1
|
Antão-Sousa S, Gusmão L, Modesti NM, Feliziani S, Faustino M, Marcucci V, Sarapura C, Ribeiro J, Carvalho E, Pereira V, Tomas C, de Pancorbo MM, Baeta M, Alghafri R, Almheiri R, Builes JJ, Gouveia N, Burgos G, Pontes MDL, Ibarra A, da Silva CV, Parveen R, Benitez M, Amorim A, Pinto N. Microsatellites' mutation modeling through the analysis of the Y-chromosomal transmission: Results of a GHEP-ISFG collaborative study. Forensic Sci Int Genet 2024; 69:102999. [PMID: 38181588 DOI: 10.1016/j.fsigen.2023.102999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/25/2023] [Accepted: 12/10/2023] [Indexed: 01/07/2024]
Abstract
The Spanish and Portuguese Speaking Working Group of the International Society for Forensic Genetics (GHEP-ISFG) organized a collaborative study on mutations of Y-chromosomal short tandem repeats (Y-STRs). New data from 2225 father-son duos and data from 44 previously published reports, corresponding to 25,729 duos, were collected and analyzed. Marker-specific mutation rates were estimated for 33 Y-STRs. Although highly dependent on the analyzed marker, mutations compatible with the gain or loss of a single repeat were 23.2 times more likely than those involving a greater number of repeats. Longer alleles (relatively to the modal one) showed to be nearly twice more mutable than the shorter ones. Within the subset of longer alleles, the loss of repeats showed to be nearly twice more likely than the gain. Conversely, shorter alleles showed a symmetrical trend, with repeat gains being twofold more frequent than reductions. A positive correlation between the paternal age and the mutation rate was observed, strengthening previous findings. The results of a machine learning approach, via logistic regression analyses, allowed the establishment of algebraic formulas for estimating the probability of mutation depending on paternal age and allele length for DYS389I, DYS393 and DYS627. Algebraic formulas could also be established considering only the allele length as predictor for DYS19, DYS389I, DYS389II-I, DYS390, DYS391, DYS393, DYS437, DYS439, DYS449, DYS456, DYS458, DYS460, DYS481, DYS518, DYS533, DYS576, DYS626 and DYS627 loci. For the remaining Y-STRs, a lack of statistical significance was observed, probably as a consequence of the small effective size of the subsets available, a common difficulty in the modeling of rare events as is the case of mutations. The amount of data used in the different analyses varied widely, depending on how the data were reported in the publications analyzed. This shows a regrettable waste of produced data, due to inadequate communication of the results, supporting an urgent need of publication guidelines for mutation studies.
Collapse
Affiliation(s)
- Sofia Antão-Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal; Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal; Faculty of Sciences of the University of Porto (FCUP), Porto, Portugal; DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Leonor Gusmão
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Nidia M Modesti
- Centro de Genética Forense, Poder Judicial de Córdoba, Argentina
| | - Sofía Feliziani
- Centro de Genética Forense, Poder Judicial de Córdoba, Argentina
| | - Marisa Faustino
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal; Faculty of Sciences of the University of Porto (FCUP), Porto, Portugal
| | - Valeria Marcucci
- Laboratorio Regional de Investigación Forense, Tribunal Superior de Justicia de Santa Cruz, Argentina
| | - Claudia Sarapura
- Laboratorio Regional de Investigación Forense, Tribunal Superior de Justicia de Santa Cruz, Argentina
| | - Julyana Ribeiro
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Elizeu Carvalho
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Vania Pereira
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Carmen Tomas
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Marian M de Pancorbo
- BIOMICs Research Group, Lascaray Research Center, Department of Zoology and Animal Cell Biology, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Miriam Baeta
- BIOMICs Research Group, Lascaray Research Center, Department of Zoology and Animal Cell Biology, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Rashed Alghafri
- International Center for Forensic Sciences, Dubai Police G.H.Q., Dubai, United Arab Emirates
| | - Reem Almheiri
- International Center for Forensic Sciences, Dubai Police G.H.Q., Dubai, United Arab Emirates
| | - Juan José Builes
- GENES SAS Laboratory, Medellín, Colombia; Institute of Biology, University of Antioquia, Medellín, Colombia
| | - Nair Gouveia
- Instituto Nacional de Medicina Legal e Ciências Forenses, I.P. / Serviço de Genética e Biologia Forenses, Delegação do Centro, Portugal
| | - German Burgos
- One Health Global Research Group, Facultad de Medicina, Universidad de Las Américas (UDLA), Quito, Ecuador; Grupo de Medicina Xenómica, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Maria de Lurdes Pontes
- Instituto Nacional de Medicina Legal e Ciências Forenses, I.P. / Serviço de Genética e Biologia Forenses, Delegação do Norte, Portugal
| | - Adriana Ibarra
- Laboratorio IDENTIGEN, Universidad de Antioquia, Colombia
| | - Claudia Vieira da Silva
- Instituto Nacional de Medicina Legal e Ciências Forenses, I.P. / Serviço de Genética e Biologia Forenses, Delegação do Sul, Portugal
| | - Rukhsana Parveen
- Forensic Services Laboratory, Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Marc Benitez
- Policia de la Generalitat de Catalunya - Mossos d'Esquadra. Unitat Central del Laboratori Biològic, Barcelona, Spain
| | - António Amorim
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal; Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal; Faculty of Sciences of the University of Porto (FCUP), Porto, Portugal
| | - Nadia Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal; Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal; Centre of Mathematics of the University of Porto, Porto, Portugal.
| |
Collapse
|
2
|
Puch-Solis R, Pope S, Tully G. Considerations on the application of a mutation model for Y-STR interpretation. Sci Justice 2024; 64:180-192. [PMID: 38431375 DOI: 10.1016/j.scijus.2024.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 03/05/2024]
Abstract
If Y-STR profiling is to be more effective in criminal casework, the methods used to evaluate evidential weight require improvement. Many forensic scientists assign an evidential weight by estimating the number of times a Y-STR profile obtained from a questioned sample has been observed in YHRD datasets. More sophisticated models have been suggested but not yet implemented into routine casework, e.g. Andersen & Balding [1]. Mutation is inherent to STR meiosis (or inheritance) and is encountered in practice. We evaluated a mutation model that can be incorporated into a method for assigning evidential weight to Y-STR profiles, an essential part of bringing any method into practice. Since an important part of implementation to casework is communication, the article is written in an accessible format for practitioners as well as statisticians. The mutation component within the MUTEA model by Willems et al. [2] incorporates the potential for multistep mutations and a tendency for alleles to revert towards a central length, reflecting observed mutation data, e.g. [3]. We have estimated the parameters in this model and in a simplified symmetric version of this model, using sequence data from father/son pairs [4] and deep-rooted pedigrees [5]. Both datasets contain multistep mutations, which may have an effect on models based on simulations [1]. We introduce Beta-Binomial and Beta-Geometric conjugate analyses for estimating rate and step parameters for the mutation models presented here, which require only summations and multiplications. We proved mathematically that the parameters can be estimated independently. We show the importance of reporting the variability of the parameters and not only a point estimate. The parameters can be easily incorporated into statistical models, and updated sequentially as more data becomes available. We recommend fuller publication of data to enable the development and evaluation of a wider range of mutation models.
Collapse
Affiliation(s)
- Roberto Puch-Solis
- Leverhulme Research Centre for Forensic Science, University of Dundee, Dundee DD1 4HN, United Kingdom.
| | - Susan Pope
- Principal Forensic Services, 34 Southborough Road, Bromley, Kent BR1 2EB, United Kingdom
| | - Gillian Tully
- King's Forensics, King's College London, Franklin-Wilkins Building, London, SE1 9NH, United Kingdom
| |
Collapse
|
3
|
Large-scale pedigree analysis highlights rapidly mutating Y-chromosomal short tandem repeats for differentiating patrilineal relatives and predicting their degrees of consanguinity. Hum Genet 2023; 142:145-160. [PMID: 36190543 PMCID: PMC9839801 DOI: 10.1007/s00439-022-02493-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/26/2022] [Indexed: 01/18/2023]
Abstract
Rapidly mutating Y-chromosomal short tandem repeats (RM Y-STRs) were suggested for differentiating patrilineally related men as relevant in forensic genetics, anthropological genetics, and genetic genealogy. Empirical data are available for closely related males, while differentiation rates for more distant relatives are scarce. Available RM Y-STR mutation rate estimates are typically based on father-son pair data, while pedigree-based studies for efficient analysis requiring less samples are rare. Here, we present a large-scale pedigree analysis in 9379 pairs of men separated by 1-34 meioses on 30 Y-STRs with increased mutation rates including all known RM Y-STRs (RMplex). For comparison, part of the samples were genotyped at 25 standard Y-STRs mostly with moderate mutation rates (Yfiler Plus). For 43 of the 49 Y-STRs analyzed, pedigree-based mutation rates were similar to previous father-son based estimates, while for six markers significant differences were observed. Male relative differentiation rates from the 30 RMplex Y-STRs were 43%, 84%, 96%, 99%, and 100% for relatives separated by one, four, six, nine, and twelve meioses, respectively, which largely exceeded rates obtained by 25 standard Y-STRs. Machine learning based models for predicting the degree of patrilineal consanguinity yielded accurate and reasonably precise predictions when using RM Y-STRs. Fully matching haplotypes resulted in a 95% confidence interval of 1-6 meioses with RMplex compared to 1-25 with Yfiler Plus. Our comprehensive pedigree study demonstrates the value of RM Y-STRs for differentiating male relatives of various types, in many cases achieving individual identification, thereby overcoming the largest limitation of forensic Y-chromosome analysis.
Collapse
|
4
|
Andersen MM, Balding DJ. Assessing the Forensic Value of DNA Evidence from Y Chromosomes and Mitogenomes. Genes (Basel) 2021; 12:genes12081209. [PMID: 34440383 PMCID: PMC8391915 DOI: 10.3390/genes12081209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022] Open
Abstract
Y chromosome and mitochondrial DNA profiles have been used as evidence in courts for decades, yet the problem of evaluating the weight of evidence has not been adequately resolved. Both are lineage markers (inherited from just one parent), which presents different interpretation challenges compared with standard autosomal DNA profiles (inherited from both parents). We review approaches to the evaluation of lineage marker profiles for forensic identification, focussing on the key roles of profile mutation rate and relatedness (extending beyond known relatives). Higher mutation rates imply fewer individuals matching the profile of an alleged contributor, but they will be more closely related. This makes it challenging to evaluate the possibility that one of these matching individuals could be the true source, because relatives may be plausible alternative contributors, and may not be well mixed in the population. These issues reduce the usefulness of profile databases drawn from a broad population: larger populations can have a lower profile relative frequency because of lower relatedness with the alleged contributor. Many evaluation methods do not adequately take account of distant relatedness, but its effects have become more pronounced with the latest generation of high-mutation-rate Y profiles.
Collapse
Affiliation(s)
- Mikkel M. Andersen
- Department of Mathematical Sciences, Aalborg University, 9220 Aalborg, Denmark
- Section of Forensic Genetics, Department of Forensic Medicine, University of Copenhagen, 1165 Copenhagen, Denmark
- Correspondence:
| | - David J. Balding
- Melbourne Integrative Genomics, University of Melbourne, Melbourne 3010, Australia;
- Genetics Institute, University College London, London WC1E 6BT, UK
| |
Collapse
|
5
|
Villaescusa P, Seidel M, Nothnagel M, Pinotti T, González-Andrade F, Alvarez-Gila O, M de Pancorbo M, Roewer L. A Y-chromosomal survey of Ecuador's multi-ethnic population reveals new insights into the tri-partite population structure and supports an early Holocene age of the rare Native American founder lineage C3-MPB373. Forensic Sci Int Genet 2020; 51:102427. [PMID: 33254102 DOI: 10.1016/j.fsigen.2020.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 10/23/2022]
Abstract
Ecuador is a multiethnic and pluricultural country with a complex history defined by migration and admixture processes. The present study aims to increase our knowledge on the Ecuadorian Native Amerindian groups and the unique South American Y-chromosome haplogroup C3-MPB373 through the analysis of up to 23 Y-chromosome STRs (Y-STRs) and several Y-SNPs in a sample of 527 Ecuadorians from 7 distinct populations and geographic areas, including Kichwa and non-Kichwa Native Amerindians, Mestizos and Afro-Ecuadorians. Our results reveal the presence of C3-MPB373 both in the Amazonian lowland Kichwa with frequencies up to 28 % and, for the first time, in notable proportions in Kichwa populations from the Ecuadorian highlands. The substantially higher frequencies of C3-MPB373 in the Amazonian lowlands found in Kichwa and Waorani individuals suggest a founder effect in that area. Notably, estimates for the time to the most recent common ancestor (TMRCA) in the range of 7.2-9.0 kya point to an ancient origin of the haplogroup and suggest an early Holocene expansion of C3-MPB373 into South America. Finally, the pairwise genetic distances (RST) separate the Kichwa Salasaka from all the other Native Amerindian and Ecuadorian groups, indicating a so far hidden diversity among the Kichwa-speaking populations and suggesting a more southern origin of this population. In sum, our study provides a more in-depth knowledge of the male genetic structure of the multiethnic Ecuadorian population, as well as a valuable reference dataset for forensic use.
Collapse
Affiliation(s)
- Patricia Villaescusa
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.
| | - Maria Seidel
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Nothnagel
- Department of Statistical Genetics and Bioinformatics, Cologne Center for Genomics, University of Cologne, Cologne, Germany; University Hospital Cologne, Cologne, Germany
| | - Thomaz Pinotti
- Laboratório de Biodiversidade e Evolução Molecular (LBEM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | | | - Oscar Alvarez-Gila
- Department of Medieval, Early Modern and American History, Faculty of Letters, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Marian M de Pancorbo
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Lutz Roewer
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
6
|
Xu W, Wang Y, Zhang D, Wang D, Zhou L, Ye X, Zhu C, Shi Y. Mutation analysis of 21 autosomal short tandem repeats in Han population from Hunan, China. Ann Hum Biol 2020; 46:254-260. [PMID: 31264462 DOI: 10.1080/03014460.2019.1638966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: Short tandem repeats (STRs) are powerful genetic markers widely used in human genetics. Population data and locus-specific mutation rates of STRs are crucial for the evaluation and interpretation of genetic evidence in forensic and population genetics.Aim: To investigate the mutation rates of 21 autosomal STRs in a population from central south China.Subjects and methods: This study analysed 3420 paternity cases with a Combined Paternity Index >10,000 from Han population in Hunan. A total of 68,743 meiotic transfers were analysed and 62 mutations were identified.Results: The overall mutation rate of STR loci was 0.9 × 10-3 (95% CI, 0.0007-0.0011) and the locus-specific mutation rates were estimated ranging from 0.0000-0.0023. Locus D1S1656 exhibited the highest mutation rate of 2.3 × 10-3 (95% CI, 0.0005-0.0006), followed by D12S391 with a mutation rate of 2.0 × 10-3 (95% CI, 0.0007-0.0044). No mutation was observed at TPOX, D2S1338 or Penta D. One-step mutation cases accounted for 96.77% of total mutations and the ratio of paternal vs maternal mutations was ∼4.85:1. Inter-population comparisons of locus-specific mutation rates of several STRs revealed significant differences between Han in Hunan and Han in other regions of China. Conclusion: The data justified the use of geographical data in further genetic applications.
Collapse
Affiliation(s)
- Wei Xu
- Institute of Translational Medicine, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, PR China
| | - Yuequn Wang
- Institute of Life Science, Hunan Normal University, Changsha, PR China
| | - Dandan Zhang
- School of Public Health, University of South China, Hengyang, PR China
| | - Daixin Wang
- Center of Forensic Science, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan School of Physical Sciences, Changsha, PR China
| | - Liang Zhou
- School of Public Health, Changsha Normal University, Changsha, PR China
| | - Xiangli Ye
- School of Medicine, Hunan Normal University, Changsha, PR China
| | - Chaogeng Zhu
- Translational Medicine Laboratory of Pancreatic Diseases, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, PR China
| | - Yongzhong Shi
- Institute of Translational Medicine, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, PR China
| |
Collapse
|
7
|
Andersen MM, Caliebe A, Kirkeby K, Knudsen M, Vihrs N, Curran JM. Estimation of Y haplotype frequencies with lower order dependencies. Forensic Sci Int Genet 2020; 46:102214. [DOI: 10.1016/j.fsigen.2019.102214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/05/2019] [Accepted: 11/29/2019] [Indexed: 12/01/2022]
|
8
|
Gundlach S, Junge O, Wienbrandt L, Krawczak M, Caliebe A. Comparison of Markov Chain Monte Carlo Software for the Evolutionary Analysis of Y-Chromosomal Microsatellite Data. Comput Struct Biotechnol J 2019; 17:1082-1090. [PMID: 31452861 PMCID: PMC6700485 DOI: 10.1016/j.csbj.2019.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/17/2019] [Accepted: 07/25/2019] [Indexed: 11/28/2022] Open
Abstract
The evolutionary analysis of genetic data is an important subject of modern bioscience, with practical applications in diverse fields. Parameters of interest in this context include effective population sizes, mutation rates, population growth rates and the times to most recent common ancestors. Studying Y-chromosomal microsatellite data, in particular, has proven useful to unravel the recent patrilineal history of Homo sapiens populations. We compared the individual analysis options and technical details of four software tools that are widely used for this purpose, namely BATWING, BEAST, IMa2 and LAMARC, all of which use Bayesian coalescent-based Markov chain Monte Carlo (MCMC) methods for parameter estimation. More specifically, we simulated datasets for either eight or 20 hypothetical Y-chromosomal microsatellites, assuming a mutation rate of 0.0030 per generation and a constant or exponentially increasing population size, and used these data to evaluate the parameter estimation capacity of each tool. The datasets comprised between 100 and 1000 samples. In addition to runtime, the practical utility of the tools of interest can also be expected to depend critically upon the convergence behavior of the actual MCMC implementation. In fact, we found that runtime increased, and convergence rate decreased, with increasing sample size as expected. BATWING performed best with respect to runtime and convergence behavior, but only supports simple evolutionary models. As regards the spectrum of evolutionary models covered, and also in terms of cross-platform usability, BEAST provided the greatest flexibility. Finally, IMa2 and LAMARC turned out best to incorporate elaborate migration models in the analysis process.
Collapse
Affiliation(s)
- Sven Gundlach
- Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig-Holstein, Brunswiker Strasse 10, 24105 Kiel, Germany
| | - Olaf Junge
- Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig-Holstein, Brunswiker Strasse 10, 24105 Kiel, Germany
| | - Lars Wienbrandt
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Rosalind-Franklin-Strasse 12, 24105 Kiel, Germany
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig-Holstein, Brunswiker Strasse 10, 24105 Kiel, Germany
| | - Amke Caliebe
- Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig-Holstein, Brunswiker Strasse 10, 24105 Kiel, Germany
| |
Collapse
|
9
|
Fu S, Octavia S, Wang Q, Tanaka MM, Tay CY, Sintchenko V, Lan R. Evolution of Variable Number Tandem Repeats and Its Relationship with Genomic Diversity in Salmonella Typhimurium. Front Microbiol 2016; 7:2002. [PMID: 28082952 PMCID: PMC5183578 DOI: 10.3389/fmicb.2016.02002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 11/30/2016] [Indexed: 01/06/2023] Open
Abstract
Salmonella enterica serovar Typhimurium is the most common Salmonella serovar causing human infections in Australia and many other countries. A total of 12,112 S. Typhimurium isolates from New South Wales were analyzed by multi-locus variable number of tandem repeat (VNTR) analysis (MLVA) using five VNTRs from 2007 to 2014. We found that mid ranges of repeat units of 8–14 in VNTR locus STTR5, 6–13 in STTR6, and 9–12 in STTR10 were always predominant in the population (>50%). In vitro passaging experiments using MLVA type carrying extreme length alleles found that the majority of long length alleles mutated to short ones and short length alleles mutated to longer ones. Both data suggest directional mutability of VNTRs toward mid-range repeats. Sequencing of 28 isolates from a newly emerged MLVA type and its five single locus variants revealed that single nucleotide variation between isolates with up to two MLVA differences ranged from 0 to 12 single nucleotide polymorphisms (SNPs). However, there was no relationship between SNP and VNTR differences. A population genetic model of the joint distribution of VNTRs and SNPs variations was used to estimate the mutation rates of the two markers, yielding a ratio of 1 VNTR change to 6.9 SNP changes. When only one VNTR repeat difference was considered, the majority of pairwise SNP difference between isolates were 4 SNPs or fewer. Based on this observation and our previous findings of SNP differences of outbreak isolates, we suggest that investigation of S. Typhimurium community outbreaks should include cases of 1 repeat difference to increase sensitivity. This study offers new insights into the short-term VNTR evolution of S. Typhimurium and its application for epidemiological typing.
Collapse
Affiliation(s)
- Songzhe Fu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, NSW, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, NSW, Australia
| | - Qinning Wang
- Centre for Infectious Diseases and Microbiology-Public Health, Institute of Clinical Pathology and Medical Research, Westmead Hospital Sydney, NSW, Australia
| | - Mark M Tanaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, NSW, Australia
| | - Chin Yen Tay
- Pathology and Laboratory Medicine, University of Western Australia Perth, WA, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology-Public Health, Institute of Clinical Pathology and Medical Research, Westmead HospitalSydney, NSW, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, University of SydneySydney, NSW, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, NSW, Australia
| |
Collapse
|
10
|
Qian XQ, Yin CY, Ji Q, Li K, Fan HT, Yu YF, Bu FL, Hu LL, Wang JW, Mu HF, Haigh S, Chen F. Mutation rate analysis at 19 autosomal microsatellites. Electrophoresis 2015; 36:1633-9. [DOI: 10.1002/elps.201400558] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/09/2015] [Accepted: 03/13/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Xiao-Qin Qian
- Department of Forensic Medicine; Nanjing Medical University; Nanjing Jiangsu P. R. China
| | - Cai-Yong Yin
- Department of Forensic Medicine; Nanjing Medical University; Nanjing Jiangsu P. R. China
| | - Qiang Ji
- Department of Forensic Medicine; Nanjing Medical University; Nanjing Jiangsu P. R. China
| | - Kai Li
- Department of Forensic Medicine; Nanjing Medical University; Nanjing Jiangsu P. R. China
| | - Han-Ting Fan
- Department of Forensic Medicine; Nanjing Medical University; Nanjing Jiangsu P. R. China
| | - Yan-Fang Yu
- Department of Forensic Medicine; Nanjing Medical University; Nanjing Jiangsu P. R. China
| | - Fan-Li Bu
- Department of Forensic Medicine; Nanjing Medical University; Nanjing Jiangsu P. R. China
| | - Ling-Li Hu
- Department of Forensic Medicine; Nanjing Medical University; Nanjing Jiangsu P. R. China
| | - Jian-Wen Wang
- Department of Forensic Medicine; Nanjing Medical University; Nanjing Jiangsu P. R. China
| | - Hao-Fang Mu
- Center of Forensic Sciences; Beijing Genomics Institute; Beijing P. R. China
| | - Steven Haigh
- Vascular Biology Center; Georgia Regents University; Augusta GA USA
| | - Feng Chen
- Department of Forensic Medicine; Nanjing Medical University; Nanjing Jiangsu P. R. China
- Vascular Biology Center; Georgia Regents University; Augusta GA USA
| |
Collapse
|
11
|
Putman AI, Carbone I. Challenges in analysis and interpretation of microsatellite data for population genetic studies. Ecol Evol 2014; 4:4399-428. [PMID: 25540699 PMCID: PMC4267876 DOI: 10.1002/ece3.1305] [Citation(s) in RCA: 237] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 10/02/2014] [Accepted: 10/03/2014] [Indexed: 12/14/2022] Open
Abstract
Advancing technologies have facilitated the ever-widening application of genetic markers such as microsatellites into new systems and research questions in biology. In light of the data and experience accumulated from several years of using microsatellites, we present here a literature review that synthesizes the limitations of microsatellites in population genetic studies. With a focus on population structure, we review the widely used fixation (F ST) statistics and Bayesian clustering algorithms and find that the former can be confusing and problematic for microsatellites and that the latter may be confounded by complex population models and lack power in certain cases. Clustering, multivariate analyses, and diversity-based statistics are increasingly being applied to infer population structure, but in some instances these methods lack formalization with microsatellites. Migration-specific methods perform well only under narrow constraints. We also examine the use of microsatellites for inferring effective population size, changes in population size, and deeper demographic history, and find that these methods are untested and/or highly context-dependent. Overall, each method possesses important weaknesses for use with microsatellites, and there are significant constraints on inferences commonly made using microsatellite markers in the areas of population structure, admixture, and effective population size. To ameliorate and better understand these constraints, researchers are encouraged to analyze simulated datasets both prior to and following data collection and analysis, the latter of which is formalized within the approximate Bayesian computation framework. We also examine trends in the literature and show that microsatellites continue to be widely used, especially in non-human subject areas. This review assists with study design and molecular marker selection, facilitates sound interpretation of microsatellite data while fostering respect for their practical limitations, and identifies lessons that could be applied toward emerging markers and high-throughput technologies in population genetics.
Collapse
Affiliation(s)
- Alexander I Putman
- Department of Plant Pathology, North Carolina State University Raleigh, North Carolina, 27695-7616
| | - Ignazio Carbone
- Department of Plant Pathology, North Carolina State University Raleigh, North Carolina, 27695-7616
| |
Collapse
|