1
|
Wang X, Guan Z, Dong Y, Zhu Z, Wang J, Niu B. Inhibition of thymidylate synthase affects neural tube development in mice. Reprod Toxicol 2017; 76:17-25. [PMID: 29258758 DOI: 10.1016/j.reprotox.2017.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 06/26/2017] [Accepted: 12/14/2017] [Indexed: 11/28/2022]
Abstract
Thymidylate synthase (TYMS) is a key enzyme in the de novo synthesis of 2'-deoxythymidine-5'-monophosphate (dTMP) from 2'-deoxyuridine-5'-monophosphate (dUMP). Our aim was to investigate the role of dTMP dysmetabolism via inhibition of TYMS by an inhibitor, 5-fluorouracil (5-FU) in the occurrence of neural tube defects (NTDs). We found that a high incidence of NTDs occurred after treatment with 5-FU at 12.5 mg/kg body weight. TYMS activity was significantly inhibited with decreased dTMP and accumulation of dUMP after 5-FU injection. The proliferation of neuroepithelial cells were markedly inhibited in NTDs compared with control. Expressions of proliferating cell nuclear antigen and phosphohistone H3 were significantly decreased in NTDs, while phosphorylated replication protein A2, P53 and Caspase3 were significantly increased in NTDs compared with control. These results indicated that inhibition of TYMS affected the balance between proliferation and apoptosis in neuroepithelial cells, which might shed some lights on the mechanisms involved in NTDs.
Collapse
Affiliation(s)
- Xiuwei Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Zhen Guan
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yanting Dong
- The Respiratory Department, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Zhiqiang Zhu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jianhua Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China.
| | - Bo Niu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China; Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
2
|
Villa-Hernández S, Bueno A, Bermejo R. The Multiple Roles of Ubiquitylation in Regulating Challenged DNA Replication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:395-419. [PMID: 29357068 DOI: 10.1007/978-981-10-6955-0_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA replication is essential for the propagation of life and the development of complex organisms. However, replication is a risky process as it can lead to mutations and chromosomal alterations. Conditions challenging DNA synthesis by replicative polymerases or DNA helix unwinding, generally termed as replication stress, can halt replication fork progression. Stalled replication forks are unstable, and mechanisms exist to protect their integrity, which promote an efficient restart of DNA synthesis and counteract fork collapse characterized by the accumulation of DNA lesions and mutagenic events. DNA replication is a highly regulated process, and several mechanisms control replication timing and integrity both during unperturbed cell cycles and in response to replication stress. Work over the last two decades has revealed that key steps of DNA replication are controlled by conjugation of the small peptide ubiquitin. While ubiquitylation was traditionally linked to protein degradation, the complexity and flexibility of the ubiquitin system in regulating protein function have recently emerged. Here we review the multiple roles exerted by ubiquitin-conjugating enzymes and ubiquitin-specific proteases, as well as readers of ubiquitin chains, in the control of eukaryotic DNA replication and replication-coupled DNA damage tolerance and repair.
Collapse
Affiliation(s)
| | - Avelino Bueno
- Instituto de Biología Molecular y Celular del Cáncer (USAL/CSIC), Salamanca, Spain.,Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | | |
Collapse
|
3
|
Godin SK, Sullivan MR, Bernstein KA. Novel insights into RAD51 activity and regulation during homologous recombination and DNA replication. Biochem Cell Biol 2016; 94:407-418. [PMID: 27224545 DOI: 10.1139/bcb-2016-0012] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this review we focus on new insights that challenge our understanding of homologous recombination (HR) and Rad51 regulation. Recent advances using high-resolution microscopy and single molecule techniques have broadened our knowledge of Rad51 filament formation and strand invasion at double-strand break (DSB) sites and at replication forks, which are one of most physiologically relevant forms of HR from yeast to humans. Rad51 filament formation and strand invasion is regulated by many mediator proteins such as the Rad51 paralogues and the Shu complex, consisting of a Shu2/SWS1 family member and additional Rad51 paralogues. Importantly, a novel RAD51 paralogue was discovered in Caenorhabditis elegans, and its in vitro characterization has demonstrated a new function for the worm RAD51 paralogues during HR. Conservation of the human RAD51 paralogues function during HR and repair of replicative damage demonstrate how the RAD51 mediators play a critical role in human health and genomic integrity. Together, these new findings provide a framework for understanding RAD51 and its mediators in DNA repair during multiple cellular contexts.
Collapse
Affiliation(s)
- Stephen K Godin
- University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, and the Department of Microbiology and Molecular Genetics.,University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, and the Department of Microbiology and Molecular Genetics
| | - Meghan R Sullivan
- University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, and the Department of Microbiology and Molecular Genetics.,University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, and the Department of Microbiology and Molecular Genetics
| | - Kara A Bernstein
- University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, and the Department of Microbiology and Molecular Genetics
| |
Collapse
|
4
|
Piya G, Mueller EN, Haas HK, Ghospurkar PL, Wilson TM, Jensen JL, Colbert CL, Haring SJ. Characterization of the interaction between Rfa1 and Rad24 in Saccharomyces cerevisiae. PLoS One 2015; 10:e0116512. [PMID: 25719602 PMCID: PMC4342240 DOI: 10.1371/journal.pone.0116512] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/10/2014] [Indexed: 11/22/2022] Open
Abstract
Maintaining the integrity of the genome requires the high fidelity duplication of the genome and the ability of the cell to recognize and repair DNA lesions. The heterotrimeric single stranded DNA (ssDNA) binding complex Replication Protein A (RPA) is central to multiple DNA processes, which are coordinated by RPA through its ssDNA binding function and through multiple protein-protein interactions. Many RPA interacting proteins have been reported through large genetic and physical screens; however, the number of interactions that have been further characterized is limited. To gain a better understanding of how RPA functions in DNA replication, repair, and cell cycle regulation and to identify other potential functions of RPA, a yeast two hybrid screen was performed using the yeast 70 kDa subunit, Replication Factor A1 (Rfa1), as a bait protein. Analysis of 136 interaction candidates resulted in the identification of 37 potential interacting partners, including the cell cycle regulatory protein and DNA damage clamp loader Rad24. The Rfa1-Rad24 interaction is not dependent on ssDNA binding. However, this interaction appears affected by DNA damage. The regions of both Rfa1 and Rad24 important for this interaction were identified, and the region of Rad24 identified is distinct from the region reported to be important for its interaction with Rfc2 5. This suggests that Rad24-Rfc2-5 (Rad24-RFC) recruitment to DNA damage substrates by RPA occurs, at least partially, through an interaction between the N terminus of Rfa1 and the C terminus of Rad24. The predicted structure and location of the Rad24 C-terminus is consistent with a model in which RPA interacts with a damage substrate, loads Rad24-RFC at the 5’ junction, and then releases the Rad24-RFC complex to allow for proper loading and function of the DNA damage clamp.
Collapse
Affiliation(s)
- Gunjan Piya
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108, United States of America
| | - Erica N. Mueller
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108, United States of America
| | - Heather K. Haas
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108, United States of America
| | - Padmaja L. Ghospurkar
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108, United States of America
| | - Timothy M. Wilson
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108, United States of America
| | - Jaime L. Jensen
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108, United States of America
| | - Christopher L. Colbert
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108, United States of America
- Interdisciplinary Program in Cellular and Molecular Biology, North Dakota State University, Fargo, ND, 58108, United States of America
| | - Stuart J. Haring
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108, United States of America
- Interdisciplinary Program in Cellular and Molecular Biology, North Dakota State University, Fargo, ND, 58108, United States of America
- * E-mail:
| |
Collapse
|
5
|
Ghospurkar PL, Wilson TM, Liu S, Herauf A, Steffes J, Mueller EN, Oakley GG, Haring SJ. Phosphorylation and cellular function of the human Rpa2 N-terminus in the budding yeast Saccharomyces cerevisiae. Exp Cell Res 2014; 331:183-199. [PMID: 25499885 DOI: 10.1016/j.yexcr.2014.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/29/2014] [Accepted: 12/02/2014] [Indexed: 11/18/2022]
Abstract
Maintenance of genome integrity is critical for proper cell growth. This occurs through accurate DNA replication and repair of DNA lesions. A key factor involved in both DNA replication and the DNA damage response is the heterotrimeric single-stranded DNA (ssDNA) binding complex Replication Protein A (RPA). Although the RPA complex appears to be structurally conserved throughout eukaryotes, the primary amino acid sequence of each subunit can vary considerably. Examination of sequence differences along with the functional interchangeability of orthologous RPA subunits or regions could provide insight into important regions and their functions. This might also allow for study in simpler systems. We determined that substitution of yeast Replication Factor A (RFA) with human RPA does not support yeast cell viability. Exchange of a single yeast RFA subunit with the corresponding human RPA subunit does not function due to lack of inter-species subunit interactions. Substitution of yeast Rfa2 with domains/regions of human Rpa2 important for Rpa2 function (i.e., the N-terminus and the loop 3-4 region) supports viability in yeast cells, and hybrid proteins containing human Rpa2 N-terminal phospho-mutations result in similar DNA damage phenotypes to analogous yeast Rfa2 N-terminal phospho-mutants. Finally, the human Rpa2 N-terminus (NT) fused to yeast Rfa2 is phosphorylated in a manner similar to human Rpa2 in human cells, indicating that conserved kinases recognize the human domain in yeast. The implication is that budding yeast represents a potential model system for studying not only human Rpa2 N-terminal phosphorylation, but also phosphorylation of Rpa2 N-termini from other eukaryotic organisms.
Collapse
Affiliation(s)
- Padmaja L Ghospurkar
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108, USA
| | - Timothy M Wilson
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108, USA
| | - Shengqin Liu
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE 68583, USA
| | - Anna Herauf
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108, USA
| | - Jenna Steffes
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108, USA
| | - Erica N Mueller
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108, USA
| | - Gregory G Oakley
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE 68583, USA
| | - Stuart J Haring
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108, USA; Interdisciplinary Cellular and Molecular Biology Program, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|