1
|
Konishi CT, Mulaiese N, Butola T, Zhang Q, Kagan D, Yang Q, Pressler M, Dirvin BG, Devinsky O, Basu J, Long C. Modeling and correction of protein conformational disease in iPSC-derived neurons through personalized base editing. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102441. [PMID: 39877004 PMCID: PMC11773622 DOI: 10.1016/j.omtn.2024.102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025]
Abstract
Altered protein conformation can cause incurable neurodegenerative disorders. Mutations in SERPINI1, the gene encoding neuroserpin, can alter protein conformation resulting in cytotoxic aggregation leading to neuronal death. Familial encephalopathy with neuroserpin inclusion bodies (FENIB) is a rare autosomal dominant progressive myoclonic epilepsy that progresses to dementia and premature death. We developed HEK293T and induced pluripotent stem cell (iPSC) models of FENIB, harboring a patient-specific pathogenic SERPINI1 variant or stably overexpressing mutant neuroserpin fused to GFP (MUT NS-GFP). Here, we utilized a personalized adenine base editor (ABE)-mediated approach to correct the pathogenic variant efficiently and precisely to restore neuronal dendritic morphology. ABE-treated MUT NS-GFP cells demonstrated reduced inclusion size and number. Using an inducible MUT NS-GFP neuron system, we identified early prevention of toxic protein expression allowed aggregate clearance, while late prevention halted further aggregation. To address several challenges for clinical applications of gene correction, we developed a neuron-specific engineered virus-like particle to optimize neuronal ABE delivery, resulting in higher correction efficiency. Our findings provide a targeted strategy that may treat FENIB and potentially other neurodegenerative diseases due to altered protein conformation such as Alzheimer's and Huntington's diseases.
Collapse
Affiliation(s)
- Colin T. Konishi
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY 100016, USA
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Nancy Mulaiese
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY 100016, USA
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Tanvi Butola
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Qinkun Zhang
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY 100016, USA
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Dana Kagan
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY 100016, USA
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Qiaoyan Yang
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY 100016, USA
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Mariel Pressler
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY 100016, USA
- Department of Neurology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Brooke G. Dirvin
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY 100016, USA
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Orrin Devinsky
- Department of Neurology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Jayeeta Basu
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Chengzu Long
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY 100016, USA
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 100016, USA
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY 100016, USA
- Department of Neurology, NYU Grossman School of Medicine, New York, NY 100016, USA
| |
Collapse
|
2
|
Song J, Li J, Pei X, Chen J, Wang L. Identification of cuproptosis-realated key genes and pathways in Parkinson's disease via bioinformatics analysis. PLoS One 2024; 19:e0299898. [PMID: 38626069 PMCID: PMC11020840 DOI: 10.1371/journal.pone.0299898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/17/2024] [Indexed: 04/18/2024] Open
Abstract
INTRODUCTION Parkinson's disease (PD) is the second most common worldwide age-related neurodegenerative disorder without effective treatments. Cuproptosis is a newly proposed conception of cell death extensively studied in oncological diseases. Currently, whether cuproptosis contributes to PD remains largely unclear. METHODS The dataset GSE22491 was studied as the training dataset, and GSE100054 was the validation dataset. According to the expression levels of cuproptosis-related genes (CRGs) and differentially expressed genes (DEGs) between PD patients and normal samples, we obtained the differentially expressed CRGs. The protein-protein interaction (PPI) network was achieved through the Search Tool for the Retrieval of Interacting Genes. Meanwhile, the disease-associated module genes were screened from the weighted gene co-expression network analysis (WGCNA). Afterward, the intersection genes of WGCNA and PPI were obtained and enriched using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, the key genes were identified from the datasets. The receiver operating characteristic curves were plotted and a PPI network was constructed, and the PD-related miRNAs and key genes-related miRNAs were intersected and enriched. Finally, the 2 hub genes were verified via qRT-PCR in the cell model of the PD and the control group. RESULTS 525 DEGs in the dataset GSE22491 were identified, including 128 upregulated genes and 397 downregulated genes. Based on the PPI network, 41 genes were obtained. Additionally, the dataset was integrated into 34 modules by WGCNA. 36 intersection genes found from WGCNA and PPI were significantly abundant in 7 pathways. The expression levels of the genes were validated, and 2 key genes were obtained, namely peptidase inhibitor 3 (PI3) and neuroserpin family I member 1 (SERPINI1). PD-related miRNAs and key genes-related miRNAs were intersected into 29 miRNAs including hsa-miR-30c-2-3p. At last, the qRT-PCR results of 2 hub genes showed that the expressions of mRNA were up-regulated in PD. CONCLUSION Taken together, this study demonstrates the coordination of cuproptosis in PD. The key genes and miRNAs offer novel perspectives in the pathogenesis and molecular targeting treatment for PD.
Collapse
Affiliation(s)
- Jia Song
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jia Li
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiaochen Pei
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiajun Chen
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lin Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
D'Acunto E, Gianfrancesco L, Serangeli I, D'Orsi M, Sabato V, Guadagno NA, Bhosale G, Caristi S, Failla AV, De Jaco A, Cacci E, Duchen MR, Lupo G, Galliciotti G, Miranda E. Polymerogenic neuroserpin causes mitochondrial alterations and activates NFκB but not the UPR in a neuronal model of neurodegeneration FENIB. Cell Mol Life Sci 2022; 79:437. [PMID: 35864382 PMCID: PMC9304071 DOI: 10.1007/s00018-022-04463-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/10/2022] [Accepted: 07/02/2022] [Indexed: 12/02/2022]
Abstract
The neurodegenerative condition FENIB (familiar encephalopathy with neuroserpin inclusion bodies) is caused by heterozygous expression of polymerogenic mutant neuroserpin (NS), with polymer deposition within the endoplasmic reticulum (ER) of neurons. We generated transgenic neural progenitor cells (NPCs) from mouse fetal cerebral cortex stably expressing either the control protein GFP or human wild type, polymerogenic G392E or truncated (delta) NS. This cellular model makes it possible to study the toxicity of polymerogenic NS in the appropriated cell type by in vitro differentiation to neurons. Our previous work showed that expression of G392E NS in differentiated NPCs induced an adaptive response through the upregulation of several genes involved in the defence against oxidative stress, and that pharmacological reduction of the antioxidant defences by drug treatments rendered G392E NS neurons more susceptible to apoptosis than control neurons. In this study, we assessed mitochondrial distribution and found a higher percentage of perinuclear localisation in G392E NS neurons, particularly in those containing polymers, a phenotype that was enhanced by glutathione chelation and rescued by antioxidant molecules. Mitochondrial membrane potential and contact sites between mitochondria and the ER were reduced in neurons expressing the G392E mutation. These alterations were associated with a pattern of ER stress that involved the ER overload response but not the unfolded protein response. Our results suggest that intracellular accumulation of NS polymers affects the interaction between the ER and mitochondria, causing mitochondrial alterations that contribute to the neuronal degeneration seen in FENIB patients.
Collapse
Affiliation(s)
- E D'Acunto
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - L Gianfrancesco
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - I Serangeli
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - M D'Orsi
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - V Sabato
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - N A Guadagno
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - G Bhosale
- Department of Cell and Developmental Biology, University College London, London, UK
| | - S Caristi
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - A V Failla
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - A De Jaco
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - E Cacci
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - M R Duchen
- Department of Cell and Developmental Biology, University College London, London, UK
| | - G Lupo
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - G Galliciotti
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - E Miranda
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
- Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
4
|
Godinez A, Rajput R, Chitranshi N, Gupta V, Basavarajappa D, Sharma S, You Y, Pushpitha K, Dhiman K, Mirzaei M, Graham S, Gupta V. Neuroserpin, a crucial regulator for axogenesis, synaptic modelling and cell-cell interactions in the pathophysiology of neurological disease. Cell Mol Life Sci 2022; 79:172. [PMID: 35244780 PMCID: PMC8897380 DOI: 10.1007/s00018-022-04185-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 01/31/2023]
Abstract
Neuroserpin is an axonally secreted serpin that is involved in regulating plasminogen and its enzyme activators, such as tissue plasminogen activator (tPA). The protein has been increasingly shown to play key roles in neuronal development, plasticity, maturation and synaptic refinement. The proteinase inhibitor may function both independently and through tPA-dependent mechanisms. Herein, we discuss the recent evidence regarding the role of neuroserpin in healthy and diseased conditions and highlight the participation of the serpin in various cellular signalling pathways. Several polymorphisms and mutations have also been identified in the protein that may affect the serpin conformation, leading to polymer formation and its intracellular accumulation. The current understanding of the involvement of neuroserpin in Alzheimer's disease, cancer, glaucoma, stroke, neuropsychiatric disorders and familial encephalopathy with neuroserpin inclusion bodies (FENIB) is presented. To truly understand the detrimental consequences of neuroserpin dysfunction and the effective therapeutic targeting of this molecule in pathological conditions, a cross-disciplinary understanding of neuroserpin alterations and its cellular signaling networks is essential.
Collapse
Affiliation(s)
- Angela Godinez
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Rashi Rajput
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Nitin Chitranshi
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia.
| | - Veer Gupta
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Devaraj Basavarajappa
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Samridhi Sharma
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Yuyi You
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Kanishka Pushpitha
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Kunal Dhiman
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Mehdi Mirzaei
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Stuart Graham
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
- Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Vivek Gupta
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia.
| |
Collapse
|
5
|
Miranda E, Galliciotti G. Elucidating the pathological mechanisms of neurodegeneration in the lethal serpinopathy FENIB. Neural Regen Res 2022; 17:1733-1734. [PMID: 35017423 PMCID: PMC8820725 DOI: 10.4103/1673-5374.332142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Elena Miranda
- Department of Biology and Biotechnologies 'Charles Darwin' and Pasteur Institute - Cenci Bo-lognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Giovanna Galliciotti
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Neuroserpin Inclusion Bodies in a FENIB Yeast Model. Microorganisms 2021; 9:microorganisms9071498. [PMID: 34361933 PMCID: PMC8305157 DOI: 10.3390/microorganisms9071498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 11/17/2022] Open
Abstract
FENIB (familial encephalopathy with neuroserpin inclusion bodies) is a human monogenic disease caused by point mutations in the SERPINI1 gene, characterized by the intracellular deposition of polymers of neuroserpin (NS), which leads to proteotoxicity and cell death. Despite the different cell and animal models developed thus far, the exact mechanism of cell toxicity elicited by NS polymers remains unclear. Here, we report that human wild-type NS and the polymerogenic variant G392E NS form protein aggregates mainly localized within the endoplasmic reticulum (ER) when expressed in the yeast S. cerevisiae. The expression of NS in yeast delayed the exit from the lag phase, suggesting that NS inclusions cause cellular stress. The cells also showed a higher resistance following mild oxidative stress treatments when compared to control cells. Furthermore, the expression of NS in a pro-apoptotic mutant strain-induced cell death during aging. Overall, these data recapitulate phenotypes observed in mammalian cells, thereby validating S. cerevisiae as a model for FENIB.
Collapse
|
7
|
Ingwersen T, Linnenberg C, D'Acunto E, Temori S, Paolucci I, Wasilewski D, Mohammadi B, Kirchmair J, Glen RC, Miranda E, Glatzel M, Galliciotti G. G392E neuroserpin causing the dementia FENIB is secreted from cells but is not synaptotoxic. Sci Rep 2021; 11:8766. [PMID: 33888787 PMCID: PMC8062559 DOI: 10.1038/s41598-021-88090-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/06/2021] [Indexed: 12/21/2022] Open
Abstract
Familial encephalopathy with neuroserpin inclusion bodies (FENIB) is a progressive neurodegenerative disease caused by point mutations in the gene for neuroserpin, a serine protease inhibitor of the nervous system. Different mutations are known that are responsible for mutant neuroserpin polymerization and accumulation as inclusion bodies in many cortical and subcortical neurons, thereby leading to cell death, dementia and epilepsy. Many efforts have been undertaken to elucidate the molecular pathways responsible for neuronal death. Most investigations have concentrated on analysis of intracellular mechanisms such as endoplasmic reticulum (ER) stress, ER-associated protein degradation (ERAD) and oxidative stress. We have generated a HEK-293 cell model of FENIB by overexpressing G392E-mutant neuroserpin and in this study we examine trafficking and toxicity of this polymerogenic variant. We observed that a small fraction of mutant neuroserpin is secreted via the ER-to-Golgi pathway, and that this release can be pharmacologically regulated. Overexpression of the mutant form of neuroserpin did not stimulate cell death in the HEK-293 cell model. Finally, when treating primary hippocampal neurons with G392E neuroserpin polymers, we did not detect cytotoxicity or synaptotoxicity. Altogether, we report here that a polymerogenic mutant form of neuroserpin is secreted from cells but is not toxic in the extracellular milieu.
Collapse
Affiliation(s)
- Thies Ingwersen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Linnenberg
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Emanuela D'Acunto
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Shabnam Temori
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Irene Paolucci
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - David Wasilewski
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Johannes Kirchmair
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Robert C Glen
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
- Division of Systems Medicine, Department of Metabolism Digestion and Reproduction, Imperial College London, London, UK
| | - Elena Miranda
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
- Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Giovanna Galliciotti
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
8
|
Abstract
Alpha-1 antitrypsin deficiency is predominantly caused by point mutations that alter the protein's folding. These mutations fall into two broad categories: those that destabilize the protein dramatically and lead to its post-translational degradation and those that affect protein structure more subtly to promote protein polymerization within the endoplasmic reticulum (ER). This distinction is important because it determines the cell's response to each mutant. The severely misfolded mutants trigger an unfolded protein response (UPR) that promotes improved protein folding but can kill the cell in the chronic setting. In contrast, mutations that permit polymer formation fail to activate the UPR but instead promote a nuclear factor-κB-mediated ER overload response. The ability of polymers to increase a cell's sensitivity to ER stress likely explains apparent inconsistencies in the alpha-1 antitrypsin-signaling literature that have linked polymers with the UPR. In this review we discuss the use of mutant serpins to dissect each signaling pathway.
Collapse
|
9
|
Puig B, Altmeppen HC, Glatzel M. Misfolding leads the way to unraveling signaling pathways in the pathophysiology of prion diseases. Prion 2017; 10:434-443. [PMID: 27870599 DOI: 10.1080/19336896.2016.1244593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A misfolded version of the prion protein represents an essential component in the pathophysiology of fatal neurodegenerative prion diseases, which affect humans and animals alike. They may be of sporadic origin, acquired through exogenous introduction of infectious misfolded prion protein, or caused by genetic alterations in the prion protein coding gene. We have recently described a novel pathway linking retention of mutant prion protein in the early secretory pathway to activation p38-MAPK and a neurodegenerative phenotype in transgenic mice. Here we review the consequences that mutations in prion protein have on intracellular transport and stress responses focusing on protein quality control. We also discuss the neurotoxic signaling elicited by the accumulation of mutant prion protein in the endoplasmic reticulum and the Golgi apparatus. Improved knowledge about these processes will help us to better understand complex pathogenesis of prion diseases, a prerequisite for therapeutic strategies.
Collapse
Affiliation(s)
- Berta Puig
- a Institute of Neuropathology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Hermann C Altmeppen
- a Institute of Neuropathology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Markus Glatzel
- a Institute of Neuropathology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| |
Collapse
|
10
|
Lomas DA, Hurst JR, Gooptu B. Update on alpha-1 antitrypsin deficiency: New therapies. J Hepatol 2016; 65:413-24. [PMID: 27034252 DOI: 10.1016/j.jhep.2016.03.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/16/2016] [Accepted: 03/20/2016] [Indexed: 02/07/2023]
Abstract
α1-Antitrypsin deficiency is characterised by the misfolding and intracellular polymerisation of mutant α1-antitrypsin within the endoplasmic reticulum of hepatocytes. The retention of mutant protein causes hepatic damage and cirrhosis whilst the lack of an important circulating protease inhibitor predisposes the individuals with severe α1-antitrypsin deficiency to early onset emphysema. Our work over the past 25years has led to new paradigms for the liver and lung disease associated with α1-antitrypsin deficiency. We review here the molecular pathology of the cirrhosis and emphysema associated with α1-antitrypsin deficiency and show how an understanding of this condition provided the paradigm for a wider group of disorders that we have termed the serpinopathies. The detailed understanding of the pathobiology of α1-antitrypsin deficiency has identified important disease mechanisms to target. As a result, several novel parallel and complementary therapeutic approaches are in development with some now in clinical trials. We provide an overview of these new therapies for the liver and lung disease associated with α1-antitrypsin deficiency.
Collapse
Affiliation(s)
- David A Lomas
- UCL Respiratory, Division of Medicine, Rayne Building, University College London, UK; The London Alpha-1-Antitrypsin Deficiency Service, Royal Free London NHS Foundation Trust, London, UK; Institute of Structural and Molecular Biology, UCL/Birkbeck College, University of London, London WC1E 7HX, UK.
| | - John R Hurst
- UCL Respiratory, Division of Medicine, Rayne Building, University College London, UK; The London Alpha-1-Antitrypsin Deficiency Service, Royal Free London NHS Foundation Trust, London, UK
| | - Bibek Gooptu
- The London Alpha-1-Antitrypsin Deficiency Service, Royal Free London NHS Foundation Trust, London, UK; Institute of Structural and Molecular Biology, UCL/Birkbeck College, University of London, London WC1E 7HX, UK; Division of Asthma, Allergy and Lung Biology, King's College London, Guy's Hospital, 5th Floor, Tower Wing, London, UK
| |
Collapse
|
11
|
Puig B, Altmeppen HC, Ulbrich S, Linsenmeier L, Krasemann S, Chakroun K, Acevedo-Morantes CY, Wille H, Tatzelt J, Glatzel M. Secretory pathway retention of mutant prion protein induces p38-MAPK activation and lethal disease in mice. Sci Rep 2016; 6:24970. [PMID: 27117504 PMCID: PMC4847012 DOI: 10.1038/srep24970] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/08/2016] [Indexed: 02/06/2023] Open
Abstract
Misfolding of proteins in the biosynthetic pathway in neurons may cause disturbed protein homeostasis and neurodegeneration. The prion protein (PrPC) is a GPI-anchored protein that resides at the plasma membrane and may be misfolded to PrPSc leading to prion diseases. We show that a deletion in the C-terminal domain of PrPC (PrPΔ214–229) leads to partial retention in the secretory pathway causing a fatal neurodegenerative disease in mice that is partially rescued by co-expression of PrPC. Transgenic (Tg(PrPΔ214–229)) mice show extensive neuronal loss in hippocampus and cerebellum and activation of p38-MAPK. In cell culture under stress conditions, PrPΔ214–229 accumulates in the Golgi apparatus possibly representing transit to the Rapid ER Stress-induced ExporT (RESET) pathway together with p38-MAPK activation. Here we describe a novel pathway linking retention of a GPI-anchored protein in the early secretory pathway to p38-MAPK activation and a neurodegenerative phenotype in transgenic mice.
Collapse
Affiliation(s)
- Berta Puig
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Sarah Ulbrich
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry und Pathobiochemistry, Ruhr University Bochum, Bochum 44801, Germany
| | - Luise Linsenmeier
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Karima Chakroun
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Claudia Y Acevedo-Morantes
- Centre for Prions and Protein Folding Diseases and Department of Biochemistry, University of Alberta, Edmonton, T6G 2M8 Alberta, Canada
| | - Holger Wille
- Centre for Prions and Protein Folding Diseases and Department of Biochemistry, University of Alberta, Edmonton, T6G 2M8 Alberta, Canada
| | - Jörg Tatzelt
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry und Pathobiochemistry, Ruhr University Bochum, Bochum 44801, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
12
|
Mathew A. The P5 disulfide switch: taming the aging unfolded protein response. Cell Stress Chaperones 2015; 20:743-51. [PMID: 26045202 PMCID: PMC4529870 DOI: 10.1007/s12192-015-0606-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/07/2015] [Accepted: 05/14/2015] [Indexed: 01/27/2023] Open
Abstract
Aging cells are characterized by a loss of proteostasis and a decreased ability to survive under environmental stress. Regulation of the UPR in aging cells has been under much scrutiny, and studies have shown that the UPR in these cells differs considerably from younger cells with regard to the induction of apoptosis and chaperone activity. The role of IRE-1 and PERK in UPR-associated apoptosis makes the regulation of these signaling cascades an important target of study. The seemingly contradictory findings regarding the role of P5 in activating and deactivating these responses warrant further investigation and may hold the key to unlocking the role of this protein in various pathological conditions. Another important target for study with regard to P5 is the effects of the localization of this protein in the mitochondria and the consequences, if any, of these effects on the activation of the UPR.
Collapse
Affiliation(s)
- Akash Mathew
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15-Datun Road, Beijing, 100101, China,
| |
Collapse
|
13
|
The aggregation-prone intracellular serpin SRP-2 fails to transit the ER in Caenorhabditis elegans. Genetics 2015; 200:207-19. [PMID: 25786854 DOI: 10.1534/genetics.115.176180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/17/2015] [Indexed: 11/18/2022] Open
Abstract
Familial encephalopathy with neuroserpin inclusions bodies (FENIB) is a serpinopathy that induces a rare form of presenile dementia. Neuroserpin contains a classical signal peptide and like all extracellular serine proteinase inhibitors (serpins) is secreted via the endoplasmic reticulum (ER)-Golgi pathway. The disease phenotype is due to gain-of-function missense mutations that cause neuroserpin to misfold and aggregate within the ER. In a previous study, nematodes expressing a homologous mutation in the endogenous Caenorhabditis elegans serpin, srp-2, were reported to model the ER proteotoxicity induced by an allele of mutant neuroserpin. Our results suggest that SRP-2 lacks a classical N-terminal signal peptide and is a member of the intracellular serpin family. Using confocal imaging and an ER colocalization marker, we confirmed that GFP-tagged wild-type SRP-2 localized to the cytosol and not the ER. Similarly, the aggregation-prone SRP-2 mutant formed intracellular inclusions that localized to the cytosol. Interestingly, wild-type SRP-2, targeted to the ER by fusion to a cleavable N-terminal signal peptide, failed to be secreted and accumulated within the ER lumen. This ER retention phenotype is typical of other obligate intracellular serpins forced to translocate across the ER membrane. Neuroserpin is a secreted protein that inhibits trypsin-like proteinase. SRP-2 is a cytosolic serpin that inhibits lysosomal cysteine peptidases. We concluded that SRP-2 is neither an ortholog nor a functional homolog of neuroserpin. Furthermore, animals expressing an aggregation-prone mutation in SRP-2 do not model the ER proteotoxicity associated with FENIB.
Collapse
|
14
|
Schipanski A, Oberhauser F, Neumann M, Lange S, Szalay B, Krasemann S, van Leeuwen FW, Galliciotti G, Glatzel M. Lectin OS-9 delivers mutant neuroserpin to endoplasmic reticulum associated degradation in familial encephalopathy with neuroserpin inclusion bodies. Neurobiol Aging 2014; 35:2394-403. [PMID: 24795221 DOI: 10.1016/j.neurobiolaging.2014.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 03/20/2014] [Accepted: 04/01/2014] [Indexed: 12/11/2022]
Abstract
A feature of neurodegenerative diseases is the intraneuronal accumulation of misfolded proteins. In familial encephalopathy with neuroserpin inclusion bodies (FENIB), mutations in neuroserpin lead to accumulation of neuroserpin polymers within the endoplasmic reticulum (ER) of neurons. Cell culture based studies have shown that ER-associated degradation (ERAD) is involved in clearance of mutant neuroserpin. Here, we investigate how mutant neuroserpin is delivered to ERAD using cell culture and a murine model of FENIB. We show that the ER-lectin OS-9 but not XTP3-B is involved in ERAD of mutant neuroserpin. OS-9 binds mutant neuroserpin and the removal of glycosylation sites leads to increased neuroserpin protein load whereas overexpression of OS-9 decreases mutant neuroserpin. In FENIB mice, OS-9 but not XTP3-B is differently expressed and impairment of ERAD by partial inhibition of the ubiquitin proteasome system leads to increased neuroserpin protein load. These findings show that OS-9 delivers mutant neuroserpin to ERAD by recognition of glycan side chains and provide the first in vivo proof of involvement of ERAD in degradation of mutant neuroserpin.
Collapse
Affiliation(s)
- Angela Schipanski
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix Oberhauser
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melanie Neumann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sascha Lange
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Beata Szalay
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fred W van Leeuwen
- Department of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Giovanna Galliciotti
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
15
|
Denzel MS, Storm NJ, Gutschmidt A, Baddi R, Hinze Y, Jarosch E, Sommer T, Hoppe T, Antebi A. Hexosamine pathway metabolites enhance protein quality control and prolong life. Cell 2014; 156:1167-1178. [PMID: 24630720 DOI: 10.1016/j.cell.2014.01.061] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/29/2013] [Accepted: 01/24/2014] [Indexed: 01/29/2023]
Abstract
Aging entails a progressive decline in protein homeostasis, which often leads to age-related diseases. The endoplasmic reticulum (ER) is the site of protein synthesis and maturation for secreted and membrane proteins. Correct folding of ER proteins requires covalent attachment of N-linked glycan oligosaccharides. Here, we report that increased synthesis of N-glycan precursors in the hexosamine pathway improves ER protein homeostasis and extends lifespan in C. elegans. Addition of the N-glycan precursor N-acetylglucosamine to the growth medium slows aging in wild-type animals and alleviates pathology of distinct neurotoxic disease models. Our data suggest that reduced aggregation of metastable proteins and lifespan extension depend on enhanced ER-associated protein degradation, proteasomal activity, and autophagy. Evidently, hexosamine pathway activation or N-acetylglucosamine supplementation induces distinct protein quality control mechanisms, which may allow therapeutic intervention against age-related and proteotoxic diseases.
Collapse
Affiliation(s)
- Martin S Denzel
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne 50931, Germany
| | - Nadia J Storm
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne 50931, Germany
| | - Aljona Gutschmidt
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50674, Germany; Institute for Genetics, University of Cologne, Zülpicher Strasse 47a, Cologne 50674, Germany
| | - Ruth Baddi
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne 50931, Germany
| | - Yvonne Hinze
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne 50931, Germany
| | - Ernst Jarosch
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, Berlin-Buch 13125, Germany
| | - Thomas Sommer
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, Berlin-Buch 13125, Germany; Humboldt-University Berlin, Institute of Biology, Invalidenstrasse 43, Berlin 10115, Germany
| | - Thorsten Hoppe
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50674, Germany; Institute for Genetics, University of Cologne, Zülpicher Strasse 47a, Cologne 50674, Germany
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne 50931, Germany; Department of Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50674, Germany.
| |
Collapse
|
16
|
Therapeutic targeting of misfolding and conformational change in α1-antitrypsin deficiency. Future Med Chem 2014; 6:1047-65. [DOI: 10.4155/fmc.14.58] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Misfolding and conformational diseases are increasing in prominence and prevalence. Both misfolding and ‘postfolding’ conformational mechanisms can contribute to pathogenesis and can coexist. The different contexts of folding and native state behavior may have implications for the development of therapeutic strategies. α1-antitrypsin deficiency illustrates how these issues can be addressed with therapeutic approaches to rescue folding, ameliorate downstream consequences of aberrant polymerization and/or maintain physiological function. Small-molecule strategies have successfully targeted structural features of the native conformer. Recent developments include the capability to follow solution behavior of α1-antitrypsin in the context of disease mutations and interactions with drug-like compounds. Moreover, preclinical studies in cells and organisms support the potential of manipulating cellular response repertoires to process misfolded and polymer states.
Collapse
|
17
|
Activation of the endoplasmic reticulum unfolded protein response by lipid disequilibrium without disturbed proteostasis in vivo. Proc Natl Acad Sci U S A 2014; 111:E2271-80. [PMID: 24843123 DOI: 10.1073/pnas.1318262111] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The Mediator is a conserved transcriptional coregulator complex required for eukaryotic gene expression. In Caenorhabditis elegans, the Mediator subunit mdt-15 is essential for the expression of genes involved in fatty acid metabolism and ingestion-associated stress responses. mdt-15 loss of function causes defects in reproduction and mobility and shortens lifespan. In the present study, we find that worms with mutated or depleted mdt-15 (mdt-15 worms) exhibit decreased membrane phospholipid desaturation, especially in phosphatidylcholine. Accordingly, mdt-15 worms exhibit disturbed endoplasmic reticulum (ER) homeostasis, as indicated by a constitutively activated ER unfolded protein response (UPR(ER)). Activation of this stress response is only partially the consequence of reduced membrane lipid desaturation, implicating other mdt-15-regulated processes in maintaining ER homeostasis. Interestingly, mdt-15 inactivation or depletion of the lipid metabolism enzymes stearoyl-CoA-desaturases (SCD) and S-adenosyl methionine synthetase (sams-1) activates the UPR(ER) without promoting misfolded protein aggregates. Moreover, these worms exhibit wild-type sensitivity to chemically induced protein misfolding, and they do not display synthetic lethality with mutations in UPR(ER) genes, which cause protein misfolding. Therefore, the constitutively activated UPR(ER) in mdt-15, SCD, and sams-1 worms is not the consequence of proteotoxic stress but likely is the direct result of changes in ER membrane fluidity and composition. Together, our data suggest that the UPR(ER) is induced directly upon membrane disequilibrium and thus monitors altered ER homeostasis.
Collapse
|
18
|
Janecka IP. Sensing risk, fearing uncertainty: systems science approach to change. Front Comput Neurosci 2014; 8:30. [PMID: 24744723 PMCID: PMC3978314 DOI: 10.3389/fncom.2014.00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/25/2014] [Indexed: 12/03/2022] Open
Abstract
Background: Medicine devotes its primary focus to understanding change, from cells to network relationships; observations of non-linearity are inescapable. Recent events provide extraordinary examples of major non-linear surprises within the societal system: human genome-from anticipated 100,000+ genes to only 20,000+; junk DNA-initially ignored but now proven to control genetic processes; economic reversals-bursting of bubbles in technology, housing, finance; foreign wars; relentless rise in obesity, neurodegenerative diseases. There are two attributes of systems science that are especially relevant to this research: One—it offers a method for creating a structural context with a guiding path to pragmatic knowledge; and, two—it gives pre-eminence to sensory input capable to register, evaluate, and react to change. Materials/Methods: Public domain records of change, during the last 50 years, have been studied in the context of systems science, the dynamic systems model, and various cycles. Results/Conclusions:Change is dynamic, ever-present, never isolated, and of variable impact; it reflects innumerable relationships among contextual systems; change can be perceived as risk or uncertainty depending upon how the assessment is made; risk is quantifiable by sensory input and generates a degree of rational optimism; uncertainty is not quantifiable and evokes fear; trust is key to sharing risk; the measurable financial credit can be a proxy for societal trust; expanding credit dilutes trust; when a credit bubble bursts, so will trust; absence of trust paralyzes systems' relationships leading to disorganized complexity which prevents value creation and heightens the probability of random events; disappearance of value, accompanied by chaos, threatens all systems. From personal health to economic sustainability and collective rationality, most examined components of the societal system were found not to be optimized and trust was not in evidence.
Collapse
Affiliation(s)
- Ivo P Janecka
- Foundation for Systems Research and Education New York, NY, USA
| |
Collapse
|
19
|
Clemens AM, Johnston D. Age- and location-dependent differences in store depletion-induced h-channel plasticity in hippocampal pyramidal neurons. J Neurophysiol 2013; 111:1369-82. [PMID: 24381027 DOI: 10.1152/jn.00839.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Disruptions of endoplasmic reticulum (ER) Ca(2+) homeostasis are heavily linked to neuronal pathology. Depletion of ER Ca(2+) stores can result in cellular dysfunction and potentially cell death, although adaptive processes exist to aid in survival. We examined the age and region dependence of one postulated, adaptive response to ER store-depletion (SD), hyperpolarization-activated cation-nonspecific (h)-channel plasticity in neurons of the dorsal and ventral hippocampus (DHC and VHC, respectively) from adolescent and adult rats. With the use of whole-cell patch-clamp recordings from the soma and dendrites of CA1 pyramidal neurons, we observed a change in h-sensitive measurements in response to SD, induced by treatment with cyclopiazonic acid, a sarcoplasmic reticulum/ER Ca(2+)-ATPase blocker. We found that whereas DHC and VHC neurons in adolescent animals respond to SD with a perisomatic expression of SD h plasticity, adult animals express SD h plasticity with a dendritic and somatodendritic locus of plasticity in DHC and VHC neurons, respectively. Furthermore, SD h plasticity in adults was dependent on membrane potential and on the activation of L-type voltage-gated Ca(2+) channels. These results suggest that cellular responses to the impairment of ER function, or ER stress, are dependent on brain region and age and that the differential expression of SD h plasticity could provide a neural basis for region- and age-dependent disease vulnerabilities.
Collapse
Affiliation(s)
- Ann M Clemens
- The Institute for Neuroscience and Center for Learning and Memory, The University of Texas at Austin, Austin, Texas; and
| | | |
Collapse
|