of 10-5. The pattern of polymorphism emerging in the populations evolving within different hosts was characterized by periodic selection, which reduced diversity, but also frequency-dependent selection, actively maintaining genetic diversity. Furthermore, the continuous emergence of similar phenotypes due to distinct mutations, known as clonal interference, was pervasive. Evolutionary change within the gut is therefore highly repeatable within and across hosts, with adaptive mutations of selection coefficients as strong as 12% accumulating without strong constraints on genetic background. In vivo competitive assays showed that one of the second steps (focA) exhibited positive epistasis with the first, while another (dcuB) exhibited negative epistasis. The data shows that strong effect adaptive mutations continuously recur in gut commensal bacterial species.
Collapse
Affiliation(s)
| | | | | | | | | | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Ana Sousa
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
22
|
Miller CR, Nagel AC, Scott L, Settles M, Joyce P, Wichman HA. Love the one you're with: replicate viral adaptations converge on the same phenotypic change. PeerJ 2016; 4:e2227. [PMID: 27547540 PMCID: PMC4958007 DOI: 10.7717/peerj.2227] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/16/2016] [Indexed: 11/21/2022] Open
Abstract
Parallelism is important because it reveals how inherently stochastic adaptation is. Even as we come to better understand evolutionary forces, stochasticity limits how well we can predict evolutionary outcomes. Here we sought to quantify parallelism and some of its underlying causes by adapting a bacteriophage (ID11) with nine different first-step mutations, each with eight-fold replication, for 100 passages. This was followed by whole-genome sequencing five isolates from each endpoint. A large amount of variation arose—281 mutational events occurred representing 112 unique mutations. At least 41% of the mutations and 77% of the events were adaptive. Within wells, populations generally experienced complex interference dynamics. The genome locations and counts of mutations were highly uneven: mutations were concentrated in two regulatory elements and three genes and, while 103 of the 112 (92%) of the mutations were observed in ≤4 wells, a few mutations arose many times. 91% of the wells and 81% of the isolates had a mutation in the D-promoter. Parallelism was moderate compared to previous experiments with this system. On average, wells shared 27% of their mutations at the DNA level and 38% when the definition of parallel change is expanded to include the same regulatory feature or residue. About half of the parallelism came from D-promoter mutations. Background had a small but significant effect on parallelism. Similarly, an analyses of epistasis between mutations and their ancestral background was significant, but the result was mostly driven by four individual mutations. A second analysis of epistasis focused on de novo mutations revealed that no isolate ever had more than one D-promoter mutation and that 56 of the 65 isolates lacking a D-promoter mutation had a mutation in genes D and/or E. We assayed time to lysis in four of these mutually exclusive mutations (the two most frequent D-promoter and two in gene D) across four genetic backgrounds. In all cases lysis was delayed. We postulate that because host cells were generally rare (i.e., high multiplicity of infection conditions developed), selection favored phage that delayed lysis to better exploit their current host (i.e., ‘love the one you’re with’). Thus, the vast majority of wells (at least 64 of 68, or 94%) arrived at the same phenotypic solution, but through a variety of genetic changes. We conclude that answering questions about the range of possible adaptive trajectories, parallelism, and the predictability of evolution requires attention to the many biological levels where the process of adaptation plays out.
Collapse
Affiliation(s)
- Craig R Miller
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID, United States; Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States; Department of Biological Sciences, University of Idaho, Moscow, ID, United States; Department of Mathematics, University of Idaho, Moscow, ID, United States
| | - Anna C Nagel
- Department of Biological Sciences, University of Idaho , Moscow , ID , United States
| | - LuAnn Scott
- Department of Biological Sciences, University of Idaho , Moscow , ID , United States
| | - Matt Settles
- Bioinformatics Core, University of California , Davis , CA , United States
| | - Paul Joyce
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States; Department of Mathematics, University of Idaho, Moscow, ID, United States
| | - Holly A Wichman
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID, United States; Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States; Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| |
Collapse
|
23
|
Park SC, Neidhart J, Krug J. Greedy adaptive walks on a correlated fitness landscape. J Theor Biol 2016; 397:89-102. [PMID: 26953649 DOI: 10.1016/j.jtbi.2016.02.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 12/24/2022]
Abstract
We study adaptation of a haploid asexual population on a fitness landscape defined over binary genotype sequences of length L. We consider greedy adaptive walks in which the population moves to the fittest among all single mutant neighbors of the current genotype until a local fitness maximum is reached. The landscape is of the rough mount Fuji type, which means that the fitness value assigned to a sequence is the sum of a random and a deterministic component. The random components are independent and identically distributed random variables, and the deterministic component varies linearly with the distance to a reference sequence. The deterministic fitness gradient c is a parameter that interpolates between the limits of an uncorrelated random landscape (c=0) and an effectively additive landscape (c→∞). When the random fitness component is chosen from the Gumbel distribution, explicit expressions for the distribution of the number of steps taken by the greedy walk are obtained, and it is shown that the walk length varies non-monotonically with the strength of the fitness gradient when the starting point is sufficiently close to the reference sequence. Asymptotic results for general distributions of the random fitness component are obtained using extreme value theory, and it is found that the walk length attains a non-trivial limit for L→∞, different from its values for c=0 and c=∞, if c is scaled with L in an appropriate combination.
Collapse
Affiliation(s)
- Su-Chan Park
- Department of Physics, The Catholic University of Korea, Bucheon 14662, Republic of Korea.
| | - Johannes Neidhart
- Institut für Theoretische Physik, Universität zu Köln, 50937 Köln, Germany
| | - Joachim Krug
- Institut für Theoretische Physik, Universität zu Köln, 50937 Köln, Germany
| |
Collapse
|
24
|
Lachapelle J, Reid J, Colegrave N. Repeatability of adaptation in experimental populations of different sizes. Proc Biol Sci 2015; 282:rspb.2014.3033. [PMID: 25788593 DOI: 10.1098/rspb.2014.3033] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The degree to which evolutionary trajectories and outcomes are repeatable across independent populations depends on the relative contribution of selection, chance and history. Population size has been shown theoretically and empirically to affect the amount of variation that arises among independent populations adapting to the same environment. Here, we measure the contribution of selection, chance and history in different-sized experimental populations of the unicellular alga Chlamydomonas reinhardtii adapting to a high salt environment to determine which component of evolution is affected by population size. We find that adaptation to salt is repeatable at the fitness level in medium (Ne = 5 × 10(4)) and large (Ne = 4 × 10(5)) populations because of the large contribution of selection. Adaptation is not repeatable in small (Ne = 5 × 10(3)) populations because of large constraints from history. The threshold between stochastic and deterministic evolution in this case is therefore between effective population sizes of 10(3) and 10(4). Our results indicate that diversity across populations is more likely to be maintained if they are small. Experimental outcomes in large populations are likely to be robust and can inform our predictions about outcomes in similar situations.
Collapse
Affiliation(s)
- Josianne Lachapelle
- School of Biological Sciences, University of Edinburgh, King's Buildings, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Joshua Reid
- School of Biological Sciences, University of Edinburgh, King's Buildings, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Nick Colegrave
- School of Biological Sciences, University of Edinburgh, King's Buildings, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| |
Collapse
|
25
|
Abstract
A pattern in which nucleotide transitions are favored several fold over transversions is common in molecular evolution. When this pattern occurs among amino acid replacements, explanations often invoke an effect of selection, on the grounds that transitions are more conservative in their effects on proteins. However, the underlying hypothesis of conservative transitions has never been tested directly. Here we assess support for this hypothesis using direct evidence: the fitness effects of mutations in actual proteins measured via individual or paired growth experiments. We assembled data from 8 published studies, ranging in size from 24 to 757 single-nucleotide mutations that change an amino acid. Every study has the statistical power to reveal significant effects of amino acid exchangeability, and most studies have the power to discern a binary conservative-vs-radical distinction. However, only one study suggests that transitions are significantly more conservative than transversions. In the combined set of 1,239 replacements (544 transitions, 695 transversions), the chance that a transition is more conservative than a transversion is 53 % (95 % confidence interval 50 to 56) compared with the null expectation of 50 %. We show that this effect is not large compared with that of most biochemical factors, and is not large enough to explain the several-fold bias observed in evolution. In short, the available data have the power to verify the “conservative transitions” hypothesis if true, but suggest instead that selection on proteins plays at best a minor role in the observed bias.
Collapse
Affiliation(s)
- Arlin Stoltzfus
- Institute for Bioscience and Biotechnology Research, Rockville, MD Genome-scale Measurements Group, National Institute of Standards and Technology, Gaithersburg, MD
| | - Ryan W Norris
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University
| |
Collapse
|
26
|
Sackman AM, Reed D, Rokyta DR. Intergenic incompatibilities reduce fitness in hybrids of extremely closely related bacteriophages. PeerJ 2015; 3:e1320. [PMID: 26528406 PMCID: PMC4627924 DOI: 10.7717/peerj.1320] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 09/23/2015] [Indexed: 01/22/2023] Open
Abstract
Horizontal gene transfer and recombination occur across many groups of viruses and play key roles in important viral processes such as host-range expansion and immune-system avoidance. To have any predictive power regarding the ability of viruses to readily recombine, we must determine the extent to which epistasis restricts the success of recombinants, particularly as it relates to the genetic divergence between parental strains. In any hybridization event, the evolutionary success or failure of hybrids is largely determined by the pervasiveness of epistasis in the parental genomes. Recombination has previously been shown to incur steep fitness costs in highly divergent viruses as a result of disrupted epistatic interactions. We used a pair of bacteriophages of the family Microviridae to demonstrate that epistasis may evidence itself in the form of fitness costs even in the case of the exchange of alleles at a locus with amino acid divergence as low as 1%. We explored a possible biophysical source of epistasis in the interaction of viral coat and scaffolding proteins and examined a recovery mutation that likely repairs interactions disrupted by recombination.
Collapse
Affiliation(s)
- Andrew M Sackman
- Department of Biological Science, Florida State University , Tallahassee, FL , United States of America
| | - Danielle Reed
- Department of Biological Science, Florida State University , Tallahassee, FL , United States of America
| | - Darin R Rokyta
- Department of Biological Science, Florida State University , Tallahassee, FL , United States of America
| |
Collapse
|
27
|
Schick A, Bailey SF, Kassen R. Evolution of Fitness Trade-Offs in Locally Adapted Populations of Pseudomonas fluorescens. Am Nat 2015; 186 Suppl 1:S48-59. [DOI: 10.1086/682932] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Jerison ER, Desai MM. Genomic investigations of evolutionary dynamics and epistasis in microbial evolution experiments. Curr Opin Genet Dev 2015; 35:33-9. [PMID: 26370471 DOI: 10.1016/j.gde.2015.08.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/20/2015] [Accepted: 08/25/2015] [Indexed: 12/20/2022]
Abstract
Microbial evolution experiments enable us to watch adaptation in real time, and to quantify the repeatability and predictability of evolution by comparing identical replicate populations. Further, we can resurrect ancestral types to examine changes over evolutionary time. Until recently, experimental evolution has been limited to measuring phenotypic changes, or to tracking a few genetic markers over time. However, recent advances in sequencing technology now make it possible to extensively sequence clones or whole-population samples from microbial evolution experiments. Here, we review recent work exploiting these techniques to understand the genomic basis of evolutionary change in experimental systems. We first focus on studies that analyze the dynamics of genome evolution in microbial systems. We then survey work that uses observations of sequence evolution to infer aspects of the underlying fitness landscape, concentrating on the epistatic interactions between mutations and the constraints these interactions impose on adaptation.
Collapse
Affiliation(s)
- Elizabeth R Jerison
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States; Department of Physics, Harvard University, Cambridge, MA 02138, United States; FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, United States
| | - Michael M Desai
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States; Department of Physics, Harvard University, Cambridge, MA 02138, United States; FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, United States.
| |
Collapse
|
29
|
Wojtowicz AJ, Miller CR, Joyce P. Inference for one-step beneficial mutations using next generation sequencing. Stat Appl Genet Mol Biol 2015; 14:65-81. [PMID: 25720101 DOI: 10.1515/sagmb-2014-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Experimental evolution is an important research method that allows for the study of evolutionary processes occurring in microorganisms. Here we present a novel approach to experimental evolution that is based on application of next generation sequencing. Under this approach population level sequencing is applied to an evolving population in which multiple first-step beneficial mutations occur concurrently. As a result, frequencies of multiple beneficial mutations are observed in each replicate of an experiment. For this new type of data we develop methods of statistical inference. In particular, we propose a method for imputing selection coefficients of first-step beneficial mutations. The imputed selection coefficient are then used for testing the distribution of first-step beneficial mutations and for estimation of mean selection coefficient. In the case when selection coefficients are uniformly distributed, collected data may also be used to estimate the total number of available first-step beneficial mutations.
Collapse
|
30
|
Abstract
Copper is a micronutrient essential for growth due to its role as a cofactor in enzymes involved in respiration, defense against oxidative damage, and iron uptake. Yet too much of a good thing can be lethal, and yeast cells typically do not have tolerance to copper levels much beyond the concentration in their ancestral environment. Here, we report a short-term evolutionary study of Saccharomyces cerevisiae exposed to levels of copper sulfate that are inhibitory to the initial strain. We isolated and identified adaptive mutations soon after they arose, reducing the number of neutral mutations, to determine the first genetic steps that yeast take when adapting to copper. We analyzed 34 such strains through whole-genome sequencing and by assaying fitness within different environments; we also isolated a subset of mutations through tetrad analysis of four lines. We identified a multilayered evolutionary response. In total, 57 single base-pair mutations were identified across the 34 lines. In addition, gene amplification of the copper metallothionein protein, CUP1-1, was rampant, as was chromosomal aneuploidy. Four other genes received multiple, independent mutations in different lines (the vacuolar transporter genes VTC1 and VTC4; the plasma membrane H+-ATPase PMA1; and MAM3, a protein required for normal mitochondrial morphology). Analyses indicated that mutations in all four genes, as well as CUP1-1 copy number, contributed significantly to explaining variation in copper tolerance. Our study thus finds that evolution takes both common and less trodden pathways toward evolving tolerance to an essential, but highly toxic, micronutrient.
Collapse
|
31
|
Kim K, Kim Y. Episodic Nucleotide Substitutions in Seasonal Influenza Virus H3N2 Can Be Explained by Stochastic Genealogical Process without Positive Selection. Mol Biol Evol 2014; 32:704-10. [DOI: 10.1093/molbev/msu332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Abstract
Genetic interactions can strongly influence the fitness effects of individual mutations, yet the impact of these epistatic interactions on evolutionary dynamics remains poorly understood. Here we investigate the evolutionary role of epistasis over 50,000 generations in a well-studied laboratory evolution experiment in Escherichia coli. The extensive duration of this experiment provides a unique window into the effects of epistasis during long-term adaptation to a constant environment. Guided by analytical results in the weak-mutation limit, we develop a computational framework to assess the compatibility of a given epistatic model with the observed patterns of fitness gain and mutation accumulation through time. We find that a decelerating fitness trajectory alone provides little power to distinguish between competing models, including those that lack any direct epistatic interactions between mutations. However, when combined with the mutation trajectory, these observables place strong constraints on the set of possible models of epistasis, ruling out many existing explanations of the data. Instead, we find that the data are consistent with a "two-epoch" model of adaptation, in which an initial burst of diminishing-returns epistasis is followed by a steady accumulation of mutations under a constant distribution of fitness effects. Our results highlight the need for additional DNA sequencing of these populations, as well as for more sophisticated models of epistasis that are compatible with all of the experimental data.
Collapse
|
33
|
Abstract
Most new mutations are deleterious and are eventually eliminated by natural selection. But in an adapting population, the rapid amplification of beneficial mutations can hinder the removal of deleterious variants in nearby regions of the genome, altering the patterns of sequence evolution. Here, we analyze the interactions between beneficial "driver" mutations and linked deleterious "passengers" during the course of adaptation. We derive analytical expressions for the substitution rate of a deleterious mutation as a function of its fitness cost, as well as the reduction in the beneficial substitution rate due to the genetic load of the passengers. We find that the fate of each deleterious mutation varies dramatically with the rate and spectrum of beneficial mutations and the deleterious substitution rate depends nonmonotonically on the population size and the rate of adaptation. By quantifying this dependence, our results allow us to estimate which deleterious mutations will be likely to fix and how many of these mutations must arise before the progress of adaptation is significantly reduced.
Collapse
|
34
|
Seetharaman S, Jain K. Length of adaptive walk on uncorrelated and correlated fitness landscapes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:032703. [PMID: 25314469 DOI: 10.1103/physreve.90.032703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Indexed: 06/04/2023]
Abstract
We consider the adaptation dynamics of an asexual population that walks uphill on a rugged fitness landscape which is endowed with a large number of local fitness peaks. We work in a parameter regime where only those mutants that are a single mutation away are accessible, as a result of which the population eventually gets trapped at a local fitness maximum and the adaptive walk terminates. We study how the number of adaptive steps taken by the population before reaching a local fitness peak depends on the initial fitness of the population, the extreme value distribution of the beneficial mutations, and correlations among the fitnesses. Assuming that the relative fitness difference between successive steps is small, we analytically calculate the average walk length for both uncorrelated and correlated fitnesses in all extreme value domains for a given initial fitness. We present numerical results for the model where the fitness differences can be large and find that the walk length behavior differs from that in the former model in the Fréchet domain of extreme value theory. We also discuss the relevance of our results to microbial experiments.
Collapse
Affiliation(s)
- Sarada Seetharaman
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Kavita Jain
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| |
Collapse
|
35
|
Burke MK, Liti G, Long AD. Standing genetic variation drives repeatable experimental evolution in outcrossing populations of Saccharomyces cerevisiae. Mol Biol Evol 2014; 31:3228-39. [PMID: 25172959 DOI: 10.1093/molbev/msu256] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In "evolve-and-resequence" (E&R) experiments, whole-genome sequence data from laboratory-evolved populations can potentially uncover mechanisms of adaptive change. E&R experiments with initially isogenic, asexually reproducing microbes have repeatedly shown that beneficial de novo mutations drive adaptation, and these mutations are not shared among independently evolving replicate populations. Recent E&R experiments with higher eukaryotes that maintain genetic variation via sexual reproduction implicate largely different mechanisms; adaptation may act primarily on pre-existing genetic variation and occur in parallel among independent populations. But this is currently a debated topic, and generalizing these conclusions is problematic because E&R experiments with sexual species are difficult to implement and important elements of experimental design suffer for practical reasons. We circumvent potentially confounding limitations with a yeast model capable of shuffling genotypes via sexual recombination. Our starting population consisted of a highly intercrossed diploid Saccharomyces cerevisiae initiated from four wild haplotypes. We imposed a laboratory domestication treatment on 12 independent replicate populations for 18 weeks, where each week included 2 days as diploids in liquid culture and a forced recombination/mating event. We then sequenced pooled population samples at weeks 0, 6, 12, and 18. We show that adaptation is highly parallel among replicate populations, and can be localized to a modest number of genomic regions. We also demonstrate that despite hundreds of generations of evolution and large effective population sizes, de novo beneficial mutations do not play a large role in this adaptation. Further, we have high power to detect the signal of change in these populations but show how this power is dramatically reduced when fewer timepoints are sampled, or fewer replicate populations are analyzed. As ours is the most highly replicated and sampled E&R study in a sexual species to date, this evokes important considerations for past and future experiments.
Collapse
Affiliation(s)
- Molly K Burke
- Department of Ecology and Evolutionary Biology, University of California, Irvine
| | - Gianni Liti
- Institute of Research on Cancer and Ageing of Nice (IRCAN), CNRS UMR 7284-INSERM U1081, Faculté de Médecine, Université de Nice Sophia Antipolis, Nice, France
| | - Anthony D Long
- Department of Ecology and Evolutionary Biology, University of California, Irvine
| |
Collapse
|
36
|
Abstract
Much of the current theory of adaptation is based on Gillespie's mutational landscape model (MLM), which assumes that the fitness values of genotypes linked by single mutational steps are independent random variables. On the other hand, a growing body of empirical evidence shows that real fitness landscapes, while possessing a considerable amount of ruggedness, are smoother than predicted by the MLM. In the present article we propose and analyze a simple fitness landscape model with tunable ruggedness based on the rough Mount Fuji (RMF) model originally introduced by Aita et al. in the context of protein evolution. We provide a comprehensive collection of results pertaining to the topographical structure of RMF landscapes, including explicit formulas for the expected number of local fitness maxima, the location of the global peak, and the fitness correlation function. The statistics of single and multiple adaptive steps on the RMF landscape are explored mainly through simulations, and the results are compared to the known behavior in the MLM model. Finally, we show that the RMF model can explain the large number of second-step mutations observed on a highly fit first-step background in a recent evolution experiment with a microvirid bacteriophage.
Collapse
|
37
|
Weissman DB, Hallatschek O. The rate of adaptation in large sexual populations with linear chromosomes. Genetics 2014; 196:1167-83. [PMID: 24429280 PMCID: PMC3982688 DOI: 10.1534/genetics.113.160705] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/11/2014] [Indexed: 12/21/2022] Open
Abstract
In large populations, multiple beneficial mutations may be simultaneously spreading. In asexual populations, these mutations must either arise on the same background or compete against each other. In sexual populations, recombination can bring together beneficial alleles from different backgrounds, but tightly linked alleles may still greatly interfere with each other. We show for well-mixed populations that when this interference is strong, the genome can be seen as consisting of many effectively asexual stretches linked together. The rate at which beneficial alleles fix is thus roughly proportional to the rate of recombination and depends only logarithmically on the mutation supply and the strength of selection. Our scaling arguments also allow us to predict, with reasonable accuracy, the fitness distribution of fixed mutations when the mutational effect sizes are broad. We focus on the regime in which crossovers occur more frequently than beneficial mutations, as is likely to be the case for many natural populations.
Collapse
Affiliation(s)
- Daniel B. Weissman
- Institute of Science and Technology Austria, A-3400 Klosterneuburg, Austria
- Simons Institute for the Theory of Computing, University of California, Berkeley, California, 94720
| | - Oskar Hallatschek
- Department of Physics, University of California, Berkeley, California, 94720
| |
Collapse
|
38
|
The dynamics of diverse segmental amplifications in populations of Saccharomyces cerevisiae adapting to strong selection. G3-GENES GENOMES GENETICS 2014; 4:399-409. [PMID: 24368781 PMCID: PMC3962480 DOI: 10.1534/g3.113.009365] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Population adaptation to strong selection can occur through the sequential or parallel accumulation of competing beneficial mutations. The dynamics, diversity, and rate of fixation of beneficial mutations within and between populations are still poorly understood. To study how the mutational landscape varies across populations during adaptation, we performed experimental evolution on seven parallel populations of Saccharomyces cerevisiae continuously cultured in limiting sulfate medium. By combining quantitative polymerase chain reaction, array comparative genomic hybridization, restriction digestion and contour-clamped homogeneous electric field gel electrophoresis, and whole-genome sequencing, we followed the trajectory of evolution to determine the identity and fate of beneficial mutations. During a period of 200 generations, the yeast populations displayed parallel evolutionary dynamics that were driven by the coexistence of independent beneficial mutations. Selective amplifications rapidly evolved under this selection pressure, in particular common inverted amplifications containing the sulfate transporter gene SUL1. Compared with single clones, detailed analysis of the populations uncovers a greater complexity whereby multiple subpopulations arise and compete despite a strong selection. The most common evolutionary adaptation to strong selection in these populations grown in sulfate limitation is determined by clonal interference, with adaptive variants both persisting and replacing one another.
Collapse
|
39
|
Ally D, Wiss VR, Deckert GE, Green D, Roychoudhury P, Wichman HA, Brown CJ, Krone SM. The impact of spatial structure on viral genomic diversity generated during adaptation to thermal stress. PLoS One 2014; 9:e88702. [PMID: 24533140 PMCID: PMC3922989 DOI: 10.1371/journal.pone.0088702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/10/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Most clinical and natural microbial communities live and evolve in spatially structured environments. When changes in environmental conditions trigger evolutionary responses, spatial structure can impact the types of adaptive response and the extent to which they spread. In particular, localized competition in a spatial landscape can lead to the emergence of a larger number of different adaptive trajectories than would be found in well-mixed populations. Our goal was to determine how two levels of spatial structure affect genomic diversity in a population and how this diversity is manifested spatially. METHODOLOGY/PRINCIPAL FINDINGS We serially transferred bacteriophage populations growing at high temperatures (40°C) on agar plates for 550 generations at two levels of spatial structure. The level of spatial structure was determined by whether the physical locations of the phage subsamples were preserved or disrupted at each passage to fresh bacterial host populations. When spatial structure of the phage populations was preserved, there was significantly greater diversity on a global scale with restricted and patchy distribution. When spatial structure was disrupted with passaging to fresh hosts, beneficial mutants were spread across the entire plate. This resulted in reduced diversity, possibly due to clonal interference as the most fit mutants entered into competition on a global scale. Almost all substitutions present at the end of the adaptation in the populations with disrupted spatial structure were also present in the populations with structure preserved. CONCLUSIONS/SIGNIFICANCE Our results are consistent with the patchy nature of the spread of adaptive mutants in a spatial landscape. Spatial structure enhances diversity and slows fixation of beneficial mutants. This added diversity could be beneficial in fluctuating environments. We also connect observed substitutions and their effects on fitness to aspects of phage biology, and we provide evidence that some substitutions exclude each other.
Collapse
Affiliation(s)
- Dilara Ally
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America
| | - Valorie R. Wiss
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America
| | - Gail E. Deckert
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Danielle Green
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Pavitra Roychoudhury
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America
- Department of Mathematics, University of Idaho, Moscow, Idaho, United States of America
| | - Holly A. Wichman
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America
| | - Celeste J. Brown
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America
| | - Stephen M. Krone
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America
- Department of Mathematics, University of Idaho, Moscow, Idaho, United States of America
- * E-mail:
| |
Collapse
|
40
|
Foll M, Poh YP, Renzette N, Ferrer-Admetlla A, Bank C, Shim H, Malaspinas AS, Ewing G, Liu P, Wegmann D, Caffrey DR, Zeldovich KB, Bolon DN, Wang JP, Kowalik TF, Schiffer CA, Finberg RW, Jensen JD. Influenza virus drug resistance: a time-sampled population genetics perspective. PLoS Genet 2014; 10:e1004185. [PMID: 24586206 PMCID: PMC3937227 DOI: 10.1371/journal.pgen.1004185] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 01/06/2014] [Indexed: 01/01/2023] Open
Abstract
The challenge of distinguishing genetic drift from selection remains a central focus of population genetics. Time-sampled data may provide a powerful tool for distinguishing these processes, and we here propose approximate Bayesian, maximum likelihood, and analytical methods for the inference of demography and selection from time course data. Utilizing these novel statistical and computational tools, we evaluate whole-genome datasets of an influenza A H1N1 strain in the presence and absence of oseltamivir (an inhibitor of neuraminidase) collected at thirteen time points. Results reveal a striking consistency amongst the three estimation procedures developed, showing strongly increased selection pressure in the presence of drug treatment. Importantly, these approaches re-identify the known oseltamivir resistance site, successfully validating the approaches used. Enticingly, a number of previously unknown variants have also been identified as being positively selected. Results are interpreted in the light of Fisher's Geometric Model, allowing for a quantification of the increased distance to optimum exerted by the presence of drug, and theoretical predictions regarding the distribution of beneficial fitness effects of contending mutations are empirically tested. Further, given the fit to expectations of the Geometric Model, results suggest the ability to predict certain aspects of viral evolution in response to changing host environments and novel selective pressures.
Collapse
Affiliation(s)
- Matthieu Foll
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Yu-Ping Poh
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Nicholas Renzette
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Anna Ferrer-Admetlla
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- Department of Biology and Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - Claudia Bank
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Hyunjin Shim
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Anna-Sapfo Malaspinas
- Center for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Gregory Ewing
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Ping Liu
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Daniel Wegmann
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- Department of Biology and Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - Daniel R. Caffrey
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Konstantin B. Zeldovich
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Daniel N. Bolon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jennifer P. Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Timothy F. Kowalik
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Robert W. Finberg
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jeffrey D. Jensen
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| |
Collapse
|
41
|
Seetharaman S, Jain K. Adaptive walks and distribution of beneficial fitness effects. Evolution 2014; 68:965-75. [PMID: 24274696 DOI: 10.1111/evo.12327] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 10/28/2013] [Indexed: 12/25/2022]
Abstract
We study the adaptation dynamics of a maladapted asexual population on rugged fitness landscapes with many local fitness peaks. The distribution of beneficial fitness effects is assumed to belong to one of the three extreme value domains, viz. Weibull, Gumbel, and Fréchet. We work in the strong selection-weak mutation regime in which beneficial mutations fix sequentially, and the population performs an uphill walk on the fitness landscape until a local fitness peak is reached. A striking prediction of our analysis is that the fitness difference between successive steps follows a pattern of diminishing returns in the Weibull domain and accelerating returns in the Fréchet domain, as the initial fitness of the population is increased. These trends are found to be robust with respect to fitness correlations. We believe that this result can be exploited in experiments to determine the extreme value domain of the distribution of beneficial fitness effects. Our work here differs significantly from the previous ones that assume the selection coefficient to be small. On taking large effect mutations into account, we find that the length of the walk shows different qualitative trends from those derived using small selection coefficient approximation.
Collapse
Affiliation(s)
- Sarada Seetharaman
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore, 560064, India
| | | |
Collapse
|
42
|
Lanfear R, Kokko H, Eyre-Walker A. Population size and the rate of evolution. Trends Ecol Evol 2013; 29:33-41. [PMID: 24148292 DOI: 10.1016/j.tree.2013.09.009] [Citation(s) in RCA: 244] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/04/2013] [Accepted: 09/16/2013] [Indexed: 11/28/2022]
Abstract
Does evolution proceed faster in larger or smaller populations? The relationship between effective population size (Ne) and the rate of evolution has consequences for our ability to understand and interpret genomic variation, and is central to many aspects of evolution and ecology. Many factors affect the relationship between Ne and the rate of evolution, and recent theoretical and empirical studies have shown some surprising and sometimes counterintuitive results. Some mechanisms tend to make the relationship positive, others negative, and they can act simultaneously. The relationship also depends on whether one is interested in the rate of neutral, adaptive, or deleterious evolution. Here, we synthesize theoretical and empirical approaches to understanding the relationship and highlight areas that remain poorly understood.
Collapse
Affiliation(s)
- Robert Lanfear
- Ecology Evolution and Genetics, Research School of Biology, Australian National University, Canberra, ACT, Australia; National Evolutionary Synthesis Center, Durham, NC, USA.
| | - Hanna Kokko
- Ecology Evolution and Genetics, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | | |
Collapse
|
43
|
Abstract
The accumulation of beneficial mutations on competing genetic backgrounds in rapidly adapting populations has a striking impact on evolutionary dynamics. This effect, known as clonal interference, causes erratic fluctuations in the frequencies of observed mutations, randomizes the fixation times of successful mutations, and leaves distinct signatures on patterns of genetic variation. Here, we show how this form of "genetic draft" affects the forward-time dynamics of site frequencies in rapidly adapting asexual populations. We calculate the probability that mutations at individual sites shift in frequency over a characteristic timescale, extending Gillespie's original model of draft to the case where many strongly selected beneficial mutations segregate simultaneously. We then derive the sojourn time of mutant alleles, the expected fixation time of successful mutants, and the site frequency spectrum of beneficial and neutral mutations. Finally, we show how this form of draft affects inferences in the McDonald-Kreitman test and how it relates to recent observations that some aspects of genetic diversity are described by the Bolthausen-Sznitman coalescent in the limit of very rapid adaptation.
Collapse
|
44
|
Lang GI, Rice DP, Hickman MJ, Sodergren E, Weinstock GM, Botstein D, Desai MM. Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature 2013; 500:571-4. [PMID: 23873039 PMCID: PMC3758440 DOI: 10.1038/nature12344] [Citation(s) in RCA: 381] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 06/03/2013] [Indexed: 01/20/2023]
Abstract
The dynamics of adaptation determine which mutations fix in a population, and hence how reproducible evolution will be. This is central to understanding the spectra of mutations recovered in the evolution of antibiotic resistance, the response of pathogens to immune selection, and the dynamics of cancer progression. In laboratory evolution experiments, demonstrably beneficial mutations are found repeatedly, but are often accompanied by other mutations with no obvious benefit. Here we use whole-genome whole-population sequencing to examine the dynamics of genome sequence evolution at high temporal resolution in 40 replicate Saccharomyces cerevisiae populations growing in rich medium for 1,000 generations. We find pervasive genetic hitchhiking: multiple mutations arise and move synchronously through the population as mutational 'cohorts'. Multiple clonal cohorts are often present simultaneously, competing with each other in the same population. Our results show that patterns of sequence evolution are driven by a balance between these chance effects of hitchhiking and interference, which increase stochastic variation in evolutionary outcomes, and the deterministic action of selection on individual mutations, which favours parallel evolutionary solutions in replicate populations.
Collapse
Affiliation(s)
- Gregory I Lang
- Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Dennehy JJ, Duffy S, O'Keefe KJ, Edwards SV, Turner PE. Frequent Coinfection Reduces RNA Virus Population Genetic Diversity. J Hered 2013; 104:704-12. [DOI: 10.1093/jhered/est038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
46
|
Neidhart J, Szendro IG, Krug J. Exact results for amplitude spectra of fitness landscapes. J Theor Biol 2013; 332:218-27. [PMID: 23685065 DOI: 10.1016/j.jtbi.2013.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/18/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022]
Abstract
Starting from fitness correlation functions, we calculate exact expressions for the amplitude spectra of fitness landscapes as defined by Stadler [1996. Landscapes and their correlation functions. J. Math. Chem. 20, 1] for common landscape models, including Kauffman's NK-model, rough Mount Fuji landscapes and general linear superpositions of such landscapes. We further show that correlations decaying exponentially with the Hamming distance yield exponentially decaying spectra similar to those reported recently for a model of molecular signal transduction. Finally, we compare our results for the model systems to the spectra of various experimentally measured fitness landscapes. We claim that our analytical results should be helpful when trying to interpret empirical data and guide the search for improved fitness landscape models.
Collapse
Affiliation(s)
- Johannes Neidhart
- Institute of Theoretical Physics, University of Cologne, Zülpicher Strasse 77, 50937 Cologne, Germany
| | | | | |
Collapse
|
47
|
Genomic signatures of selection at linked sites: unifying the disparity among species. Nat Rev Genet 2013; 14:262-74. [PMID: 23478346 DOI: 10.1038/nrg3425] [Citation(s) in RCA: 315] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Population genetics theory supplies powerful predictions about how natural selection interacts with genetic linkage to sculpt the genomic landscape of nucleotide polymorphism. Both the spread of beneficial mutations and the removal of deleterious mutations act to depress polymorphism levels, especially in low-recombination regions. However, empiricists have documented extreme disparities among species. Here we characterize the dominant features that could drive differences in linked selection among species--including roles for selective sweeps being 'hard' or 'soft'--and the concealing effects of demography and confounding genomic variables. We advocate targeted studies of closely related species to unify our understanding of how selection and linkage interact to shape genome evolution.
Collapse
|
48
|
Lobkovsky AE, Wolf YI, Koonin EV. Quantifying the similarity of monotonic trajectories in rough and smooth fitness landscapes. MOLECULAR BIOSYSTEMS 2013; 9:1627-31. [PMID: 23460358 DOI: 10.1039/c3mb25553k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
When selection is strong and mutations are rare, evolution can be thought of as an uphill trajectory in a rugged fitness landscape. In this context the fitness landscape is a directed acyclic graph in which nodes are genotypes and edges lead from lower to higher fitness genotypes that differ by a single mutation. Because the space of genotypes is vastly multi-dimensional, classification of fitness landscapes is challenging. Many proposed summary characteristics of fitness landscapes attempt to quantify biologically relevant and intuitive notions such as roughness or peak accessibility in alternative ways. Here we explore, in different types of landscapes, the behavior of the recently introduced mean path divergence which quantifies the degree of similarity among evolutionary trajectories with the same endpoints. We find that monotonic trajectories in empirical and model fitness landscapes are significantly more constrained, with low median path divergence, than those in purely additive landscapes. By contrast, transcription factor sequence specificity (aptamer binding affinity) landscapes are markedly smoother and allow substantial variability in monotonic paths that can be greater than that in fully additive landscapes. We propose that the smoothness of the specificity landscapes is a consequence of the simple dependence of the transcription factor binding affinity on the aptamer sequence in contrast to the complex sequence-fitness mapping in folding landscapes.
Collapse
Affiliation(s)
- Alexander E Lobkovsky
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | |
Collapse
|
49
|
Acosta-Leal R, Xiong Z. Intrahost mechanisms governing emergence of resistance-breaking variants of Potato virus Y. Virology 2013; 437:39-47. [PMID: 23332684 DOI: 10.1016/j.virol.2012.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 12/01/2012] [Accepted: 12/02/2012] [Indexed: 10/27/2022]
Abstract
The emergence of resistance breaking (RB) variants starting from the avirulent Potato virus Y NN strain (PVY(NN)) was analyzed after imposing different selective host constraints. Tobacco resistance to PVY(NN) is conferred by va in both NC745 and VAM genotypes, but VAM carries an extra resistance gene, va2. RB-variants emerged only in NC745 and unexpectedly accumulated higher in the original host, tobacco B21, than the parental PVY(NN). However, the recovery of RB-variants was interfered by PVY(NN) in mixed infections. Further analysis indicated that RB-variants also arose in tobacco VAM, but they were limited to subliminal local infections. Their inability to breakout was associated with absence of a mutational adaptation in the viral VPg gene, which implied a loss of fitness in tobacco B21. Altogether, the emergence of RB-variants was conditioned by inherited host constraints, interference by co-infecting avirulent virus genotypes, and fitness tradeoff of virus adaptations.
Collapse
Affiliation(s)
- Rodolfo Acosta-Leal
- School of Plant Sciences and BIO5 Institute, University of Arizona, Forbes 303, Tucson, AZ 85721, USA.
| | | |
Collapse
|
50
|
Cabanillas L, Arribas M, Lázaro E. Evolution at increased error rate leads to the coexistence of multiple adaptive pathways in an RNA virus. BMC Evol Biol 2013; 13:11. [PMID: 23323937 PMCID: PMC3556134 DOI: 10.1186/1471-2148-13-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 01/11/2013] [Indexed: 11/30/2022] Open
Abstract
Background When beneficial mutations present in different genomes spread simultaneously in an asexual population, their fixation can be delayed due to competition among them. This interference among mutations is mainly determined by the rate of beneficial mutations, which in turn depends on the population size, the total error rate, and the degree of adaptation of the population. RNA viruses, with their large population sizes and high error rates, are good candidates to present a great extent of interference. To test this hypothesis, in the current study we have investigated whether competition among beneficial mutations was responsible for the prolonged presence of polymorphisms in the mutant spectrum of an RNA virus, the bacteriophage Qβ, evolved during a large number of generations in the presence of the mutagenic nucleoside analogue 5-azacytidine. Results The analysis of the mutant spectra of bacteriophage Qβ populations evolved at artificially increased error rate shows a large number of polymorphic mutations, some of them with demonstrated selective value. Polymorphisms distributed into several evolutionary lines that can compete among them, making it difficult the emergence of a defined consensus sequence. The presence of accompanying deleterious mutations, the high degree of recurrence of the polymorphic mutations, and the occurrence of epistatic interactions generate a highly complex interference dynamics. Conclusions Interference among beneficial mutations in bacteriophage Qβ evolved at increased error rate permits the coexistence of multiple adaptive pathways that can provide selective advantages by different molecular mechanisms. In this way, interference can be seen as a positive factor that allows the exploration of the different local maxima that exist in rugged fitness landscapes.
Collapse
Affiliation(s)
- Laura Cabanillas
- Centro de Astrobiología (CSIC-INTA) Ctra de Ajalvir Km 4, Torrejón de Ardoz, Madrid, 28850, Spain
| | | | | |
Collapse
|