1
|
Abstract
Endocrine signaling networks control diverse biological processes and life history traits across metazoans. In both invertebrate and vertebrate taxa, steroid hormones regulate immune system function in response to intrinsic and environmental stimuli, such as microbial infection. The mechanisms of this endocrine-immune regulation are complex and constitute an ongoing research endeavor facilitated by genetically tractable animal models. The 20-hydroxyecdysone (20E) is the major steroid hormone in arthropods, primarily studied for its essential role in mediating developmental transitions and metamorphosis; 20E also modulates innate immunity in a variety of insect taxa. This review provides an overview of our current understanding of 20E-mediated innate immune responses. The prevalence of correlations between 20E-driven developmental transitions and innate immune activation are summarized across a range of holometabolous insects. Subsequent discussion focuses on studies conducted using the extensive genetic resources available in Drosophila that have begun to reveal the mechanisms underlying 20E regulation of immunity in the contexts of both development and bacterial infection. Lastly, I propose directions for future research into 20E regulation of immunity that will advance our knowledge of how interactive endocrine networks coordinate animals' physiological responses to environmental microbes.
Collapse
Affiliation(s)
- Scott A. Keith
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
2
|
Puerto M, Shukla M, Bujosa P, Perez-Roldan J, Tamirisa S, Solé C, de Nadal E, Posas F, Azorin F, Rowley MJ. Somatic chromosome pairing has a determinant impact on 3D chromatin organization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534693. [PMID: 37034722 PMCID: PMC10081234 DOI: 10.1101/2023.03.29.534693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In the nucleus, chromatin is intricately structured into multiple layers of 3D organization important for genome activity. How distinct layers influence each other is not well understood. In particular, the contribution of chromosome pairing to 3D chromatin organization has been largely neglected. Here, we address this question in Drosophila, an organism that shows robust chromosome pairing in interphasic somatic cells. The extent of chromosome pairing depends on the balance between pairing and anti-pairing factors, with the anti-pairing activity of the CAP-H2 condensin II subunit being the best documented. Here, we identify the zinc-finger protein Z4 as a strong anti-pairer that interacts with and mediates the chromatin binding of CAP-H2. We also report that hyperosmotic cellular stress induces fast and reversible chromosome unpairing that depends on Z4/CAP-H2. And, most important, by combining Z4 depletion and osmostress, we show that chromosome pairing reinforces intrachromosomal 3D interactions. On the one hand, pairing facilitates RNAPII occupancy that correlates with enhanced intragenic gene-loop interactions. In addition, acting at a distance, pairing reinforces chromatin-loop interactions mediated by Polycomb (Pc). In contrast, chromosome pairing does not affect which genomic intervals segregate to active (A) and inactive (B) compartments, with only minimal effects on the strength of A-A compartmental interactions. Altogether, our results unveil the intimate interplay between inter-chromosomal and intra-chromosomal 3D interactions, unraveling the interwoven relationship between different layers of chromatin organization and the essential contribution of chromosome pairing.
Collapse
|
3
|
BAP60 plays an opposite role to the MRT-NURF complex in regulating lipid droplet size. J Genet Genomics 2022; 49:377-379. [DOI: 10.1016/j.jgg.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/06/2022] [Accepted: 02/12/2022] [Indexed: 11/20/2022]
|
4
|
Finger DS, Whitehead KM, Phipps DN, Ables ET. Nuclear receptors linking physiology and germline stem cells in Drosophila. VITAMINS AND HORMONES 2021; 116:327-362. [PMID: 33752824 PMCID: PMC8063499 DOI: 10.1016/bs.vh.2020.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Maternal nutrition and physiology are intimately associated with reproductive success in diverse organisms. Despite decades of study, the molecular mechanisms linking maternal diet to the production and quality of oocytes remain poorly defined. Nuclear receptors (NRs) link nutritional signals to cellular responses and are essential for oocyte development. The fruit fly, Drosophila melanogaster, is an excellent genetically tractable model to study the relationship between NR signaling and oocyte production. In this review, we explore how NRs in Drosophila regulate the earliest stages of oocyte development. Long-recognized as an essential mediator of developmental transitions, we focus on the intrinsic roles of the Ecdysone Receptor and its ligand, ecdysone, in oogenesis. We also review recent studies suggesting broader roles for NRs as regulators of maternal physiology and their impact specifically on oocyte production. We propose that NRs form the molecular basis of a broad physiological surveillance network linking maternal diet with oocyte production. Given the functional conservation between Drosophila and humans, continued experimental investigation into the molecular mechanisms by which NRs promote oogenesis will likely aid our understanding of human fertility.
Collapse
Affiliation(s)
- Danielle S Finger
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Kaitlin M Whitehead
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Daniel N Phipps
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC, United States.
| |
Collapse
|
5
|
|
6
|
Melnikova LS, Kostyuchenko MV, Georgiev PG, Golovnin AK. The Chriz Protein Promotes the Recruitment of the Z4 Protein to the STAT-Dependent Promoters. DOKL BIOCHEM BIOPHYS 2020; 490:29-33. [PMID: 32342309 DOI: 10.1134/s1607672920010111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 11/23/2022]
Abstract
Proteins Z4/putzig and Chriz/Chromator are involved in the chromatin organization on the promoters of the majority of Drosophila genes. It was shown that the Chriz protein region from aa 273 to 503 is required for the interaction with the Z4 protein. Deletion of this sequence leads to derepression of a number of STAT-dependent genes and development of melanotic tumors in flies. The results of this study suggest that the Chriz protein promotes the recruitment of the Z4 protein to chromatin.
Collapse
Affiliation(s)
- L S Melnikova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| | - M V Kostyuchenko
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - P G Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - A K Golovnin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
7
|
Yao Y, Li X, Wang W, Liu Z, Chen J, Ding M, Huang X. MRT, Functioning with NURF Complex, Regulates Lipid Droplet Size. Cell Rep 2019; 24:2972-2984. [PMID: 30208321 DOI: 10.1016/j.celrep.2018.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/08/2018] [Accepted: 08/09/2018] [Indexed: 12/27/2022] Open
Abstract
Lipid droplets (LDs) are highly dynamic organelles that store neutral lipids. Through a gene overexpression screen in the Drosophila larval fat body, we have identified that MRT, an Myb/switching-defective protein 3 (Swi3), Adaptor 2 (Ada2), Nuclear receptor co-repressor (N-CoR), Transcription factor (TF)IIIB (SANT)-like DNA-binding domain-containing protein, regulates LD size and lipid storage. MRT directly interacts with, and is functionally dependent on, the PZG and NURF chromatin-remodeling complex components. MRT binds to the promoter of plin1, the gene encoding the LD-resident protein perilipin, and inhibits the transcription of plin1. In vitro LD coalescence assays suggest that mrt overexpression or loss of plin1 function facilitates LD coalescence. Our findings suggest that MRT functions together with chromatin-remodeling factors to regulate LD size, likely through the transcriptional repression of plin1.
Collapse
Affiliation(s)
- Yan Yao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhonghua Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianming Chen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Mei Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Loss of putzig in the germline impedes germ cell development by inducing cell death and new niche like microenvironments. Sci Rep 2019; 9:9108. [PMID: 31235815 PMCID: PMC6591254 DOI: 10.1038/s41598-019-45655-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/12/2019] [Indexed: 12/17/2022] Open
Abstract
Germline stem cell development and differentiation is tightly controlled by the surrounding somatic cells of the stem cell niche. In Drosophila females, cells of the niche emit various signals including Dpp and Wg to balance stem cell renewal and differentiation. Here, we show that the gene pzg is autonomously required in cells of the germline to sustain the interplay between niche and stem cells. Loss of pzg impairs stem cell differentiation and provokes the death of cells in the germarium. As a consequence of pzg loss, increased growth signalling activity predominantly of Dpp and Wg/Wnt, was observed, eventually disrupting the balance of germ cell self-renewal and differentiation. Whereas in the soma, apoptosis-induced compensatory growth is well established, the induction of self-renewal signals during oogenesis cannot compensate for dying germ cells, albeit inducing a new niche-like microenvironment. Instead, they impair the further development of germ cells and cause in addition a forward and feedback loop of cell death.
Collapse
|
9
|
Mazina MY, Vorobyeva NE. Mechanisms of transcriptional regulation of ecdysone response. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The mechanisms of ecdysone-dependent expression have been studied for many decades. Initially, the activation of individual genes under the influence of ecdysone was studied on the model of polythene chromosomes from salivary glands of Drosophila melanogaster. These works helped to investigate the many aspects of the Drosophila development. They also revealed plenty of valuable information regarding the fundamental mechanisms controlling the genes’ work. Many years ago, a model describing the process of gene activation by ecdysone, named after the author – Ashburner model – was proposed. This model is still considered an excellent description of the ecdysone cascade, which is implemented in the salivary glands during the formation of the Drosophila pupa. However, these days there is an opinion that the response of cells to the hormone ecdysone can develop with significant differences, depending on the type of cells. The same genes can be activated or repressed under the influence of ecdysone in different tissues. Likely, certain DNA-binding transcription factors that are involved in the ecdysonedependent response together with the EcR/Usp heterodimer are responsible for cell-type specificity. A number of transcriptional regulators involved in the ecdysone response have been described. Among them are several complexes responsible for chromatin remodeling and modification. It has been shown by various methods that ecdysone-dependent activation/repression of gene transcription develops with significant structural changes of chromatin on regulatory elements. The description of the molecular mechanism of this process, in particular, the role of individual proteins in it, as well as structural interactions between various regulatory elements is a matter of the future. This review is aimed to discuss the available information regarding the main regulators that interact with the ecdysone receptor. We provide a brief description of the regulator’s participation in the ecdysone response and links to the corresponding study. We also discuss general aspects of the mechanism of ecdysone-dependent regulation and highlight the most promising points for further research.
Collapse
Affiliation(s)
- M. Yu. Mazina
- Institute of Gene Biology, RAS, Group of transcriptional complexes dynamics
| | - N. E. Vorobyeva
- Institute of Gene Biology, RAS, Group of transcriptional complexes dynamics
| |
Collapse
|
10
|
Trivedi S, Starz-Gaiano M. Drosophila Jak/STAT Signaling: Regulation and Relevance in Human Cancer and Metastasis. Int J Mol Sci 2018; 19:ijms19124056. [PMID: 30558204 PMCID: PMC6320922 DOI: 10.3390/ijms19124056] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 12/26/2022] Open
Abstract
Over the past three-decades, Janus kinase (Jak) and signal transducer and activator of transcription (STAT) signaling has emerged as a paradigm to understand the involvement of signal transduction in development and disease pathology. At the molecular level, cytokines and interleukins steer Jak/STAT signaling to transcriptional regulation of target genes, which are involved in cell differentiation, migration, and proliferation. Jak/STAT signaling is involved in various types of blood cell disorders and cancers in humans, and its activation is associated with carcinomas that are more invasive or likely to become metastatic. Despite immense information regarding Jak/STAT regulation, the signaling network has numerous missing links, which is slowing the progress towards developing drug therapies. In mammals, many components act in this cascade, with substantial cross-talk with other signaling pathways. In Drosophila, there are fewer pathway components, which has enabled significant discoveries regarding well-conserved regulatory mechanisms. Work across species illustrates the relevance of these regulators in humans. In this review, we showcase fundamental Jak/STAT regulation mechanisms in blood cells, stem cells, and cell motility. We examine the functional relevance of key conserved regulators from Drosophila to human cancer stem cells and metastasis. Finally, we spotlight less characterized regulators of Drosophila Jak/STAT signaling, which stand as promising candidates to be investigated in cancer biology. These comparisons illustrate the value of using Drosophila as a model for uncovering the roles of Jak/STAT signaling and the molecular means by which the pathway is controlled.
Collapse
Affiliation(s)
- Sunny Trivedi
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Michelle Starz-Gaiano
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
11
|
Tue NT, Yoshioka Y, Mizoguchi M, Yoshida H, Zurita M, Yamaguchi M. DREF plays multiple roles during Drosophila development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:705-712. [PMID: 28363744 DOI: 10.1016/j.bbagrm.2017.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 12/31/2022]
Abstract
DREF was originally identified as a transcription factor that coordinately regulates the expression of DNA replication- and proliferation-related genes in Drosophila. Subsequent studies demonstrated that DREF is involved in tumor suppressor pathways including p53 and Hippo signaling. DREF also regulates the expression of genes encoding components of the JNK and EGFR pathways during Drosophila development. DREF itself is under the control of the TOR pathway during cell and tissue growth responding to nutrition. Recent studies revealed that DREF plays a role in chromatin organization including insulator function, chromatin remodeling, and telomere maintenance. DREF is also involved in the regulation of genes related to mitochondrial biogenesis, linking it to cellular proliferation. Thus, DREF is now emerging as not only a transcription factor, but also a multi-functional protein. In this review, we summarize current advances in studies on the novel functions of Drosophila DREF.
Collapse
Affiliation(s)
- Nguyen Trong Tue
- Gene-Protein Research Center, Hanoi Medical University, Hanoi, Vietnam
| | - Yasuhide Yoshioka
- Faculty of Science and Engineering, Setsunan University, Osaka, Japan
| | - Megumi Mizoguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Mario Zurita
- Departamento de Genética del Desarrollo Y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62250 Cuernavaca, Mor., Mexico
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
12
|
Mazina MY, Vorobyeva NE. The role of ATP-dependent chromatin remodeling complexes in regulation of genetic processes. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416050082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Kwon SY, Grisan V, Jang B, Herbert J, Badenhorst P. Genome-Wide Mapping Targets of the Metazoan Chromatin Remodeling Factor NURF Reveals Nucleosome Remodeling at Enhancers, Core Promoters and Gene Insulators. PLoS Genet 2016; 12:e1005969. [PMID: 27046080 PMCID: PMC4821604 DOI: 10.1371/journal.pgen.1005969] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/10/2016] [Indexed: 12/20/2022] Open
Abstract
NURF is a conserved higher eukaryotic ISWI-containing chromatin remodeling complex that catalyzes ATP-dependent nucleosome sliding. By sliding nucleosomes, NURF is able to alter chromatin dynamics to control transcription and genome organization. Previous biochemical and genetic analysis of the specificity-subunit of Drosophila NURF (Nurf301/Enhancer of Bithorax (E(bx)) has defined NURF as a critical regulator of homeotic, heat-shock and steroid-responsive gene transcription. It has been speculated that NURF controls pathway specific transcription by co-operating with sequence-specific transcription factors to remodel chromatin at dedicated enhancers. However, conclusive in vivo demonstration of this is lacking and precise regulatory elements targeted by NURF are poorly defined. To address this, we have generated a comprehensive map of in vivo NURF activity, using MNase-sequencing to determine at base pair resolution NURF target nucleosomes, and ChIP-sequencing to define sites of NURF recruitment. Our data show that, besides anticipated roles at enhancers, NURF interacts physically and functionally with the TRF2/DREF basal transcription factor to organize nucleosomes downstream of active promoters. Moreover, we detect NURF remodeling and recruitment at distal insulator sites, where NURF functionally interacts with and co-localizes with DREF and insulator proteins including CP190 to establish nucleosome-depleted domains. This insulator function of NURF is most apparent at subclasses of insulators that mark the boundaries of chromatin domains, where multiple insulator proteins co-associate. By visualizing the complete repertoire of in vivo NURF chromatin targets, our data provide new insights into how chromatin remodeling can control genome organization and regulatory interactions.
Collapse
Affiliation(s)
- So Yeon Kwon
- Institute of Biomedical Research, University of Birmingham, Edgbaston, United Kingdom
| | - Valentina Grisan
- Institute of Biomedical Research, University of Birmingham, Edgbaston, United Kingdom
| | - Boyun Jang
- Institute of Biomedical Research, University of Birmingham, Edgbaston, United Kingdom
| | - John Herbert
- Institute of Biomedical Research, University of Birmingham, Edgbaston, United Kingdom
| | - Paul Badenhorst
- Institute of Biomedical Research, University of Birmingham, Edgbaston, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Krasnov AN, Mazina MY, Nikolenko JV, Vorobyeva NE. On the way of revealing coactivator complexes cross-talk during transcriptional activation. Cell Biosci 2016; 6:15. [PMID: 26913181 PMCID: PMC4765067 DOI: 10.1186/s13578-016-0081-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 02/09/2016] [Indexed: 08/07/2023] Open
Abstract
Transcriptional activation is a complex, multistage process implemented by hundreds of proteins. Many transcriptional proteins are organized into coactivator complexes, which participate in transcription regulation at numerous genes and are a driver of this process. The molecular action mechanisms of coactivator complexes remain largely understudied. Relevant publications usually deal with the involvement of these complexes in the entire process of transcription, and only a few studies are aimed to elucidate their functions at its particular stages. This review summarizes available information on the participation of key coactivator complexes in transcriptional activation. The timing of coactivator complex binding/removal has been used for restructuring previously described information about the transcriptional process. Several major stages of transcriptional activation have been distinguished based on the presence of covalent histone modifications and general transcriptional factors, and the recruitment and/or removal phases have been determined for each coactivator included in analysis. Recruitment of Mediator, SWItch/Sucrose Non-Fermentable and NUcleosome Remodeling Factor complexes during transcription activation has been investigated thoroughly; CHD and INOsitol auxotrophy 80 families are less well studied. In most cases, the molecular mechanisms responsible for the removal of certain coactivator complexes after the termination of their functions at the promoters are still not understood. On the basis of the summarized information, we propose a scheme that illustrates the involvement of coactivator complexes in different stages of the transcription activation process. This scheme may help to gain a deeper insight into the molecular mechanism of functioning of coactivator complexes, find novel participants of the process, and reveal novel structural or functional connections between different coactivators.
Collapse
Affiliation(s)
- Aleksey N Krasnov
- Department of Transcription Regulation and Chromatin Dynamic, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - Marina Yu Mazina
- Department of Transcription Regulation and Chromatin Dynamic, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - Julia V Nikolenko
- Department of Transcription Regulation and Chromatin Dynamic, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - Nadezhda E Vorobyeva
- Department of Transcription Regulation and Chromatin Dynamic, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| |
Collapse
|
15
|
Abstract
Steroid hormones induce cascades of gene activation and repression with transformative effects on cell fate . Steroid transduction plays a major role in the development and physiology of nearly all metazoan species, and in the progression of the most common forms of cancer. Despite the paramount importance of steroids in developmental and translational biology, a complete map of transcriptional response has not been developed for any hormone . In the case of 20-hydroxyecdysone (ecdysone) in Drosophila melanogaster, these trajectories range from apoptosis to immortalization. We mapped the ecdysone transduction network in a cohort of 41 cell lines, the largest such atlas yet assembled. We found that the early transcriptional response mirrors the distinctiveness of physiological origins: genes respond in restricted patterns, conditional on the expression levels of dozens of transcription factors. Only a small cohort of genes is constitutively modulated independent of initial cell state. Ecdysone-responsive genes tend to organize into directional same-stranded units, with consecutive genes induced from the same strand. Here, we identify half of the ecdysone receptor heterodimer as the primary rate-limiting step in the response, and find that initial receptor isoform levels modulate the activated cohort of target transcription factors. This atlas of steroid response reveals organizing principles of gene regulation by a model type II nuclear receptor and lays the foundation for comprehensive and predictive understanding of the ecdysone transduction network in the fruit fly.
Collapse
|
16
|
Zielke T, Glotov A, Saumweber H. High-resolution in situ hybridization analysis on the chromosomal interval 61C7-61C8 of Drosophila melanogaster reveals interbands as open chromatin domains. Chromosoma 2015; 125:423-35. [PMID: 26520107 DOI: 10.1007/s00412-015-0554-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 10/22/2022]
Abstract
Eukaryotic chromatin is organized in contiguous domains that differ in protein binding, histone modifications, transcriptional activity, and in their degree of compaction. Genome-wide comparisons suggest that, overall, the chromatin organization is similar in different cells within an organism. Here, we compare the structure and activity of the 61C7-61C8 interval in polytene and diploid cells of Drosophila. By in situ hybridization on polytene chromosomes combined with high-resolution microscopy, we mapped the boundaries of the 61C7-8 interband and of the 61C7 and C8 band regions, respectively. Our results demonstrate that the 61C7-8 interband is significantly larger than estimated previously. This interband extends over 20 kbp and is in the range of the flanking band domains. It contains several active genes and therefore can be considered as an open chromatin domain. Comparing the 61C7-8 structure of Drosophila S2 cells and polytene salivary gland cells by ChIP for chromatin protein binding and histone modifications, we observe a highly consistent domain structure for the proximal 13 kbp of the domain in both cell types. However, the distal 7 kbp of the open domain differs in protein binding and histone modification between both tissues. The domain contains four protein-coding genes in the proximal part and two noncoding transcripts in the distal part. The differential transcriptional activity of one of the noncoding transcripts correlates with the observed differences in the chromatin structure between both tissues. The significance of our findings for the organization and structure of open chromatin domains will be discussed.
Collapse
Affiliation(s)
- Thomas Zielke
- Institute of Biology, Cytogenetics Group, Humboldt University Berlin, Chausseestr. 117, 10115, Berlin, Germany
| | - Alexander Glotov
- Institute of Biology, Cytogenetics Group, Humboldt University Berlin, Chausseestr. 117, 10115, Berlin, Germany
| | - Harald Saumweber
- Institute of Biology, Cytogenetics Group, Humboldt University Berlin, Chausseestr. 117, 10115, Berlin, Germany. .,Institut für Biologie-Zytogenetik, Humboldt Universität zu Berlin, Chausseestr. 117, 10115, Berlin, Germany.
| |
Collapse
|
17
|
Zimmermann M, Kugler SJ, Schulz A, Nagel AC. Loss of putzig Activity Results in Apoptosis during Wing Imaginal Development in Drosophila. PLoS One 2015; 10:e0124652. [PMID: 25894556 PMCID: PMC4403878 DOI: 10.1371/journal.pone.0124652] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/17/2015] [Indexed: 12/22/2022] Open
Abstract
The Drosophila gene putzig (pzg) encodes a nuclear protein that is an integral component of the Trf2/Dref complex involved in the transcription of proliferation-related genes. Moreover, Pzg is found in a complex together with the nucleosome remodeling factor NURF, where it promotes Notch target gene activation. Here we show that downregulation of pzg activity in the developing wing imaginal discs induces an apoptotic response, accompanied by the induction of the pro-apoptotic gene reaper, repression of Drosophila inhibitor of apoptosis protein accumulation and the activation of the caspases Drice, Caspase3 and Dcp1. As a further consequence ‘Apoptosis induced Proliferation’ (AiP) and ‘Apoptosis induced Apoptosis’ (AiA) are triggered. As expected, the activity of the stress kinase Jun N-terminal kinase (JNK), proposed to mediate both processes, is ectopically induced in response to pzg loss. In addition, the expression of the mitogen wingless (wg) but not of decapentaplegic (dpp) is observed. We present evidence that downregulation of Notch activates Dcp1 caspase and JNK signaling, however, neither induces ectopic wg nor dpp expression. In contrast, the consequences of Dref-RNAi were largely indistinguishable from pzg-RNAi with regard to apoptosis induction. Moreover, overexpression of Dref ameliorated the downregulation of pzg compatible with the notion that the two are required together to maintain cell and tissue homeostasis in Drosophila.
Collapse
Affiliation(s)
- Mirjam Zimmermann
- Institute of Genetics, University of Hohenheim, 70599 Stuttgart, Germany
| | - Sabrina J. Kugler
- Institute of Genetics, University of Hohenheim, 70599 Stuttgart, Germany
| | - Adriana Schulz
- Institute of Genetics, University of Hohenheim, 70599 Stuttgart, Germany
| | - Anja C. Nagel
- Institute of Genetics, University of Hohenheim, 70599 Stuttgart, Germany
- * E-mail:
| |
Collapse
|
18
|
Homem CCF, Steinmann V, Burkard TR, Jais A, Esterbauer H, Knoblich JA. Ecdysone and mediator change energy metabolism to terminate proliferation in Drosophila neural stem cells. Cell 2014; 158:874-888. [PMID: 25126791 DOI: 10.1016/j.cell.2014.06.024] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/10/2014] [Accepted: 06/06/2014] [Indexed: 11/19/2022]
Abstract
Stem cells are highly abundant during early development but become a rare population in most adult organs. The molecular mechanisms causing stem cells to exit proliferation at a specific time are not well understood. Here, we show that changes in energy metabolism induced by the steroid hormone ecdysone and the Mediator initiate an irreversible cascade of events leading to cell-cycle exit in Drosophila neural stem cells. We show that the timely induction of oxidative phosphorylation and the mitochondrial respiratory chain are required in neuroblasts to uncouple the cell cycle from cell growth. This results in a progressive reduction in neuroblast cell size and ultimately in terminal differentiation. Brain tumor mutant neuroblasts fail to undergo this shrinkage process and continue to proliferate until adulthood. Our findings show that cell size control can be modified by systemic hormonal signaling and reveal a unique connection between metabolism and proliferation in stem cells.
Collapse
Affiliation(s)
- Catarina C F Homem
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | - Victoria Steinmann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | - Thomas R Burkard
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | - Alexander Jais
- Department of Laboratory Medicine, Medical University Vienna, 1090 Vienna, Austria
| | - Harald Esterbauer
- Department of Laboratory Medicine, Medical University Vienna, 1090 Vienna, Austria
| | - Juergen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria.
| |
Collapse
|
19
|
Chen Q, Giedt M, Tang L, Harrison DA. Tools and methods for studying the Drosophila JAK/STAT pathway. Methods 2014; 68:160-72. [DOI: 10.1016/j.ymeth.2014.03.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 12/29/2022] Open
|
20
|
Liu C, Wang JL, Zheng Y, Xiong EJ, Li JJ, Yuan LL, Yu XQ, Wang YF. Wolbachia-induced paternal defect in Drosophila is likely by interaction with the juvenile hormone pathway. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 49:49-58. [PMID: 24721205 DOI: 10.1016/j.ibmb.2014.03.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/26/2014] [Accepted: 03/29/2014] [Indexed: 06/03/2023]
Abstract
Wolbachia are endosymbionts that infect many insect species. They can manipulate the host's reproduction to increase their own maternal transmission. Cytoplasmic incompatibility (CI) is one such manipulation, which is expressed as embryonic lethality when Wolbachia-infected males mate with uninfected females. However, matings between males and females carrying the same Wolbachia strain result in viable progeny. The molecular mechanisms of CI are currently not clear. We have previously reported that the gene Juvenile hormone-inducible protein 26 (JhI-26) exhibited the highest upregulation in the 3rd instar larval testes of Drosophila melanogaster when infected by Wolbachia. This is reminiscent of an interaction between Wolbachia and juvenile hormone (JH) pathway in flies. Considering that Jhamt gene encodes JH acid methyltransferase, a key regulatory enzyme of JH biosynthesis, and that methoprene-tolerant (Met) has been regarded as the best JH receptor candidate, we first compared the expression of Jhamt and Met between Wolbachia-infected and uninfected fly testes to investigate whether Wolbachia infection influence the JH signaling pathway. We found that the expressions of Jhamt and Met were significantly increased in the presence of Wolbachia, suggesting an interaction of Wolbachia with the JH signaling pathway. Then, we found that overexpression of JhI-26 in Wolbachia-free transgenic male flies caused paternal-effect lethality that mimics the defects associated with CI. JhI-26 overexpressing males resulted in significantly decrease in hatch rate. Surprisingly, Wolbachia-infected females could rescue the egg hatch. In addition, we showed that overexpression of JhI-26 caused upregulation of the male accessory gland protein (Acp) gene CG10433, but not vice versa. This result suggests that JhI-26 may function at the upstream of CG10433. Likewise, overexpression of CG10433 also resulted in paternal-effect lethality. Both JhI-26 and CG10433 overexpressing males resulted in nuclear division defects in the early embryos. Finally, we found that Wolbachia-infected males decreased the propensity of the mated females to remating, a phenotype also caused by both JhI-26 and CG10433 overexpressing males. Taken together, our results provide a working hypothesis whereby Wolbachia induce paternal defects in Drosophila probably by interaction with the JH pathway via JH response genes JhI-26 and CG10433.
Collapse
Affiliation(s)
- Chen Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China
| | - Jia-Lin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China
| | - Ya Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China
| | - En-Juan Xiong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China
| | - Jing-Jing Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China
| | - Lin-Ling Yuan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China
| | - Xiao-Qiang Yu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; School of Biological Sciences, University of Missouri-Kansas City, MO 64110, USA
| | - Yu-Feng Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
21
|
Amoyel M, Anderson AM, Bach EA. JAK/STAT pathway dysregulation in tumors: a Drosophila perspective. Semin Cell Dev Biol 2014; 28:96-103. [PMID: 24685611 PMCID: PMC4037387 DOI: 10.1016/j.semcdb.2014.03.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/17/2014] [Accepted: 03/20/2014] [Indexed: 12/18/2022]
Abstract
Sustained activation of the JAK/STAT pathway is causal to human cancers. This pathway is less complex in Drosophila, and its dysregulation has been linked to several tumor models in this organism. Here, we discuss models of metastatic epithelial and hematopoietic tumors that are causally linked to dysregulation of JAK/STAT signaling in Drosophila. First, we focus on cancer models in imaginal discs where ectopic expression of the JAK/STAT pathway ligand Unpaired downstream of distinct tumor suppressors has emerged as an unexpected mediator of neoplastic transformation. We also discuss the collaboration between STAT and oncogenic Ras in epithelial transformation. Second, we examine hematopoietic tumors, where mutations that cause hyperactive JAK/STAT signaling are necessary and sufficient for "fly leukemia". We highlight the important contributions that genetic screens in Drosophila have made to understanding the JAK/STAT pathway, its developmental roles, and how its function is co-opted during tumorigenesis.
Collapse
Affiliation(s)
- Marc Amoyel
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, MSB 497B, New York, NY 10016, USA
| | - Abigail M Anderson
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, MSB 497B, New York, NY 10016, USA
| | - Erika A Bach
- The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, New York University School of Medicine.
| |
Collapse
|
22
|
Zielke T, Saumweber H. Dissection of open chromatin domain formation by site-specific recombination in Drosophila. J Cell Sci 2014; 127:2365-75. [PMID: 24639466 DOI: 10.1242/jcs.147546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Drosophila polytene interphase chromosomes provide an ideal test system to study the rules that define the structure of chromatin domains. We established a transgenic condensed chromatin domain cassette for the insertion of large pieces of DNA by site-specific recombination. Insertion of this cassette into open chromatin generated a condensed domain, visible as an extra band on polytene chromosomes. Site-specific recombination of DNA sequence variants into this ectopic band allowed us to compare their capacity for open chromatin formation by cytogenetic methods. We demonstrate that the 61C7-8 interband DNA maintains its open chromatin conformation and epigenetic state at an ectopic position. By deletion analysis, we mapped the sequences essential for open chromatin formation to a 490-bp fragment in the proximal part of the 17-kb interband sequence. This fragment overlaps binding sites for the chromatin protein Chriz (also known as Chro), the histone kinase Jil-1 and the boundary element protein CP190. It also overlaps a promoter region that locates between the Rev1 and Med30 transcription units.
Collapse
Affiliation(s)
- Thomas Zielke
- Humboldt University Berlin Institute of Biology, Cytogenetics Group, Chausseestrasse 117, 10115, Berlin, Germany
| | - Harald Saumweber
- Humboldt University Berlin Institute of Biology, Cytogenetics Group, Chausseestrasse 117, 10115, Berlin, Germany
| |
Collapse
|
23
|
Silva-Sousa R, Varela MD, Casacuberta E. The Putzig partners DREF, TRF2 and KEN are involved in the regulation of the Drosophila telomere retrotransposons, HeT-A and TART. Mob DNA 2013; 4:18. [PMID: 23822164 PMCID: PMC3726405 DOI: 10.1186/1759-8753-4-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/28/2013] [Indexed: 12/26/2022] Open
Abstract
Background Telomere maintenance in Drosophila relies on the targeted transposition of three very special non-LTR retrotransposons, HeT-A, TART, and TAHRE (HTT). The sequences of the retrotransposon array build up the telomere chromatin in this organism. We have recently reported the role of the chromosomal protein Putzig/Z4 in maintaining a proper chromatin structure at the telomere domain of Drosophila. Because the Putzig protein has been found in different cellular complexes related with cell proliferation, development, and immunity, we decided to investigate whether the previously described Putzig partners, DREF/TRF2 and KEN, could also be involved in the telomere function in this organism. Results We have found that mutant alleles for Dref/Trf2 and Ken show alterations in HeT-A and TART expression, suggesting a possible role of these protein complexes in the regulation of the telomere retrotransposons. In agreement, both HeT-A and TART contain the specific DNA binding sequences for the DREF and the KEN protein proteins. Conclusions We have identified three new negative regulators involved in the control of the expression of the telomeric retrotransposons, Dref, Trf2, and Ken. Our results offer some clues on which other chromatin-related proteins might be involved in telomere regulation and retrotransposon control.
Collapse
Affiliation(s)
- Rute Silva-Sousa
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig de la Barceloneta, 37-49, Barcelona 08003, Spain.
| | | | | |
Collapse
|
24
|
Silva-Sousa R, López-Panadès E, Piñeyro D, Casacuberta E. The chromosomal proteins JIL-1 and Z4/Putzig regulate the telomeric chromatin in Drosophila melanogaster. PLoS Genet 2012; 8:e1003153. [PMID: 23271984 PMCID: PMC3521665 DOI: 10.1371/journal.pgen.1003153] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 10/24/2012] [Indexed: 12/28/2022] Open
Abstract
Drosophila telomere maintenance depends on the transposition of the specialized retrotransposons HeT-A, TART, and TAHRE. Controlling the activation and silencing of these elements is crucial for a precise telomere function without compromising genomic integrity. Here we describe two chromosomal proteins, JIL-1 and Z4 (also known as Putzig), which are necessary for establishing a fine-tuned regulation of the transcription of the major component of Drosophila telomeres, the HeT-A retrotransposon, thus guaranteeing genome stability. We found that mutant alleles of JIL-1 have decreased HeT-A transcription, putting forward this kinase as the first positive regulator of telomere transcription in Drosophila described to date. We describe how the decrease in HeT-A transcription in JIL-1 alleles correlates with an increase in silencing chromatin marks such as H3K9me3 and HP1a at the HeT-A promoter. Moreover, we have detected that Z4 mutant alleles show moderate telomere instability, suggesting an important role of the JIL-1-Z4 complex in establishing and maintaining an appropriate chromatin environment at Drosophila telomeres. Interestingly, we have detected a biochemical interaction between Z4 and the HeT-A Gag protein, which could explain how the Z4-JIL-1 complex is targeted to the telomeres. Accordingly, we demonstrate that a phenotype of telomere instability similar to that observed for Z4 mutant alleles is found when the gene that encodes the HeT-A Gag protein is knocked down. We propose a model to explain the observed transcriptional and stability changes in relation to other heterochromatin components characteristic of Drosophila telomeres, such as HP1a.
Collapse
Affiliation(s)
- Rute Silva-Sousa
- Institute of Evolutionary Biology, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| | - Elisenda López-Panadès
- Institute of Evolutionary Biology, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| | - David Piñeyro
- Institute of Evolutionary Biology, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| | - Elena Casacuberta
- Institute of Evolutionary Biology, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| |
Collapse
|
25
|
Sebald J, Morettini S, Podhraski V, Lass-Flörl C, Lusser A. CHD1 contributes to intestinal resistance against infection by P. aeruginosa in Drosophila melanogaster. PLoS One 2012; 7:e43144. [PMID: 22912810 PMCID: PMC3418260 DOI: 10.1371/journal.pone.0043144] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 07/16/2012] [Indexed: 01/31/2023] Open
Abstract
Drosophila SNF2-type ATPase CHD1 catalyzes the assembly and remodeling of nucleosomal arrays in vitro and is involved in H3.3 incorporation in viin vivo during early embryo development. Evidence for a role as transcriptional regulator comes from its colocalization with elongating RNA polymerase II as well as from studies of fly Hsp70 transcription. Here we used microarray analysis to identify target genes of CHD1. We found a fraction of genes that were misregulated in Chd1 mutants to be functionally linked to Drosophila immune and stress response. Infection experiments using different microbial species revealed defects in host defense in Chd1-deficient adults upon oral infection with P. aeruginosa but not upon septic injury, suggesting a so far unrecognized role for CHD1 in intestinal immunity. Further molecular analysis showed that gut-specific transcription of antimicrobial peptide genes was overactivated in the absence of infection in Chd1 mutant flies. Moreover, microbial colonization of the intestine was elevated in Chd1 mutants and oral infection resulted in strong enrichment of bacteria in the body cavity indicating increased microbial passage across intestinal epithelia. However, we did not detect enhanced epithelial damage or alterations of the intestinal stem cell population. Collectively, our data provide evidence that intestinal resistance against infection by P. aeruginosa in Drosophila is linked to maintaining proper balance of gut-microbe interactions and that the chromatin remodeler CHD1 is involved in regulating this aspect.
Collapse
Affiliation(s)
- Johanna Sebald
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Stefano Morettini
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Valerie Podhraski
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria
| | - Alexandra Lusser
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
- * E-mail:
| |
Collapse
|
26
|
Roy A, Shimizu S, Kiya T, Mita K, Iwami M. Identification of 20-hydroxyecdysone-inducible genes from larval brain of the silkworm, Bombyx mori, and their expression analysis. Zoolog Sci 2012; 29:333-9. [PMID: 22559968 DOI: 10.2108/zsj.29.333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The insect brain secretes prothoracicotropic hormone (PTTH), which stimulates the prothoracic gland to synthesize ecdysone. The active metabolite of ecdysone, 20-hydroxyecdysone (20E), works through ecdysone receptor (EcR) and ultraspiracle (USP) to initiate molting and metamorphosis by regulating downstream genes. Previously, we found that EcR was expressed in the PTTH-producing neurosecretory cells (PTPCs) in larval brain of the silkworm Bombyx mori, suggesting that PTPCs function as the master cells of development under the regulation of 20E. To gain a better understanding of the molecular mechanism of the 20E control of PTPCs, we performed a comprehensive screening of genes induced by 20E using DNA microarray with brains of day-2 fifth instar silkworm larvae. Forty-one genes showed greater than twofold changes caused by artificial application of 20E. A subsequent semiquantitative screening identified ten genes upregulated by 20E, four of which were novel or not previously identified as 20E-response genes. Developmental profiling determined that two genes, UP4 and UP5, were correlated with the endogenous ecdysteroid titer. Whole-mount in situ hybridization showed exclusive expression of these two genes in two pairs of cells in the larval brain in response to 20E-induction, suggesting that the cells are PTPCs. BLAST searches revealed that UP4 and UP5 are Bombyx homologs of vrille and tarsal-less, respectively. The present study identifies 20E-induced genes that may be involved in the ecdysone signal hierarchies underlying pupal-adult development and/or the 20E regulation of PTPCs.
Collapse
Affiliation(s)
- Anuradha Roy
- Division of Life Sciences, Graduate school of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | | | |
Collapse
|
27
|
Fukuyama H, Ndiaye S, Hoffmann J, Rossier J, Liuu S, Vinh J, Verdier Y. On-bead tryptic proteolysis: an attractive procedure for LC-MS/MS analysis of the Drosophila caspase 8 protein complex during immune response against bacteria. J Proteomics 2012; 75:4610-9. [PMID: 22450469 DOI: 10.1016/j.jprot.2012.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/24/2012] [Accepted: 03/05/2012] [Indexed: 10/28/2022]
Abstract
This study aims to characterize the immune response against bacteria in Drosophila melanogaster. Obtaining a description of the in vivo state of protein complexes requires their isolation as a snapshot of physiological conditions before their identification. Affinity purification with streptavidin-biotin system is widely used to address this issue. However, because of the extraordinary stability of the interaction between streptavidin and biotin, the release of biotin-labeled bait remains a challenge. We transfected Drosophila cells with a DNA construct encoding a biotin-tagged Dredd protein (ortholog of caspase 8). After affinity purification, different strategies were evaluated, and proteins analyzed by LC-MS/MS mass spectrometry. The on-bead digestion allowed the identification of more proteins associated to the Dredd complex than different protocols using competitive or acid elution. A functional assay showed that a large part of the proteins specifically identified in the Dredd sample are functionally involved in the activation of the Imd pathway. These proteins are immune response proteins (BG4, Q9VP57), stress response proteins (HSP7C, Q9VXQ5), structural proteins (TBB1, CP190), a protein biosynthesis protein (Q9W1B9) and an antioxidant system protein (SODC). Our results clearly show that on-bead digestion of proteins is an attractive procedure for the study of protein complexes by mass spectrometry. This article is part of a Special Issue entitled: Translational Proteomics.
Collapse
Affiliation(s)
- Hidehiro Fukuyama
- Centre National de La Recherche Scientifique, UPR9022, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Huang H, Jiao R. Roles of chromatin assembly factor 1 in the epigenetic control of chromatin plasticity. SCIENCE CHINA-LIFE SCIENCES 2012; 55:15-9. [DOI: 10.1007/s11427-012-4269-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 07/30/2011] [Indexed: 10/14/2022]
|
29
|
Abstract
Cellular memory is provided by two counteracting groups of chromatin proteins termed Trithorax group (TrxG) and Polycomb group (PcG) proteins. TrxG proteins activate transcription and are perhaps best known because of the involvement of the TrxG protein MLL in leukaemia. However, in terms of molecular analysis, they have lived in the shadow of their more famous counterparts, the PcG proteins. Recent advances have improved our understanding of TrxG protein function and demonstrated that the heterogeneous group of TrxG proteins is of critical importance in the epigenetic regulation of the cell cycle, senescence, DNA damage and stem cell biology.
Collapse
|
30
|
Alkhatib SG, Landry JW. The nucleosome remodeling factor. FEBS Lett 2011; 585:3197-207. [PMID: 21920360 PMCID: PMC4839296 DOI: 10.1016/j.febslet.2011.09.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/02/2011] [Accepted: 09/02/2011] [Indexed: 12/19/2022]
Abstract
An essential component of the chromatin remodeling machinery is NURF (Nucleosome Remodeling Factor), the founding member of the ISWI family of chromatin remodeling complexes. In vertebrates and invertebrates alike, NURF has many important functions in chromatin biology including regulating transcription, establishing boundary elements, and promoting higher order chromatin structure. Since NURF is essential to many aspects of chromatin biology, knowledge of its function is required to fully understand how the genome is regulated. This review will summarize what is currently known of its biological functions, conservation in the most prominent model organisms, biochemical functions as a nucleosome remodeling enzyme, and its possible relevance to human cancer.
Collapse
Affiliation(s)
- Suehyb G. Alkhatib
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States
| | - Joseph W. Landry
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States
| |
Collapse
|
31
|
Negri I. Wolbachia as an "infectious" extrinsic factor manipulating host signaling pathways. Front Endocrinol (Lausanne) 2011; 2:115. [PMID: 22654845 PMCID: PMC3356060 DOI: 10.3389/fendo.2011.00115] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 12/21/2011] [Indexed: 11/13/2022] Open
Abstract
Wolbachia pipientis is a widespread endosymbiont of filarial nematodes and arthropods. While in worms the symbiosis is obligate, in arthropods Wolbachia induces several reproductive manipulations (i.e., cytoplasmic incompatibility, parthenogenesis, feminization of genetic males, and male-killing) in order to increase the number of infected females. These various phenotypic effects may be linked to differences in host physiology, and in particular to endocrine-related processes governing growth, development, and reproduction. Indeed, a number of evidences links Wolbachia symbiosis to insulin and ecdysteroid signaling, two multilayered pathways known to work antagonistically, jointly or even independently for the regulation of different molecular networks. At present it is not clear whether Wolbachia manipulates one pathway, thus affecting other related metabolic networks, or if it targets both pathways, even interacting at several points in each of them. Interestingly, in view of the interplay between hormone signaling and epigenetic machinery, a direct influence of the "infection" on hormonal signaling involving ecdysteroids might be achievable through the manipulation of the host's epigenetic pathways.
Collapse
Affiliation(s)
- Ilaria Negri
- Department of Exploitation and Protection of the Agricultural and Forestry Resources, Università di TorinoGrugliasco, Italy
- Koiné – Environmental ConsultingParma, Italy
- *Correspondence: Ilaria Negri, Department of Exploitation and Protection of the Agricultural and Forestry Resources, Università di Torino, Via L. da Vinci, 44, 10095 Grugliasco, Italy. e-mail:
| |
Collapse
|