1
|
Brinkley DM, Smith KC, Fink EC, Kwen W, Yoo NH, West Z, Sullivan NL, Farthing AS, Hale VA, Goutte C. Notch signaling without the APH-2/nicastrin subunit of gamma secretase in Caenorhabditis elegans germline stem cells. Genetics 2024; 227:iyae076. [PMID: 38717968 DOI: 10.1093/genetics/iyae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/01/2024] [Indexed: 07/09/2024] Open
Abstract
The final step in Notch signaling activation is the transmembrane cleavage of Notch receptor by γ secretase. Thus far, genetic and biochemical evidence indicates that four subunits are essential for γ secretase activity in vivo: presenilin (the catalytic core), APH-1, PEN-2, and APH-2/nicastrin. Although some γ secretase activity has been detected in APH-2/nicastrin-deficient mammalian cell lines, the lack of biological relevance for this activity has left the quaternary γ secretase model unchallenged. Here, we provide the first example of in vivo Notch signal transduction without APH-2/nicastrin. The surprising dispensability of APH-2/nicastrin is observed in Caenorhabditis elegans germline stem cells (GSCs) and contrasts with its essential role in previously described C. elegans Notch signaling events. Depletion of GLP-1/Notch, presenilin, APH-1, or PEN-2 causes a striking loss of GSCs. In contrast, aph-2/nicastrin mutants maintain GSCs and exhibit robust and localized expression of the downstream Notch target sygl-1. Interestingly, APH-2/nicastrin is normally expressed in GSCs and becomes essential under conditions of compromised Notch function. Further insight is provided by reconstituting the C. elegans γ secretase complex in yeast, where we find that APH-2/nicastrin increases but is not essential for γ secretase activity. Together, our results are most consistent with a revised model of γ secretase in which the APH-2/nicastrin subunit has a modulatory, rather than obligatory role. We propose that a trimeric presenilin-APH-1-PEN-2 γ secretase complex can provide a low level of γ secretase activity, and that cellular context determines whether or not APH-2/nicastrin is essential for effective Notch signal transduction.
Collapse
Affiliation(s)
- David M Brinkley
- Program in Biochemistry and Biophysics, Amherst College, Amherst, MA 01002, USA
| | - Karen C Smith
- Department of Biology, Amherst College, Amherst, MA 01002, USA
| | - Emma C Fink
- Department of Biology, Amherst College, Amherst, MA 01002, USA
| | - Woohyun Kwen
- Department of Biology, Amherst College, Amherst, MA 01002, USA
| | - Nina H Yoo
- Department of Biology, Amherst College, Amherst, MA 01002, USA
| | - Zachary West
- Department of Biology, Amherst College, Amherst, MA 01002, USA
| | - Nora L Sullivan
- Department of Biology, Amherst College, Amherst, MA 01002, USA
| | - Alex S Farthing
- Program in Biochemistry and Biophysics, Amherst College, Amherst, MA 01002, USA
| | - Valerie A Hale
- Department of Biology, Amherst College, Amherst, MA 01002, USA
| | - Caroline Goutte
- Program in Biochemistry and Biophysics, Amherst College, Amherst, MA 01002, USA
- Department of Biology, Amherst College, Amherst, MA 01002, USA
| |
Collapse
|
2
|
Zhang X, Qin L, Lu J, Xia Y, Tang X, Lu X, Xia S. Genome-Wide Identification of GYF-Domain Encoding Genes in Three Brassica Species and Their Expression Responding to Sclerotinia sclerotiorum in Brassica napus. Genes (Basel) 2023; 14:224. [PMID: 36672966 PMCID: PMC9858701 DOI: 10.3390/genes14010224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
GYF (glycine-tyrosine-phenylalanine)-domain-containing proteins, which were reported to participate in many aspects of biological processes in yeast and animals, are highly conserved adaptor proteins existing in almost all eukaryotes. Our previous study revealed that GYF protein MUSE11/EXA1 is involved in nucleotide-binding leucine-rich repeat (NLR) receptor-mediated defense in Arabidopsis thaliana. However, the GYF-domain encoding homologous genes are still not clear in other plants. Here, we performed genome-wide identification of GYF-domain encoding genes (GYFs) from Brassica napus and its parental species, Brassica rapa and Brassica oleracea. As a result, 26 GYFs of B. napus (BnaGYFs), 11 GYFs of B. rapa (BraGYFs), and 14 GYFs of B. oleracea (BolGYFs) together with 10 A. thaliana (AtGYFs) were identified, respectively. We, then, conducted gene structure, motif, cis-acting elements, duplication, chromosome localization, and phylogenetic analysis of these genes. Gene structure analysis indicated the diversity of the exon numbers of these genes. We found that the defense and stress responsiveness element existed in 23 genes and also identified 10 motifs in these GYF proteins. Chromosome localization exhibited a similar distribution of BnaGYFs with BraGYFs or BolGYFs in their respective genomes. The phylogenetic and gene collinearity analysis showed the evolutionary conservation of GYFs among B. napus and its parental species as well as Arabidopsis. These 61 identified GYF domain proteins can be classified into seven groups according to their sequence similarity. Expression of BnaGYFs induced by Sclerotinia sclerotiorum provided five highly upregulated genes and five highly downregulated genes, which might be candidates for further research of plant-fungal interaction in B. napus.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Lei Qin
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Junxing Lu
- College of Life Science, Chongqing Normal University, Chongqing 400047, China
| | - Yunong Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xianyu Tang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xun Lu
- Agricultural Science Academy of Xiangxi Tujia and Miao Autonomous Prefecture, Xiangxi 416000, China
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
3
|
Zhang D, Yang H, Jiang L, Zhao C, Wang M, Hu B, Yu C, Wei Z, Tse YC. Interaction between DLC-1 and SAO-1 facilitates CED-4 translocation during apoptosis in the Caenorhabditis elegans germline. Cell Death Dis 2022; 8:441. [PMID: 36323675 PMCID: PMC9630320 DOI: 10.1038/s41420-022-01233-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Apoptosis is one of the major forms of programmed cell death, and it serves vital biological functions in multicellular animal and plant cells. The core mechanism of apoptosis is highly conserved in metazoans, where the translocation of CED-4/Apaf-1 from mitochondria to the nuclear membrane is required to initiate and execute apoptosis. However, the underlying molecular mechanisms of this translocation are poorly understood. In this study, we showed that SAO-1 binds DLC-1 and prevents its degradation to promote apoptosis in C. elegans germ cells. We demonstrated that SAO-1 and DLC-1 regulate CED-4/Apaf-1 nuclear membrane accumulation during apoptosis. Isothermal titration calorimetry-based assay and high-resolution crystal structure analysis further revealed that SAO-1 interacted with DLC-1 to form a 2:4 complex: each of the two β-sheets in the SAO-1 peptide interacted with two DLC-1 dimers. Point mutations at the SAO-1-DLC-1 binding interface significantly inhibited apoptotic corpse formation and CED-4 nuclear membrane accumulation within C. elegans germ cells. In conclusion, our study provides a new perspective on the regulation of CED-4-mediated apoptosis.
Collapse
Affiliation(s)
- Dandan Zhang
- grid.19373.3f0000 0001 0193 3564School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001 China ,grid.263817.90000 0004 1773 1790School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Haibin Yang
- grid.263817.90000 0004 1773 1790School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Ling Jiang
- grid.263817.90000 0004 1773 1790School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.194645.b0000000121742757School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong, China
| | - Chan Zhao
- grid.263817.90000 0004 1773 1790School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Mengjun Wang
- grid.263817.90000 0004 1773 1790School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Boyi Hu
- grid.263817.90000 0004 1773 1790School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.221309.b0000 0004 1764 5980Department of Biology, State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Cong Yu
- grid.263817.90000 0004 1773 1790School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Zhiyi Wei
- grid.263817.90000 0004 1773 1790School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Yu Chung Tse
- grid.263817.90000 0004 1773 1790Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Core Research Facilities, Southern University of Science and Technology, Shenzhen, 518055 China
| |
Collapse
|
4
|
Deng Y, Luo KL, Shaye DD, Greenwald I. A Screen of the Conserved Kinome for Negative Regulators of LIN-12 Negative Regulatory Region ("NRR")-Missense Activity in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2019; 9:3567-3574. [PMID: 31519743 PMCID: PMC6829150 DOI: 10.1534/g3.119.400471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/10/2019] [Indexed: 11/24/2022]
Abstract
Genetic analysis of LIN-12/Notch signaling in C. elegans has provided many insights into human biology. Activating missense mutations in the Negative Regulatory Region (NRR) of the ectodomain of LIN-12/Notch were first described in C. elegans, and similar mutations in human Notch were later found to cause T-cell acute lymphoblastic leukemia (T-ALL). The ubiquitin ligase sel-10/Fbw7 is the prototype of a conserved negative regulator of lin-12/Notch that was first defined by loss-of-function mutations that enhance lin-12 NRR-missense activity in C. elegans, and then demonstrated to regulate Notch activity in mammalian cells and to be a bona fide tumor suppressor in T-ALL. Here, we report the results of an RNAi screen of 248 C. elegans protein kinase-encoding genes with human orthologs for enhancement of a weakly activating NRR-missense mutation of lin-12 in the Vulval Precursor Cells. We identified, and validated, thirteen kinase genes whose loss led to increase lin-12 activity; eleven of these genes have never been implicated previously in regulating Notch activity in any system. Depleting the activity of five kinase genes (cdk-8, wnk-1, kin-3, hpo-11, and mig-15) also significantly enhanced the activity of a transgene in which heterologous sequences drive expression of the untethered intracellular domain of LIN-12, suggesting that they increase the activity or stability of the signal-transducing form of LIN-12/Notch. Precedents set by other regulators of lin-12/Notch defined through genetic interactions in C. elegans suggest that this new set of genes may include negative regulators that are functionally relevant to mammalian development and cancer.
Collapse
Affiliation(s)
| | - Katherine Leisan Luo
- Integrated Program in Cellular, Molecular and Biophysical Studies, Columbia University, NY 10027
| | | | | |
Collapse
|
5
|
RNAi Screen Identifies Novel Regulators of RNP Granules in the Caenorhabditis elegans Germ Line. G3-GENES GENOMES GENETICS 2016; 6:2643-54. [PMID: 27317775 PMCID: PMC4978917 DOI: 10.1534/g3.116.031559] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Complexes of RNA and RNA binding proteins form large-scale supramolecular structures under many cellular contexts. In Caenorhabditis elegans, small germ granules are present in the germ line that share characteristics with liquid droplets that undergo phase transitions. In meiotically-arrested oocytes of middle-aged hermaphrodites, the germ granules appear to aggregate or condense into large assemblies of RNA-binding proteins and maternal mRNAs. Prior characterization of the assembly of large-scale RNP structures via candidate approaches has identified a small number of regulators of phase transitions in the C. elegans germ line; however, the assembly, function, and regulation of these large RNP assemblies remain incompletely understood. To identify genes that promote remodeling and assembly of large RNP granules in meiotically-arrested oocytes, we performed a targeted, functional RNAi screen and identified over 300 genes that regulate the assembly of the RNA-binding protein MEX-3 into large granules. Among the most common GO classes are several categories related to RNA biology, as well as novel categories such as cell cortex, ER, and chromosome segregation. We found that arrested oocytes that fail to localize MEX-3 into cortical granules display reduced oocyte quality, consistent with the idea that the larger RNP assemblies promote oocyte quality when fertilization is delayed. Interestingly, a relatively small number of genes overlap with the regulators of germ granule assembly during normal development, or with the regulators of solid RNP granules in cgh-1 oocytes, suggesting fundamental differences in the regulation of RNP granule phase transitions during meiotic arrest.
Collapse
|
6
|
Ertl I, Porta-de-la-Riva M, Gómez-Orte E, Rubio-Peña K, Aristizábal-Corrales D, Cornes E, Fontrodona L, Osteikoetxea X, Ayuso C, Askjaer P, Cabello J, Cerón J. Functional Interplay of Two Paralogs Encoding SWI/SNF Chromatin-Remodeling Accessory Subunits During Caenorhabditis elegans Development. Genetics 2016; 202:961-75. [PMID: 26739451 PMCID: PMC4788132 DOI: 10.1534/genetics.115.183533] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/21/2015] [Indexed: 12/16/2022] Open
Abstract
SWI/SNF ATP-dependent chromatin-remodeling complexes have been related to several cellular processes such as transcription, regulation of chromosomal stability, and DNA repair. The Caenorhabditis elegans gene ham-3 (also known as swsn-2.1) and its paralog swsn-2.2 encode accessory subunits of SWI/SNF complexes. Using RNA interference (RNAi) assays and diverse alleles we investigated whether ham-3 and swsn-2.2 have different functions during C. elegans development since they encode proteins that are probably mutually exclusive in a given SWI/SNF complex. We found that ham-3 and swsn-2.2 display similar functions in vulva specification, germline development, and intestinal cell proliferation, but have distinct roles in embryonic development. Accordingly, we detected functional redundancy in some developmental processes and demonstrated by RNA sequencing of RNAi-treated L4 animals that ham-3 and swsn-2.2 regulate the expression of a common subset of genes but also have specific targets. Cell lineage analyses in the embryo revealed hyper-proliferation of intestinal cells in ham-3 null mutants whereas swsn-2.2 is required for proper cell divisions. Using a proteomic approach, we identified SWSN-2.2-interacting proteins needed for early cell divisions, such as SAO-1 and ATX-2, and also nuclear envelope proteins such as MEL-28. swsn-2.2 mutants phenocopy mel-28 loss-of-function, and we observed that SWSN-2.2 and MEL-28 colocalize in mitotic and meiotic chromosomes. Moreover, we demonstrated that SWSN-2.2 is required for correct chromosome segregation and nuclear reassembly after mitosis including recruitment of MEL-28 to the nuclear periphery.
Collapse
Affiliation(s)
- Iris Ertl
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Montserrat Porta-de-la-Riva
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain C. elegans Core Facility, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Eva Gómez-Orte
- Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Karinna Rubio-Peña
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - David Aristizábal-Corrales
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Eric Cornes
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Laura Fontrodona
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Xabier Osteikoetxea
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Cristina Ayuso
- Andalusian Center for Developmental Biology (CABD), Consejo Superior de Investigaciones Científicas/Junta de Andalucia/Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), Consejo Superior de Investigaciones Científicas/Junta de Andalucia/Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Juan Cabello
- Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Julián Cerón
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|