1
|
Woerner AE, Veeramah KR, Watkins JC, Hammer MF. The Role of Phylogenetically Conserved Elements in Shaping Patterns of Human Genomic Diversity. Mol Biol Evol 2020; 35:2284-2295. [PMID: 30113695 DOI: 10.1093/molbev/msy145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Evolutionary genetic studies have shown a positive correlation between levels of nucleotide diversity and either rates of recombination or genetic distance to genes. Both positive-directional and purifying selection have been offered as the source of these correlations via genetic hitchhiking and background selection, respectively. Phylogenetically conserved elements (CEs) are short (∼100 bp), widely distributed (comprising ∼5% of genome), sequences that are often found far from genes. While the function of many CEs is unknown, CEs also are associated with reduced diversity at linked sites. Using high coverage (>80×) whole genome data from two human populations, the Yoruba and the CEU, we perform fine scale evaluations of diversity, rates of recombination, and linkage to genes. We find that the local rate of recombination has a stronger effect on levels of diversity than linkage to genes, and that these effects of recombination persist even in regions far from genes. Our whole genome modeling demonstrates that, rather than recombination or GC-biased gene conversion, selection on sites within or linked to CEs better explains the observed genomic diversity patterns. A major implication is that very few sites in the human genome are predicted to be free of the effects of selection. These sites, which we refer to as the human "neutralome," comprise only 1.2% of the autosomes and 5.1% of the X chromosome. Demographic analysis of the neutralome reveals larger population sizes and lower rates of growth for ancestral human populations than inferred by previous analyses.
Collapse
Affiliation(s)
- August E Woerner
- ARL Division of Biotechnology, University of Arizona, Tucson, AZ.,Center for Human Identification, University of North Texas Health Science Center, Fort Worth, TX
| | - Krishna R Veeramah
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY
| | | | - Michael F Hammer
- ARL Division of Biotechnology, University of Arizona, Tucson, AZ
| |
Collapse
|
2
|
Machado HE, Lawrie DS, Petrov DA. Pervasive Strong Selection at the Level of Codon Usage Bias in Drosophila melanogaster. Genetics 2020; 214:511-528. [PMID: 31871131 PMCID: PMC7017021 DOI: 10.1534/genetics.119.302542] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/12/2019] [Indexed: 11/18/2022] Open
Abstract
Codon usage bias (CUB), where certain codons are used more frequently than expected by chance, is a ubiquitous phenomenon and occurs across the tree of life. The dominant paradigm is that the proportion of preferred codons is set by weak selection. While experimental changes in codon usage have at times shown large phenotypic effects in contrast to this paradigm, genome-wide population genetic estimates have supported the weak selection model. Here we use deep genomic population sequencing of two Drosophila melanogaster populations to measure selection on synonymous sites in a way that allowed us to estimate the prevalence of both weak and strong purifying selection. We find that selection in favor of preferred codons ranges from weak (|Nes| ∼ 1) to strong (|Nes| > 10), with strong selection acting on 10-20% of synonymous sites in preferred codons. While previous studies indicated that selection at synonymous sites could be strong, this is the first study to detect and quantify strong selection specifically at the level of CUB. Further, we find that CUB-associated polymorphism accounts for the majority of strong selection on synonymous sites, with secondary contributions of splicing (selection on alternatively spliced genes, splice junctions, and spliceosome-bound sites) and transcription factor binding. Our findings support a new model of CUB and indicate that the functional importance of CUB, as well as synonymous sites in general, have been underestimated.
Collapse
Affiliation(s)
- Heather E Machado
- Cancer, Ageing, and Somatic Mutation, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - David S Lawrie
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697-3958
| | - Dmitri A Petrov
- Department of Biology, Stanford University, California 94305-5020
| |
Collapse
|
3
|
Kapopoulou A, Pfeifer SP, Jensen JD, Laurent S. The Demographic History of African Drosophila melanogaster. Genome Biol Evol 2019; 10:2338-2342. [PMID: 30169784 PMCID: PMC6363051 DOI: 10.1093/gbe/evy185] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2018] [Indexed: 11/14/2022] Open
Abstract
As one of the most commonly utilized organisms in the study of local adaptation, an accurate characterization of the demographic history of Drosophila melanogaster remains as an important research question. This owes both to the inherent interest in characterizing the population history of this model organism, as well as to the well-established importance of an accurate null demographic model for increasing power and decreasing false positive rates in genomic scans for positive selection. Although considerable attention has been afforded to this issue in non-African populations, less is known about the demographic history of African populations, including from the ancestral range of the species. While qualitative predictions and hypotheses have previously been forwarded, we here present a quantitative model fitting of the population history characterizing both the ancestral Zambian population range as well as the subsequently colonized west African populations, which themselves served as the source of multiple non-African colonization events. We here report the split time of the West African population at 72 kya, a date corresponding to human migration into this region as well as a period of climatic changes in the African continent. Furthermore, we have estimated population sizes at this split time. These parameter estimates thus represent an important null model for future investigations in to African and non-African D. melanogaster populations alike.
Collapse
Affiliation(s)
- Adamandia Kapopoulou
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Susanne P Pfeifer
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, Arizona
| | - Jeffrey D Jensen
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, Arizona
| | - Stefan Laurent
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
4
|
Arguello JR, Laurent S, Clark AG. Demographic History of the Human Commensal Drosophila melanogaster. Genome Biol Evol 2019; 11:844-854. [PMID: 30715331 PMCID: PMC6430986 DOI: 10.1093/gbe/evz022] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2019] [Indexed: 12/14/2022] Open
Abstract
The cohabitation of Drosophila melanogaster with humans is nearly ubiquitous. Though it has been well established that this fly species originated in sub-Saharan Africa, and only recently has spread globally, many details of its swift expansion remain unclear. Elucidating the demographic history of D. melanogaster provides a unique opportunity to investigate how human movement might have impacted patterns of genetic diversity in a commensal species, as well as providing neutral null models for studies aimed at identifying genomic signatures of local adaptation. Here, we use whole-genome data from five populations (Africa, North America, Europe, Central Asia, and the South Pacific) to carry out demographic inferences, with particular attention to the inclusion of migration and admixture. We demonstrate the importance of these parameters for model fitting and show that how previous estimates of divergence times are likely to be significantly underestimated as a result of not including them. Finally, we discuss how human movement along early shipping routes might have shaped the present-day population structure of D. melanogaster.
Collapse
Affiliation(s)
- J Roman Arguello
- Department of Ecology and Evolution, University of Lausanne, Switzerland
| | - Stefan Laurent
- Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University
- Department of Biological Statistics and Computational Biology, Cornell University
| |
Collapse
|
5
|
Beichman AC, Huerta-Sanchez E, Lohmueller KE. Using Genomic Data to Infer Historic Population Dynamics of Nonmodel Organisms. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-110617-062431] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genome sequence data are now being routinely obtained from many nonmodel organisms. These data contain a wealth of information about the demographic history of the populations from which they originate. Many sophisticated statistical inference procedures have been developed to infer the demographic history of populations from this type of genomic data. In this review, we discuss the different statistical methods available for inference of demography, providing an overview of the underlying theory and logic behind each approach. We also discuss the types of data required and the pros and cons of each method. We then discuss how these methods have been applied to a variety of nonmodel organisms. We conclude by presenting some recommendations for researchers looking to use genomic data to infer demographic history.
Collapse
Affiliation(s)
- Annabel C. Beichman
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095, USA
| | - Emilia Huerta-Sanchez
- Department of Molecular and Cell Biology, University of California, Merced, California 95343, USA
- Current affiliation: Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912, USA
| | - Kirk E. Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095, USA
- Interdepartmental Program in Bioinformatics and Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
6
|
Abstract
Levels and patterns of genetic diversity can provide insights into a population’s history. In species with sex chromosomes, differences between genomic regions with unique inheritance patterns can be used to distinguish between different sets of possible demographic and selective events. This review introduces the differences in population history for sex chromosomes and autosomes, provides the expectations for genetic diversity across the genome under different evolutionary scenarios, and gives an introductory description for how deviations in these expectations are calculated and can be interpreted. Predominantly, diversity on the sex chromosomes has been used to explore and address three research areas: 1) Mating patterns and sex-biased variance in reproductive success, 2) signatures of selection, and 3) evidence for modes of speciation and introgression. After introducing the theory, this review catalogs recent studies of genetic diversity on the sex chromosomes across species within the major research areas that sex chromosomes are typically applied to, arguing that there are broad similarities not only between male-heterogametic (XX/XY) and female-heterogametic (ZZ/ZW) sex determination systems but also any mating system with reduced recombination in a sex-determining region. Further, general patterns of reduced diversity in nonrecombining regions are shared across plants and animals. There are unique patterns across populations with vastly different patterns of mating and speciation, but these do not tend to cluster by taxa or sex determination system.
Collapse
Affiliation(s)
- Melissa A Wilson Sayres
- School of Life Sciences, Center for Evolution and Medicine, The Biodesign Institute, Arizona State University
| |
Collapse
|
7
|
Siewert KM, Voight BF. Detecting Long-Term Balancing Selection Using Allele Frequency Correlation. Mol Biol Evol 2018; 34:2996-3005. [PMID: 28981714 PMCID: PMC5850717 DOI: 10.1093/molbev/msx209] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Balancing selection occurs when multiple alleles are maintained in a population, which can result in their preservation over long evolutionary time periods. A characteristic signature of this long-term balancing selection is an excess number of intermediate frequency polymorphisms near the balanced variant. However, the expected distribution of allele frequencies at these loci has not been extensively detailed, and therefore existing summary statistic methods do not explicitly take it into account. Using simulations, we show that new mutations which arise in close proximity to a site targeted by balancing selection accumulate at frequencies nearly identical to that of the balanced allele. In order to scan the genome for balancing selection, we propose a new summary statistic, β, which detects these clusters of alleles at similar frequencies. Simulation studies show that compared with existing summary statistics, our measure has improved power to detect balancing selection, and is reasonably powered in non-equilibrium demographic models and under a range of recombination and mutation rates. We compute β on 1000 Genomes Project data to identify loci potentially subjected to long-term balancing selection in humans. We report two balanced haplotypes-localized to the genes WFS1 and CADM2-that are strongly linked to association signals for complex traits. Our approach is computationally efficient and applicable to species that lack appropriate outgroup sequences, allowing for well-powered analysis of selection in the wide variety of species for which population data are rapidly being generated.
Collapse
Affiliation(s)
- Katherine M Siewert
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Benjamin F Voight
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
8
|
Abstract
Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data.
Collapse
|
9
|
Bowlby HD, Fleming IA, Gibson AJF. Applying landscape genetics to evaluate threats affecting endangered Atlantic salmon populations. CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0824-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
10
|
Adaptive evolution of genes involved in the regulation of germline stem cells in Drosophila melanogaster and D. simulans. G3-GENES GENOMES GENETICS 2015; 5:583-92. [PMID: 25670770 PMCID: PMC4390574 DOI: 10.1534/g3.114.015875] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Population genetic and comparative analyses in diverse taxa have shown that numerous genes involved in reproduction are adaptively evolving. Two genes involved in germline stem cell regulation, bag of marbles (bam) and benign gonial cell neoplasm (bgcn), have been shown previously to experience recurrent, adaptive evolution in both Drosophila melanogaster and D. simulans. Here we report a population genetic survey on eight additional genes involved in germline stem cell regulation in D. melanogaster and D. simulans that reveals all eight of these genes reject a neutral model of evolution in at least one test and one species after correction for multiple testing using a false-discovery rate of 0.05. These genes play diverse roles in the regulation of germline stem cells, suggesting that positive selection in response to several evolutionary pressures may be acting to drive the adaptive evolution of these genes.
Collapse
|
11
|
Robinson JD, Coffman AJ, Hickerson MJ, Gutenkunst RN. Sampling strategies for frequency spectrum-based population genomic inference. BMC Evol Biol 2014; 14:254. [PMID: 25471595 PMCID: PMC4269862 DOI: 10.1186/s12862-014-0254-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/24/2014] [Indexed: 01/25/2023] Open
Abstract
Background The allele frequency spectrum (AFS) consists of counts of the number of single nucleotide polymorphism (SNP) loci with derived variants present at each given frequency in a sample. Multiple approaches have recently been developed for parameter estimation and calculation of model likelihoods based on the joint AFS from two or more populations. We conducted a simulation study of one of these approaches, implemented in the Python module δaδi, to compare parameter estimation and model selection accuracy given different sample sizes under one- and two-population models. Results Our simulations included a variety of demographic models and two parameterizations that differed in the timing of events (divergence or size change). Using a number of SNPs reasonably obtained through next-generation sequencing approaches (10,000 - 50,000), accurate parameter estimates and model selection were possible for models with more ancient demographic events, even given relatively small numbers of sampled individuals. However, for recent events, larger numbers of individuals were required to achieve accuracy and precision in parameter estimates similar to that seen for models with older divergence or population size changes. We quantify i) the uncertainty in model selection, using tools from information theory, and ii) the accuracy and precision of parameter estimates, using the root mean squared error, as a function of the timing of demographic events, sample sizes used in the analysis, and complexity of the simulated models. Conclusions Here, we illustrate the utility of the genome-wide AFS for estimating demographic history and provide recommendations to guide sampling in population genomics studies that seek to draw inference from the AFS. Our results indicate that larger samples of individuals (and thus larger AFS) provide greater power for model selection and parameter estimation for more recent demographic events. Electronic supplementary material The online version of this article (doi:10.1186/s12862-014-0254-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John D Robinson
- Department of Biology, City College of New York, New York, NY, 10031, USA. .,Current Address: South Carolina Department of Natural Resources, Marine Resources Research Institute, Charleston, SC, 29412, USA.
| | - Alec J Coffman
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA.
| | - Michael J Hickerson
- Department of Biology, City College of New York, New York, NY, 10031, USA. .,Subprogram in Ecology, Evolution and Behavior, the Graduate Center of the City University of New York, New York, NY, 10016, USA. .,Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, 10024, USA.
| | - Ryan N Gutenkunst
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
12
|
Antoniazza S, Kanitz R, Neuenschwander S, Burri R, Gaigher A, Roulin A, Goudet J. Natural selection in a postglacial range expansion: the case of the colour cline in the European barn owl. Mol Ecol 2014; 23:5508-23. [PMID: 25294501 DOI: 10.1111/mec.12957] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 09/30/2014] [Accepted: 10/03/2014] [Indexed: 12/13/2022]
Abstract
Gradients of variation--or clines--have always intrigued biologists. Classically, they have been interpreted as the outcomes of antagonistic interactions between selection and gene flow. Alternatively, clines may also establish neutrally with isolation by distance (IBD) or secondary contact between previously isolated populations. The relative importance of natural selection and these two neutral processes in the establishment of clinal variation can be tested by comparing genetic differentiation at neutral genetic markers and at the studied trait. A third neutral process, surfing of a newly arisen mutation during the colonization of a new habitat, is more difficult to test. Here, we designed a spatially explicit approximate Bayesian computation (ABC) simulation framework to evaluate whether the strong cline in the genetically based reddish coloration observed in the European barn owl (Tyto alba) arose as a by-product of a range expansion or whether selection has to be invoked to explain this colour cline, for which we have previously ruled out the actions of IBD or secondary contact. Using ABC simulations and genetic data on 390 individuals from 20 locations genotyped at 22 microsatellites loci, we first determined how barn owls colonized Europe after the last glaciation. Using these results in new simulations on the evolution of the colour phenotype, and assuming various genetic architectures for the colour trait, we demonstrate that the observed colour cline cannot be due to the surfing of a neutral mutation. Taking advantage of spatially explicit ABC, which proved to be a powerful method to disentangle the respective roles of selection and drift in range expansions, we conclude that the formation of the colour cline observed in the barn owl must be due to natural selection.
Collapse
Affiliation(s)
- Sylvain Antoniazza
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
13
|
Besnier F, Kent M, Skern-Mauritzen R, Lien S, Malde K, Edvardsen RB, Taylor S, Ljungfeldt LER, Nilsen F, Glover KA. Human-induced evolution caught in action: SNP-array reveals rapid amphi-atlantic spread of pesticide resistance in the salmon ecotoparasite Lepeophtheirus salmonis. BMC Genomics 2014; 15:937. [PMID: 25344698 PMCID: PMC4223847 DOI: 10.1186/1471-2164-15-937] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/16/2014] [Indexed: 12/23/2022] Open
Abstract
Background The salmon louse, Lepeophtheirus salmonis, is an ectoparasite of salmonids that causes huge economic losses in salmon farming, and has also been causatively linked with declines of wild salmonid populations. Lice control on farms is reliant upon a few groups of pesticides that have all shown time-limited efficiency due to resistance development. However, to date, this example of human-induced evolution is poorly documented at the population level due to the lack of molecular tools. As such, important evolutionary and management questions, linked to the development and dispersal of pesticide resistance in this parasite, remain unanswered. Here, we introduce the first Single Nucleotide Polymorphism (SNP) array for the salmon louse, which includes 6000 markers, and present a population genomic scan using this array on 576 lice from twelve farms distributed across the North Atlantic. Results Our results support the hypothesis of a single panmictic population of lice in the Atlantic, and importantly, revealed very strong selective sweeps on linkage groups 1 and 5. These sweeps included candidate genes potentially connected to pesticide resistance. After genotyping a further 576 lice from 12 full sibling families, a genome-wide association analysis established a highly significant association between the major sweep on linkage group 5 and resistance to emamectin benzoate, the most widely used pesticide in salmonid aquaculture for more than a decade. Conclusions The analysis of conserved haplotypes across samples from the Atlantic strongly suggests that emamectin benzoate resistance developed at a single source, and rapidly spread across the Atlantic within the period 1999 when the chemical was first introduced, to 2010 when samples for the present study were obtained. These results provide unique insights into the development and spread of pesticide resistance in the marine environment, and identify a small genomic region strongly linked to emamectin benzoate resistance. Finally, these results have highly significant implications for the way pesticide resistance is considered and managed within the aquaculture industry. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-937) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Abstract
Evolutionary forces shape patterns of genetic diversity within populations and contribute to phenotypic variation. In particular, recurrent positive selection has attracted significant interest in both theoretical and empirical studies. However, most existing theoretical models of recurrent positive selection cannot easily incorporate realistic confounding effects such as interference between selected sites, arbitrary selection schemes, and complicated demographic processes. It is possible to quantify the effects of arbitrarily complex evolutionary models by performing forward population genetic simulations, but forward simulations can be computationally prohibitive for large population sizes (>105). A common approach for overcoming these computational limitations is rescaling of the most computationally expensive parameters, especially population size. Here, we show that ad hoc approaches to parameter rescaling under the recurrent hitchhiking model do not always provide sufficiently accurate dynamics, potentially skewing patterns of diversity in simulated DNA sequences. We derive an extension of the recurrent hitchhiking model that is appropriate for strong selection in small population sizes and use it to develop a method for parameter rescaling that provides the best possible computational performance for a given error tolerance. We perform a detailed theoretical analysis of the robustness of rescaling across the parameter space. Finally, we apply our rescaling algorithms to parameters that were previously inferred for Drosophila and discuss practical considerations such as interference between selected sites.
Collapse
|
15
|
Bodare S, Stocks M, Yang JC, Lascoux M. Origin and demographic history of the endemic Taiwan spruce (Picea morrisonicola). Ecol Evol 2013; 3:3320-33. [PMID: 24223271 PMCID: PMC3797480 DOI: 10.1002/ece3.698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 11/08/2022] Open
Abstract
Taiwan spruce (Picea morrisonicola) is a vulnerable conifer species endemic to the island of Taiwan. A warming climate and competition from subtropical tree species has limited the range of Taiwan spruce to the higher altitudes of the island. Using seeds sampled from an area in the central mountain range of Taiwan, 15 nuclear loci were sequenced in order to measure genetic variation and to assess the long-term genetic stability of the species. Genetic diversity is low and comparable to other spruce species with limited ranges such as Picea breweriana, Picea chihuahuana, and Picea schrenkiana. Importantly, analysis using approximate Bayesian computation (ABC) provides evidence for a drastic decline in the effective population size approximately 0.3–0.5 million years ago (mya). We used simulations to show that this is unlikely to be a false-positive result due to the limited sample used here. To investigate the phylogenetic origin of Taiwan spruce, additional sequencing was performed in the Chinese spruce Picea wilsonii and combined with previously published data for three other mainland China species, Picea purpurea, Picea likiangensis, and P. schrenkiana. Analysis of population structure revealed that P. morrisonicola clusters most closely with P. wilsonii, and coalescent analyses using the program MIMAR dated the split to 4–8 mya, coincidental to the formation of Taiwan. Considering the population decrease that occurred after the split, however, led to a much more recent origin.
Collapse
Affiliation(s)
- Sofia Bodare
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University Uppsala, Sweden
| | | | | | | |
Collapse
|
16
|
Robinson MC, Stone EA, Singh ND. Population genomic analysis reveals no evidence for GC-biased gene conversion in Drosophila melanogaster. Mol Biol Evol 2013; 31:425-33. [PMID: 24214536 DOI: 10.1093/molbev/mst220] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gene conversion is the nonreciprocal exchange of genetic material between homologous chromosomes. Multiple lines of evidence from a variety of taxa strongly suggest that gene conversion events are biased toward GC-bearing alleles. However, in Drosophila, the data have largely been indirect and unclear, with some studies supporting the predictions of a GC-biased gene conversion model and other data showing contradictory findings. Here, we test whether gene conversion events are GC-biased in Drosophila melanogaster using whole-genome polymorphism and divergence data. Our results provide no support for GC-biased gene conversion and thus suggest that this process is unlikely to significantly contribute to patterns of polymorphism and divergence in this system.
Collapse
Affiliation(s)
- Matthew C Robinson
- Department of Biological Sciences, Program in Genetics, North Carolina State University
| | | | | |
Collapse
|
17
|
Chong Z, Zhai W, Li C, Gao M, Gong Q, Ruan J, Li J, Jiang L, Lv X, Hungate E, Wu CI. The evolution of small insertions and deletions in the coding genes of Drosophila melanogaster. Mol Biol Evol 2013; 30:2699-708. [PMID: 24077769 DOI: 10.1093/molbev/mst167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Studies of protein evolution have focused on amino acid substitutions with much less systematic analysis on insertion and deletions (indels) in protein coding genes. We hence surveyed 7,500 genes between Drosophila melanogaster and D. simulans, using D. yakuba as an outgroup for this purpose. The evolutionary rate of coding indels is indeed low, at only 3% of that of nonsynonymous substitutions. As coding indels follow a geometric distribution in size and tend to fall in low-complexity regions of proteins, it is unclear whether selection or mutation underlies this low rate. To resolve the issue, we collected genomic sequences from an isogenic African line of D. melanogaster (ZS30) at a high coverage of 70× and analyzed indel polymorphism between ZS30 and the reference genome. In comparing polymorphism and divergence, we found that the divergence to polymorphism ratio (i.e., fixation index) for smaller indels (size ≤ 10 bp) is very similar to that for synonymous changes, suggesting that most of the within-species polymorphism and between-species divergence for indels are selectively neutral. Interestingly, deletions of larger sizes (size ≥ 11 bp and ≤ 30 bp) have a much higher fixation index than synonymous mutations and 44.4% of fixed middle-sized deletions are estimated to be adaptive. To our surprise, this pattern is not found for insertions. Protein indel evolution appear to be in a dynamic flux of neutrally driven expansion (insertions) together with adaptive-driven contraction (deletions), and these observations provide important insights for understanding the fitness of new mutations as well as the evolutionary driving forces for genomic evolution in Drosophila species.
Collapse
Affiliation(s)
- Zechen Chong
- Center for Computational Biology and Laboratory of Disease Genomics and Individualized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Fine-scale heterogeneity in crossover rate in the garnet-scalloped region of the Drosophila melanogaster X chromosome. Genetics 2013; 194:375-87. [PMID: 23410829 DOI: 10.1534/genetics.112.146746] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homologous recombination affects myriad aspects of genome evolution, from standing levels of nucleotide diversity to the efficacy of natural selection. Rates of crossing over show marked variability at all scales surveyed, including species-, population-, and individual-level differences. Even within genomes, crossovers are nonrandomly distributed in a wide diversity of taxa. Although intra- and intergenomic heterogeneities in crossover distribution have been documented in Drosophila, the scale and degree of crossover rate heterogeneity remain unclear. In addition, the genetic features mediating this heterogeneity are unknown. Here we quantify fine-scale heterogeneity in crossover distribution in a 2.1-Mb region of the Drosophila melanogaster X chromosome by localizing crossover breakpoints in 2500 individuals, each containing a single crossover in this specific X chromosome region. We show 90-fold variation in rates of crossing over at a 5-kb scale, place this variation in the context of several aspects of genome evolution, and identify several genetic features associated with crossover rates. Our results shed new light on the scale and magnitude of crossover rate heterogeneity in D. melanogaster and highlight potential features mediating this heterogeneity.
Collapse
|
19
|
Surprising differences in the variability of Y chromosomes in African and cosmopolitan populations of Drosophila melanogaster. Genetics 2012; 193:201-14. [PMID: 23086221 DOI: 10.1534/genetics.112.146167] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nonrecombining Drosophila melanogaster Y chromosome is heterochromatic and has few genes. Despite these limitations, there remains ample opportunity for natural selection to act on the genes that are vital for male fertility and on Y factors that modulate gene expression elsewhere in the genome. Y chromosomes of many organisms have low levels of nucleotide variability, but a formal survey of D. melanogaster Y chromosome variation had yet to be performed. Here we surveyed Y-linked variation in six populations of D. melanogaster spread across the globe. We find surprisingly low levels of variability in African relative to Cosmopolitan (i.e., non-African) populations. While the low levels of Cosmopolitan Y chromosome polymorphism can be explained by the demographic histories of these populations, the staggeringly low polymorphism of African Y chromosomes cannot be explained by demographic history. An explanation that is entirely consistent with the data is that the Y chromosomes of Zimbabwe and Uganda populations have experienced recent selective sweeps. Interestingly, the Zimbabwe and Uganda Y chromosomes differ: in Zimbabwe, a European Y chromosome appears to have swept through the population.
Collapse
|