1
|
Hanly JJ, Loh LS, Mazo-Vargas A, Rivera-Miranda TS, Livraghi L, Tendolkar A, Day CR, Liutikaite N, Earls EA, Corning OBWH, D'Souza N, Hermina-Perez JJ, Mehta C, Ainsworth JA, Rossi M, Papa R, McMillan WO, Perry MW, Martin A. Frizzled2 receives WntA signaling during butterfly wing pattern formation. Development 2023; 150:dev201868. [PMID: 37602496 PMCID: PMC10560568 DOI: 10.1242/dev.201868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023]
Abstract
Butterfly color patterns provide visible and biodiverse phenotypic readouts of the patterning processes. Although the secreted ligand WntA has been shown to instruct the color pattern formation in butterflies, its mode of reception remains elusive. Butterfly genomes encode four homologs of the Frizzled-family of Wnt receptors. Here, we show that CRISPR mosaic knockouts of frizzled2 (fz2) phenocopy the color pattern effects of WntA loss of function in multiple nymphalids. Whereas WntA mosaic clones result in intermediate patterns of reduced size, fz2 clones are cell-autonomous, consistent with a morphogen function. Shifts in expression of WntA and fz2 in WntA crispant pupae show that they are under positive and negative feedback, respectively. Fz1 is required for Wnt-independent planar cell polarity in the wing epithelium. Fz3 and Fz4 show phenotypes consistent with Wnt competitive-antagonist functions in vein formation (Fz3 and Fz4), wing margin specification (Fz3), and color patterning in the Discalis and Marginal Band Systems (Fz4). Overall, these data show that the WntA/Frizzled2 morphogen-receptor pair forms a signaling axis that instructs butterfly color patterning and shed light on the functional diversity of insect Frizzled receptors.
Collapse
Affiliation(s)
- Joseph J. Hanly
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
- Smithsonian Tropical Research Institute, Gamboa 0843-03092, Panama
| | - Ling S. Loh
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Anyi Mazo-Vargas
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | | | - Luca Livraghi
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
- Smithsonian Tropical Research Institute, Gamboa 0843-03092, Panama
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Amruta Tendolkar
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Christopher R. Day
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC 27708, USA
| | - Neringa Liutikaite
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Emily A. Earls
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Olaf B. W. H. Corning
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Natalie D'Souza
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - José J. Hermina-Perez
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Caroline Mehta
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Julia A. Ainsworth
- Department of Cell and Developmental Biology, UC San Diego, La Jolla, CA, USA
| | - Matteo Rossi
- Division of Evolutionary Biology, Ludwig Maximilian University, Munich 80539, Germany
| | - Riccardo Papa
- Department of Biology, University of Puerto Rico at Río Piedras, San Juan 00931, Puerto Rico
- Molecular Sciences and Research Center, University of Puerto Rico, San Juan 00931, Puerto Rico
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale, Università di Parma, Parma 43121, Italy
| | - W. Owen McMillan
- Smithsonian Tropical Research Institute, Gamboa 0843-03092, Panama
| | - Michael W. Perry
- Department of Cell and Developmental Biology, UC San Diego, La Jolla, CA, USA
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
- Smithsonian Tropical Research Institute, Gamboa 0843-03092, Panama
| |
Collapse
|
2
|
Mieszczanek J, Strutt H, Rutherford TJ, Strutt D, Bienz M, Gammons MV. Selective function of the PDZ domain of Dishevelled in noncanonical Wnt signalling. J Cell Sci 2022; 135:jcs259547. [PMID: 35542970 PMCID: PMC9234668 DOI: 10.1242/jcs.259547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/28/2022] [Indexed: 11/29/2022] Open
Abstract
Dishevelled is a cytoplasmic hub that transduces Wnt signals to cytoplasmic effectors, which can be broadly characterised as canonical (β-catenin dependent) and noncanonical, to specify cell fates and behaviours during development. To transduce canonical Wnt signals, Dishevelled binds to the intracellular face of Frizzled through its DEP domain and polymerises through its DIX domain to assemble dynamic signalosomes. Dishevelled also contains a PDZ domain, whose function remains controversial. Here, we use genome editing to delete the PDZ domain-encoding region from Drosophila dishevelled. Canonical Wingless signalling is entirely normal in these deletion mutants; however, they show defects in multiple contexts controlled by noncanonical Wnt signalling, such as planar polarity. We use nuclear magnetic resonance spectroscopy to identify bona fide PDZ-binding motifs at the C termini of different polarity proteins. Although deletions of these motifs proved aphenotypic in adults, we detected changes in the proximodistal distribution of the polarity protein Flamingo (also known as Starry night) in pupal wings that suggest a modulatory role of these motifs in polarity signalling. We also provide new genetic evidence that planar polarity relies on the DEP-dependent recruitment of Dishevelled to the plasma membrane by Frizzled.
Collapse
Affiliation(s)
- Juliusz Mieszczanek
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Helen Strutt
- University of Sheffield, School of Biosciences,Firth Court,Western Bank, Sheffield, S10 2TN, UK
| | - Trevor J. Rutherford
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - David Strutt
- University of Sheffield, School of Biosciences,Firth Court,Western Bank, Sheffield, S10 2TN, UK
| | - Mariann Bienz
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Melissa V. Gammons
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
3
|
Mehta S, Hingole S, Chaudhary V. The Emerging Mechanisms of Wnt Secretion and Signaling in Development. Front Cell Dev Biol 2021; 9:714746. [PMID: 34485301 PMCID: PMC8415634 DOI: 10.3389/fcell.2021.714746] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/20/2021] [Indexed: 12/22/2022] Open
Abstract
Wnts are highly-conserved lipid-modified secreted proteins that activate multiple signaling pathways. These pathways regulate crucial processes during various stages of development and maintain tissue homeostasis in adults. One of the most fascinating aspects of Wnt protein is that despite being hydrophobic, they are known to travel several cell distances in the extracellular space. Research on Wnts in the past four decades has identified several factors and uncovered mechanisms regulating their expression, secretion, and mode of extracellular travel. More recently, analyses on the importance of Wnt protein gradients in the growth and patterning of developing tissues have recognized the complex interplay of signaling mechanisms that help in maintaining tissue homeostasis. This review aims to present an overview of the evidence for the various modes of Wnt protein secretion and signaling and discuss mechanisms providing precision and robustness to the developing tissues.
Collapse
Affiliation(s)
| | | | - Varun Chaudhary
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
4
|
The BMP Pathway in Blood Vessel and Lymphatic Vessel Biology. Int J Mol Sci 2021; 22:ijms22126364. [PMID: 34198654 PMCID: PMC8232321 DOI: 10.3390/ijms22126364] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) were originally identified as the active components in bone extracts that can induce ectopic bone formation. In recent decades, their key role has broadly expanded beyond bone physiology and pathology. Nowadays, the BMP pathway is considered an important player in vascular signaling. Indeed, mutations in genes encoding different components of the BMP pathway cause various severe vascular diseases. Their signaling contributes to the morphological, functional and molecular heterogeneity among endothelial cells in different vessel types such as arteries, veins, lymphatic vessels and capillaries within different organs. The BMP pathway is a remarkably fine-tuned pathway. As a result, its signaling output in the vessel wall critically depends on the cellular context, which includes flow hemodynamics, interplay with other vascular signaling cascades and the interaction of endothelial cells with peri-endothelial cells and the surrounding matrix. In this review, the emerging role of BMP signaling in lymphatic vessel biology will be highlighted within the framework of BMP signaling in the circulatory vasculature.
Collapse
|
5
|
Tang W, Zhu H, Feng Y, Guo R, Wan D. The Impact of Gut Microbiota Disorders on the Blood-Brain Barrier. Infect Drug Resist 2020; 13:3351-3363. [PMID: 33061482 PMCID: PMC7532923 DOI: 10.2147/idr.s254403] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/30/2020] [Indexed: 12/14/2022] Open
Abstract
The gut microbiota is symbiotic with the human host and has been extensively studied in recent years resulting in increasing awareness of the effects of the gut microbiota on human health. In this review, we summarize the current evidence for the effects of gut microbes on the integrity of the cerebral blood-brain barrier (BBB), focusing on the pathogenic impact of gut microbiota disorders. Based on our description and summarization of the effects of the gut microbiota and its metabolites on the nervous, endocrine, and immune systems and related signaling pathways and the resulting destruction of the BBB, we suggest that regulating and supplementing the intestinal microbiota as well as targeting immune cells and inflammatory mediators are required to protect the BBB.
Collapse
Affiliation(s)
- Wei Tang
- Department of Emergency & Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Huifeng Zhu
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing 400716, People's Republic of China
| | - Yanmei Feng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Rui Guo
- Department of Emergency & Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Dong Wan
- Department of Emergency & Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| |
Collapse
|
6
|
Cheng Y, Li L, Pan S, Jiang H, Jin H. Targeting Frizzled-7 Decreases Stemness and Chemotherapeutic Resistance in Gastric Cancer Cells by Suppressing Myc Expression. Med Sci Monit 2019; 25:8637-8644. [PMID: 31733054 PMCID: PMC6874837 DOI: 10.12659/msm.918504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Although the promoting roles of Frizzled-7 (Fzd7) have been shown before, its effects in gastric cancer (GC) cell stemness are still unclear. The present study assessed the effects of Fzd7 on GC cell stemness and chemoresistance. MATERIAL AND METHODS Clinical samples were used to detect Fzd7 expression and online datasets were used to analyze the correlation between Fzd7 expression and GC patient prognosis. Quantitative real-time PCR (qPCR), Western blot, and spheroid formation were used to detect the stemness of cells and Fzd7-mediated effects on GC cell stemness. Cell viability was assessed to evaluate the role of Fzd7 in chemoresistance of GC cells. RESULTS We found that the expression of Frizzled-7 (Fzd7), a Wnt receptor, was increased in gastric cancer (GC) cells and tissues. Additionally, Fzd7 expression was correlated with shorter overall survival of GC patients. Knockdown of Fzd7 or using inhibitors of Wnt/Fzd (OMP-18R5/Vantictumad) decreased GC cell stemness, characterized as a decrease of spheroid formation ability and expression of stemness regulators. Notably, Fzd7 knockdown or inhibitors of Wnt/Fzd attenuated the chemoresistance of GC cells. Furthermore, elevation of Myc expression rescued the effects of Fzd7 inhibition on GC cell stemness and chemoresistance. CONCLUSIONS Our results suggest that inhibition of Fzd7 decreases the stemness and chemotherapeutic resistance of GC cells.
Collapse
Affiliation(s)
- Yongzhong Cheng
- Department of Oncology, Wuhan Puren Hospital, Wuhan, Hubei, China (mainland)
| | - Li Li
- Department of Science and Education, Wuhan Puren Hospital, Wuhan, Hubei, China (mainland)
| | - Sirong Pan
- Department of Medicine, Wuhan Puren Hospital, Wuhan, Hubei, China (mainland)
| | - Huilin Jiang
- Department of Oncology, Xiehe Jiangbei Hospital, Wuhan, Hubei, China (mainland)
| | - Hongyan Jin
- Department of Oncology, Wuhan Puren Hospital, Wuhan, Hubei, China (mainland)
| |
Collapse
|
7
|
Abstract
Wnt proteins are secreted glycoproteins that regulate multiple processes crucial to the development and tissue homeostasis of multicellular organisms, including tissue patterning, proliferation, cell fate specification, cell polarity and migration. To elicit these effects, Wnts act as autocrine as well as paracrine signalling molecules between Wnt-producing and Wnt-receiving cells. More than 40 years after the discovery of the Wg/Wnt pathway, it is still unclear how they are transported to fulfil their paracrine signalling functions. Several mechanisms have been proposed to mediate intercellular Wnt transport, including Wnt-binding proteins, lipoproteins, exosomes and cytonemes. In this Review, we describe the evidence for each proposed mechanism, and discuss how they may contribute to Wnt dispersal in tissue-specific and context-dependent manners, to regulate embryonic development precisely and maintain the internal steady state within a defined tissue.
Collapse
Affiliation(s)
- Daniel Routledge
- Living Systems Institute, Biosciences, College of Life and Environmental Science, University of Exeter, Exeter EX4 4QD, UK
| | - Steffen Scholpp
- Living Systems Institute, Biosciences, College of Life and Environmental Science, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
8
|
Gammons MV, Rutherford TJ, Steinhart Z, Angers S, Bienz M. Essential role of the Dishevelled DEP domain in a Wnt-dependent human-cell-based complementation assay. J Cell Sci 2016; 129:3892-3902. [PMID: 27744318 PMCID: PMC5087658 DOI: 10.1242/jcs.195685] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/30/2016] [Indexed: 01/15/2023] Open
Abstract
Dishevelled (DVL) assembles Wnt signalosomes through dynamic head-to-tail polymerisation by means of its DIX domain. It thus transduces Wnt signals to cytoplasmic effectors including β-catenin, to control cell fates during normal development, tissue homeostasis and also in cancer. To date, most functional studies of Dishevelled relied on its Wnt-independent signalling activity resulting from overexpression, which is sufficient to trigger polymerisation, bypassing the requirement for Wnt signals. Here, we generate a human cell line devoid of endogenous Dishevelled (DVL1- DVL3), which lacks Wnt signal transduction to β-catenin. However, Wnt responses can be restored by DVL2 stably re-expressed at near-endogenous levels. Using this assay to test mutant DVL2, we show that its DEP domain is essential, whereas its PDZ domain is dispensable, for signalling to β-catenin. Our results imply two mutually exclusive functions of the DEP domain in Wnt signal transduction - binding to Frizzled to recruit Dishevelled to the receptor complex, and dimerising to cross-link DIX domain polymers for signalosome assembly. Our assay avoids the caveats associated with overexpressing Dishevelled, and provides a powerful tool for rigorous functional tests of this pivotal human signalling protein.
Collapse
Affiliation(s)
- Melissa V Gammons
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Trevor J Rutherford
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Zachary Steinhart
- Leslie Dan Faculty of Pharmacy, Room 901, University of Toronto, 144 College Street, Toronto, Ontario, Canada M5S 3M2
| | - Stephane Angers
- Leslie Dan Faculty of Pharmacy, Room 901, University of Toronto, 144 College Street, Toronto, Ontario, Canada M5S 3M2
| | - Mariann Bienz
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
9
|
Gammons MV, Renko M, Johnson CM, Rutherford TJ, Bienz M. Wnt Signalosome Assembly by DEP Domain Swapping of Dishevelled. Mol Cell 2016; 64:92-104. [PMID: 27692984 PMCID: PMC5065529 DOI: 10.1016/j.molcel.2016.08.026] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/15/2016] [Accepted: 08/23/2016] [Indexed: 01/17/2023]
Abstract
Extracellular signals are often transduced by dynamic signaling complexes ("signalosomes") assembled by oligomerizing hub proteins following their recruitment to signal-activated transmembrane receptors. A paradigm is the Wnt signalosome, which is assembled by Dishevelled via reversible head-to-tail polymerization by its DIX domain. Its activity causes stabilization of β-catenin, a Wnt effector with pivotal roles in animal development and cancer. How Wnt triggers signalosome assembly is unknown. Here, we use structural analysis, as well as biophysical and cell-based assays, to show that the DEP domain of Dishevelled undergoes a conformational switch, from monomeric to swapped dimer, to trigger DIX-dependent polymerization and signaling to β-catenin. This occurs in two steps: binding of monomeric DEP to Frizzled followed by DEP domain swapping triggered by its high local concentration upon Wnt-induced recruitment into clathrin-coated pits. DEP domain swapping confers directional bias on signaling, and the dimerization provides cross-linking between Dishevelled polymers, illustrating a key principle underlying signalosome formation.
Collapse
Affiliation(s)
- Melissa V Gammons
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Miha Renko
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Christopher M Johnson
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Trevor J Rutherford
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Mariann Bienz
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
10
|
Schenkelaars Q, Fierro-Constain L, Renard E, Hill AL, Borchiellini C. Insights into Frizzled evolution and new perspectives. Evol Dev 2015; 17:160-9. [PMID: 25801223 DOI: 10.1111/ede.12115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Frizzled proteins (FZDs) are a family of trans-membrane receptors that play pivotal roles in Wnt pathways and thus in animal development. Based on evaluation of the Amphimedon queenslandica genome, it has been proposed that two Fzd genes may have been present before the split between demosponges and other animals. The major purpose of this study is to go deeper into the evolution of this family of proteins by evaluating an extended set of available data from bilaterians, cnidarians, and different basally branching animal lineages (Ctenophora, Placozoa, Porifera). The present study provides evidence that the last common ancestor of metazoans did possess two Fzd genes, and that the last common ancestor of cnidarians and bilaterians may have possessed four Fzd. Furthermore, amino acid analyses revealed an accurate diagnostic motif for these four FZD subfamilies facilitating the assignation of Frizzled paralogs to each subfamily. By highlighting conserved amino acids for each FZD subfamily, our study could also provide a framework for further research on the precise mechanisms that have driven FZD neo-functionalization.
Collapse
Affiliation(s)
- Quentin Schenkelaars
- Aix-Marseille Université, IMBE UMR CNRS 7263, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Station Marine d'Endoume, Marseille, France
| | | | | | | | | |
Collapse
|
11
|
Pharmacological folding chaperones act as allosteric ligands of Frizzled4. Nat Chem Biol 2015; 11:280-6. [DOI: 10.1038/nchembio.1770] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 02/10/2015] [Indexed: 02/01/2023]
|
12
|
Li H, Zhang Z, Bi Y, Yang D, Zhang L, Liu J. Expression characteristics of β-catenin in scallop Chlamys farreri gonads and its role as a potential upstream gene of Dax1 through canonical Wnt signalling pathway regulating the spermatogenesis. PLoS One 2014; 9:e115917. [PMID: 25549092 PMCID: PMC4280107 DOI: 10.1371/journal.pone.0115917] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/01/2014] [Indexed: 01/15/2023] Open
Abstract
β-catenin is a key signaling molecule in the canonical Wnt pathway, which is involved in animal development. However, little information has been reported for β-catenin in bivalves. In the present study, we cloned a homolog of β-catenin from the scallop Chlamys farreri and determined its expression characteristics. The full-length cDNA of β-catenin was 3,353 bp, including a 2,511 bp open reading frame that encoded a predicted 836 amino acid protein. Level of the β-catenin mRNA increased significantly (P<0.05) with C. farreri gonadal development and presented a sexually dimorphic expression pattern in the gonads, which was significantly high in ovaries detected by quantitative real-time polymerase chain reaction (qRT-PCR). Immunohistochemical analysis revealed that the β-catenin was mainly located in germ cells of the gonads, with obvious positive immune signals in the oogonia and oocytes of ovaries as well as in the spermatogonia and spermatocytes of testes, implying β-catenin might be involved in the gametogenesis of C. farreri. Furthermore, when 0.1 µg/mL and 0.2 µg/mL DKK-1 (an inhibitor of the canonical Wnt pathway) were added in vitro to culture medium containing testis cells of C. farreri, the expression of β-catenin decreased significantly detected by qRT-PCR (P<0.05), suggesting the canonical Wnt signal pathway exists in the scallop testis. Similarly, when 50 µM and 100 µM quercetin (an inhibitor of β-catenin) were added in vitro to the culture system, Dax1 expression was significantly down-regulated compared with controls (P<0.05), implying the β-catenin is an upstream gene of Dax1 and is involved in the regulation of C. farreri spermatogenesis.
Collapse
Affiliation(s)
- Hailong Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, China; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Zhifeng Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, China
| | - Ying Bi
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, China
| | - Dandan Yang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, China
| | - Litao Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jianguo Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, China
| |
Collapse
|
13
|
Hua ZL, Chang H, Wang Y, Smallwood PM, Nathans J. Partial interchangeability of Fz3 and Fz6 in tissue polarity signaling for epithelial orientation and axon growth and guidance. Development 2014; 141:3944-54. [PMID: 25294940 DOI: 10.1242/dev.110189] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In mammals, a set of anatomically diverse polarity processes - including axon growth and guidance, hair follicle orientation, and stereociliary bundle orientation in inner ear sensory hair cells - appear to be mechanistically related, as judged by their dependence on vertebrate homologues of core tissue polarity/planar cell polarity (PCP) genes in Drosophila. To explore more deeply the mechanistic similarities between different polarity processes, we have determined the extent to which frizzled 3 (Fz3) can rescue the hair follicle and Merkel cell polarity defects in frizzled 6-null (Fz6(-/-)) mice, and, reciprocally, the extent to which Fz6 can rescue the axon growth and guidance defects in Fz3(-/-) mice. These experiments reveal full rescue of the Fz6(-/-) phenotype by Fz3 and partial rescue of the Fz3(-/-) phenotype by Fz6, implying that these two proteins are likely to act in a conserved manner in these two contexts. Stimulated by these observations, we searched for additional anatomical structures that exhibit macroscopic polarity and that might plausibly use Fz3 and/or Fz6 signaling. This search has revealed a hitherto unappreciated pattern of papillae on the dorsal surface of the tongue that depends, at least in part, on redundant signaling by Fz3 and Fz6. Taken together, these experiments provide compelling evidence for a close mechanistic relationship between multiple anatomically diverse polarity processes.
Collapse
Affiliation(s)
- Zhong L Hua
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hao Chang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA The Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yanshu Wang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA The Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Philip M Smallwood
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA The Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA The Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
14
|
Dillman AR, Minor PJ, Sternberg PW. Origin and evolution of dishevelled. G3 (BETHESDA, MD.) 2013; 3:251-62. [PMID: 23390601 PMCID: PMC3564985 DOI: 10.1534/g3.112.005314] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/09/2012] [Indexed: 12/31/2022]
Abstract
Dishevelled (Dsh or Dvl) is an important signaling protein, playing a key role in Wnt signaling and relaying cellular information for several developmental pathways. Dsh is highly conserved among metazoans and has expanded into a multigene family in most bilaterian lineages, including vertebrates, planarians, and nematodes. These orthologs, where explored, are known to have considerable overlap in function, but evidence for functional specialization continues to mount. We performed a comparative analysis of Dsh across animals to explore protein architecture and identify conserved and divergent features that could provide insight into functional specialization with an emphasis on invertebrates, especially nematodes. We find evidence of dynamic evolution of Dsh, particularly among nematodes, with taxa varying in ortholog number from one to three. We identify a new domain specific to some nematode lineages and find an unexpected nuclear localization signal conserved in many Dsh orthologs. Our findings raise questions of protein evolution in general and provide clues as to how animals have dealt with the complex intricacies of having a protein, such as Dsh, act as a central messenger hub connected to many different and vitally important pathways. We discuss our findings in the context of functional specialization and bring many testable hypotheses to light.
Collapse
Affiliation(s)
| | | | - Paul W. Sternberg
- Howard Hughes Medical Institute, Division of Biology, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|