1
|
Fraimout A, Guillaume F, Li Z, Sillanpää MJ, Rastas P, Merilä J. Dissecting the genetic architecture of quantitative traits using genome-wide identity-by-descent sharing. Mol Ecol 2024; 33:e17299. [PMID: 38380534 DOI: 10.1111/mec.17299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Additive and dominance genetic variances underlying the expression of quantitative traits are important quantities for predicting short-term responses to selection, but they are notoriously challenging to estimate in most non-model wild populations. Specifically, large-sized or panmictic populations may be characterized by low variance in genetic relatedness among individuals which, in turn, can prevent accurate estimation of quantitative genetic parameters. We used estimates of genome-wide identity-by-descent (IBD) sharing from autosomal SNP loci to estimate quantitative genetic parameters for ecologically important traits in nine-spined sticklebacks (Pungitius pungitius) from a large, outbred population. Using empirical and simulated datasets, with varying sample sizes and pedigree complexity, we assessed the performance of different crossing schemes in estimating additive genetic variance and heritability for all traits. We found that low variance in relatedness characteristic of wild outbred populations with high migration rate can impair the estimation of quantitative genetic parameters and bias heritability estimates downwards. On the other hand, the use of a half-sib/full-sib design allowed precise estimation of genetic variance components and revealed significant additive variance and heritability for all measured traits, with negligible dominance contributions. Genome-partitioning and QTL mapping analyses revealed that most traits had a polygenic basis and were controlled by genes at multiple chromosomes. Furthermore, different QTL contributed to variation in the same traits in different populations suggesting heterogeneous underpinnings of parallel evolution at the phenotypic level. Our results provide important guidelines for future studies aimed at estimating adaptive potential in the wild, particularly for those conducted in outbred large-sized populations.
Collapse
Affiliation(s)
- Antoine Fraimout
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Helsinki, Finland
| | - Frédéric Guillaume
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Helsinki, Finland
| | - Zitong Li
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Helsinki, Finland
| | - Mikko J Sillanpää
- Research Unit of Mathematical Sciences, FI-90014 University of Oulu, Oulu, Finland
| | - Pasi Rastas
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, FI-00014 University of Helsinki, Helsinki, Finland
| | - Juha Merilä
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Helsinki, Finland
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Dugand RJ, Blows MW, McGuigan K. Using inbreeding to test the contribution of non-additive genetic effects to additive genetic variance: a case study in Drosophila serrata. Proc Biol Sci 2023; 290:20222111. [PMID: 36919433 PMCID: PMC10015326 DOI: 10.1098/rspb.2022.2111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Additive genetic variance, VA, is the key parameter for predicting adaptive and neutral phenotypic evolution. Changes in demography (e.g. increased close-relative inbreeding) can alter VA, but how they do so depends on the (typically unknown) gene action and allele frequencies across many loci. For example, VA increases proportionally with the inbreeding coefficient when allelic effects are additive, but smaller (or larger) increases can occur when allele frequencies are unequal at causal loci with dominance effects. Here, we describe an experimental approach to assess the potential for dominance effects to deflate VA under inbreeding. Applying a powerful paired pedigree design in Drosophila serrata, we measured 11 wing traits on half-sibling families bred via either random or sibling mating, differing only in homozygosity (not allele frequency). Despite close inbreeding and substantial power to detect small VA, we detected no deviation from the expected additive effect of inbreeding on genetic (co)variances. Our results suggest the average dominance coefficient is very small relative to the additive effect, or that allele frequencies are relatively equal at loci affecting wing traits. We outline the further opportunities for this paired pedigree approach to reveal the characteristics of VA, providing insight into historical selection and future evolutionary potential.
Collapse
Affiliation(s)
- Robert J Dugand
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072. Australia.,School of Biological Sciences, The University of Western Australia, Crawley, Western Australia 6009 Australia
| | - Mark W Blows
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072. Australia
| | - Katrina McGuigan
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072. Australia
| |
Collapse
|
3
|
So CP, Sibolibane MM, Weis AE. An exploration into the conversion of dominance to additive genetic variance in contrasting environments. AMERICAN JOURNAL OF BOTANY 2022; 109:1893-1905. [PMID: 36219500 DOI: 10.1002/ajb2.16083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
PREMISE The evolutionary response of a trait to environmental change depends upon the level of additive genetic variance. It has been long argued that sustained selection will tend to deplete additive genetic variance as favored alleles approach fixation. Non-additive genetic variance, due to interactions among alleles within and between loci, does not immediately contribute to an evolutionary response. However, shifts in the allele frequencies within and between interacting loci may convert non-additive variance into additive variance. Here we consider the possibility that an environmental shift may alter allelic interactions in ways that convert dominance into additive genetic variance. METHODS We grew a pedigreed population of Brassica rapa in greenhouse and field conditions. The field conditions mimicked agricultural conditions from which the base population was drawn, while the greenhouse featured benign conditions. We used Bayesian models to estimate the additive, dominance, and maternal components of quantitative genetic variance. We also estimated genetic correlations across environments using parental breeding values. RESULTS Although the additive genetic variance was elevated in the greenhouse condition, no consistent pattens emerged that would indicate a conversion of dominance variance. The unusually low genetic variance and broad confidence intervals for the variance estimates obtained through this analysis preclude definitive interpretations. CONCLUSIONS Further studies are needed to determine whether between-environment changes in additive genetic variance can be traced to conversion of dominance variance.
Collapse
Affiliation(s)
- Cameron P So
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Mia M Sibolibane
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Arthur E Weis
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
- Koffler Scientific Reserve, University of Toronto, King City, ON, Canada
| |
Collapse
|
4
|
Mularo AJ, Bernal XE, DeWoody JA. Dominance can increase genetic variance after a population bottleneck: a synthesis of the theoretical and empirical evidence. J Hered 2022; 113:257-271. [PMID: 35143665 DOI: 10.1093/jhered/esac007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Drastic reductions in population size, or population bottlenecks, can lead to a reduction in additive genetic variance and adaptive potential. Genetic variance for some quantitative genetic traits, however, can increase after a population reduction. Empirical evaluations of quantitative traits following experimental bottlenecks indicate that non-additive genetic effects, including both allelic dominance at a given locus and epistatic interactions among loci, may impact the additive variance contributed by alleles that ultimately influences phenotypic expression and fitness. The dramatic effects of bottlenecks on overall genetic diversity have been well studied, but relatively little is known about how dominance and demographic events like bottlenecks can impact additive genetic variance. Herein, we critically examine how the degree of dominance among alleles affects additive genetic variance after a bottleneck. We first review and synthesize studies that document the impact of empirical bottlenecks on dominance variance. We then extend earlier work by elaborating on two theoretical models that illustrate the relationship between dominance and the potential increase in additive genetic variance immediately following a bottleneck. Furthermore, we investigate the parameters that influence the maximum level of genetic variation (associated with adaptive potential) after a bottleneck, including the number of founding individuals. Finally, we validated our methods using forward-time population genetic simulations of loci with varying dominance and selection levels. The fate of non-additive genetic variation following bottlenecks could have important implications for conservation and management efforts in a wide variety of taxa, and our work should help contextualize future studies (e.g., epistatic variance) in population genomics.
Collapse
Affiliation(s)
- Andrew J Mularo
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Ximena E Bernal
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA.,Smithsonian Tropical Research Institute, Balboa, Republic of Panamá
| | - J Andrew DeWoody
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA.,Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN
| |
Collapse
|
5
|
The contribution of mutation and selection to multivariate quantitative genetic variance in an outbred population of Drosophila serrata. Proc Natl Acad Sci U S A 2021; 118:2026217118. [PMID: 34326252 DOI: 10.1073/pnas.2026217118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic variance is not equal for all multivariate combinations of traits. This inequality, in which some combinations of traits have abundant genetic variation while others have very little, biases the rate and direction of multivariate phenotypic evolution. However, we still understand little about what causes genetic variance to differ among trait combinations. Here, we investigate the relative roles of mutation and selection in determining the genetic variance of multivariate phenotypes. We accumulated mutations in an outbred population of Drosophila serrata and analyzed wing shape and size traits for over 35,000 flies to simultaneously estimate the additive genetic and additive mutational (co)variances. This experimental design allowed us to gain insight into the phenotypic effects of mutation as they arise and come under selection in naturally outbred populations. Multivariate phenotypes associated with more (less) genetic variance were also associated with more (less) mutational variance, suggesting that differences in mutational input contribute to differences in genetic variance. However, mutational correlations between traits were stronger than genetic correlations, and most mutational variance was associated with only one multivariate trait combination, while genetic variance was relatively more equal across multivariate traits. Therefore, selection is implicated in breaking down trait covariance and resulting in a different pattern of genetic variance among multivariate combinations of traits than that predicted by mutation and drift. Overall, while low mutational input might slow evolution of some multivariate phenotypes, stabilizing selection appears to reduce the strength of evolutionary bias introduced by pleiotropic mutation.
Collapse
|
6
|
Sztepanacz JL, Houle D. Allometry constrains the evolution of sexual dimorphism in Drosophila across 33 million years of divergence. Evolution 2021; 75:1117-1131. [PMID: 33638384 DOI: 10.1111/evo.14200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/23/2020] [Accepted: 02/13/2021] [Indexed: 11/28/2022]
Abstract
Sexual dimorphism is widely viewed as adaptive, reflecting the evolution of males and females toward divergent fitness optima. Its evolution, however, may often be constrained by the shared genetic architecture of the sexes, and by allometry. Here, we investigated the evolution of sexual size dimorphism, shape dimorphism, and their allometric relationship, in the wings of 82 taxa in the family Drosophilidae that have been diverging for at least 33 million years. Shape dimorphism among species was remarkably similar, with males characterized by longer, thinner wings than females. There was, however, quantitative variation among species in both size and shape dimorphism, with evidence that they have adapted to different evolutionary optima in different clades on timescales of about 10 million years. Within species, shape dimorphism was predicted by size, and among species, there was a strong relationship between size dimorphism and shape dimorphism. Allometry constrained the evolution of shape dimorphism for the two most variable traits we studied, but dimorphism was evolutionary labile in other traits. The keys for disentangling alternative explanations for dimorphism evolution are studies of natural and sexual selection, together with a deeper understanding of how microevolutionary parameters of evolvability relate to macroevolutionary patterns of divergence.
Collapse
Affiliation(s)
- Jacqueline L Sztepanacz
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada.,Department of Biology, Florida State University, Tallahassee, Florida, 32306
| | - David Houle
- Department of Biology, Florida State University, Tallahassee, Florida, 32306
| |
Collapse
|
7
|
Henriques JF, Lacava M, Guzmán C, Gavín-Centol MP, Ruiz-Lupión D, De Mas E, Magalhães S, Moya-Laraño J. The sources of variation for individual prey-to-predator size ratios. Heredity (Edinb) 2021; 126:684-694. [PMID: 33452465 PMCID: PMC8115045 DOI: 10.1038/s41437-020-00395-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
The relative body size at which predators are willing to attack prey, a key trait for predator-prey interactions, is usually considered invariant. However, this ratio can vary widely among individuals or populations. Identifying the range and origin of such variation is key to understanding the strength and constraints on selection in both predators and prey. Still, these sources of variation remain largely unknown. We filled this gap by measuring the genetic, maternal and environmental variation of the maximum prey-to-predator size ratio (PPSRmax) in juveniles of the wolf spider Lycosa fasciiventris using a paternal half-sib split-brood design, in which each male was paired with two females and the offspring reared in two food environments: poor and rich. Each juvenile spider was then sequentially offered crickets of decreasing size and the maximum prey size killed was determined. We also measured body size and body condition of spiders upon emergence and just before the trial. We found low, but significant heritability (h2 = 0.069) and dominance and common environmental variance (d2 + 4c2 = 0.056). PPSRmax was also partially explained by body condition (during trial) but there was no effect of the rearing food environment. Finally, a maternal correlation between body size early in life and PPSRmax indicated that offspring born larger were less predisposed to feed on larger prey later in life. Therefore, PPSRmax, a central trait in ecosystems, can vary widely and this variation is due to different sources, with important consequences for changes in this trait in the short and long terms.
Collapse
Affiliation(s)
- Jorge F. Henriques
- grid.9983.b0000 0001 2181 4263cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal ,grid.466639.80000 0004 0547 1725Functional and Evolutionary Ecology, Estación Experimental de Zonas Áridas, CSIC, Carretera de Sacramento s/n, 04120-La Cañada De San Urbano, Almeria, Spain
| | - Mariángeles Lacava
- grid.11630.350000000121657640CENUR Noreste Sede Rivera, Universidad de la República, Ituzaingó, 667 Rivera Uruguay
| | - Celeste Guzmán
- grid.466639.80000 0004 0547 1725Functional and Evolutionary Ecology, Estación Experimental de Zonas Áridas, CSIC, Carretera de Sacramento s/n, 04120-La Cañada De San Urbano, Almeria, Spain
| | - Maria Pilar Gavín-Centol
- grid.466639.80000 0004 0547 1725Functional and Evolutionary Ecology, Estación Experimental de Zonas Áridas, CSIC, Carretera de Sacramento s/n, 04120-La Cañada De San Urbano, Almeria, Spain
| | - Dolores Ruiz-Lupión
- grid.466639.80000 0004 0547 1725Functional and Evolutionary Ecology, Estación Experimental de Zonas Áridas, CSIC, Carretera de Sacramento s/n, 04120-La Cañada De San Urbano, Almeria, Spain
| | - Eva De Mas
- grid.466639.80000 0004 0547 1725Functional and Evolutionary Ecology, Estación Experimental de Zonas Áridas, CSIC, Carretera de Sacramento s/n, 04120-La Cañada De San Urbano, Almeria, Spain
| | - Sara Magalhães
- grid.9983.b0000 0001 2181 4263cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Jordi Moya-Laraño
- grid.466639.80000 0004 0547 1725Functional and Evolutionary Ecology, Estación Experimental de Zonas Áridas, CSIC, Carretera de Sacramento s/n, 04120-La Cañada De San Urbano, Almeria, Spain
| |
Collapse
|
8
|
Engen S, Sæther BE. Structure of the G-matrix in relation to phenotypic contributions to fitness. Theor Popul Biol 2021; 138:43-56. [PMID: 33610661 DOI: 10.1016/j.tpb.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
Classical theory in population genetics includes derivation of the stationary distribution of allele frequencies under balance between selection, genetic drift, and mutation. Here we investigate the simplest generalization of these single locus models to quantitative genetics with many loci, assuming simple additive effects on a set of phenotypes and a linear approximation to the fitness function. Genetic effects and pleiotropy are simulated by a prescribed stochastic model. Our goal is to analyze the structure of the G-matrix at stasis when the model is not very close to being neutral. The smallest eigenvalue of the G-matrix is practically zero by Fisher's fundamental theorem for natural selection and the fitness function is approximately a linear function of the corresponding eigenvector. Evolution of genetic trade-offs is closely linked to the fitness function. If a single locus never codes for more than two traits, then additive genetic covariance between two phenotype components always has the opposite sign of the product of their coefficients in the fitness function under no mutation, a pattern that is likely to occur frequently also in more complex models. In our major examples only 1-2 percent of the loci are over-dominant for fitness, but they still account for practically all dominance variance in fitness as well as all contributions to the G-matrix. These analyses show that the structure of the G-matrix reveals important information about the contribution of different traits to fitness.
Collapse
Affiliation(s)
- Steinar Engen
- Centre for Biodiversity Dynamics, Department of Mathematical Sciences, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | - Bernt-Erik Sæther
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| |
Collapse
|
9
|
Koch EL, Sbilordo SH, Guillaume F. Genetic variance in fitness and its cross‐sex covariance predict adaptation during experimental evolution. Evolution 2020; 74:2725-2740. [DOI: 10.1111/evo.14119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/29/2020] [Accepted: 10/25/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Eva L. Koch
- Department of Evolutionary Biology and Environmental Studies University of Zürich Winterthurerstr. 190 Zürich 8057 Switzerland
- Department of Animal and Plant Science University of Sheffield Western Bank Sheffield S10 2TN United Kingdom
| | - Sonja H. Sbilordo
- Department of Evolutionary Biology and Environmental Studies University of Zürich Winterthurerstr. 190 Zürich 8057 Switzerland
| | - Frédéric Guillaume
- Department of Evolutionary Biology and Environmental Studies University of Zürich Winterthurerstr. 190 Zürich 8057 Switzerland
| |
Collapse
|
10
|
Zwoinska MK, Rodrigues LR, Slate J, Snook RR. Phenotypic Responses to and Genetic Architecture of Sterility Following Exposure to Sub-Lethal Temperature During Development. Front Genet 2020; 11:573. [PMID: 32582294 PMCID: PMC7283914 DOI: 10.3389/fgene.2020.00573] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
Thermal tolerance range, based on temperatures that result in incapacitating effects, influences species’ distributions and has been used to predict species’ response to increasing temperature. Reproductive performance may also be negatively affected at less extreme temperatures, but such sublethal heat-induced sterility has been relatively ignored in studies addressing the potential effects of, and ability of species’ to respond to, predicted climate warming. The few studies examining the link between increased temperature and reproductive performance typically focus on adults, although effects can vary between life history stages. Here we assessed how sublethal heat stress during development impacted subsequent adult fertility and its plasticity, both of which can provide the raw material for evolutionary responses to increased temperature. We quantified phenotypic and genetic variation in fertility of Drosophila melanogaster reared at standardized densities in three temperatures (25, 27, and 29°C) from a set of lines of the Drosophila Genetic Reference Panel (DGRP). We found little phenotypic variation at the two lower temperatures with more variation at the highest temperature and for plasticity. Males were more affected than females. Despite reasonably large broad-sense heritabilities, a genome-wide association study found little evidence for additive genetic variance and no genetic variants were robustly linked with reproductive performance at specific temperatures or for phenotypic plasticity. We compared results on heat-induced male sterility with other DGRP results on relevant fitness traits measured after abiotic stress and found an association between male susceptibility to sterility and male lifespan reduction following oxidative stress. Our results suggest that sublethal stress during development has profound negative consequences on male adult reproduction, but despite phenotypic variation in a population for this response, there is limited evolutionary potential, either through adaptation to a specific developmental temperature or plasticity in response to developmental heat-induced sterility.
Collapse
Affiliation(s)
| | | | - Jon Slate
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
11
|
Sztepanacz JL, Houle D. Cross‐sex genetic covariances limit the evolvability of wing‐shape within and among species of
Drosophila. Evolution 2019; 73:1617-1633. [DOI: 10.1111/evo.13788] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/29/2019] [Indexed: 01/02/2023]
Affiliation(s)
| | - David Houle
- Department of Biology Florida State University Tallahassee Florida 32306
| |
Collapse
|
12
|
Abstract
Stabilizing selection is important in evolutionary theories of the maintenance of genetic variance and has been invoked as the key process determining macroevolutionary patterns of trait evolution. However, manipulative evidence for the extent of stabilizing selection, particularly on multivariate traits, is lacking. We used artificial disruptive selection in Drosophila serrata as a tool to determine the relative strength of stabilizing selection experienced by multivariate trait combinations with contrasting levels of genetic and mutational variance. Contrary to expectation, when disruptive selection was applied to the major axis of standing genetic variance, gmax, we observed a significant and repeatable decrease in its phenotypic variance. In contrast, the multivariate trait combination predicted to be under strong stabilizing selection showed a significant and repeatable increase in its phenotypic variance. Correlated responses were observed in all selection treatments, and viability selection operating on extreme phenotypes of traits genetically correlated with those directly selected on limited our ability to increase their phenotypic range. Our manipulation revealed that multivariate trait combinations were subject to stabilizing selection; however, we did not observe a direct relationship between the strength of stabilizing selection and the levels of standing genetic variance in multivariate trait combinations. Contrasting patterns of allele frequencies underlying traits with high versus low levels of standing genetic variance may be implicated in determining the response to artificial selection in multivariate trait combinations.
Collapse
|
13
|
Heritable Micro-environmental Variance Covaries with Fitness in an Outbred Population of Drosophila serrata. Genetics 2017. [PMID: 28642270 DOI: 10.1534/genetics.116.199075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genetic basis of stochastic variation within a defined environment, and the consequences of such micro-environmental variance for fitness are poorly understood . Using a multigenerational breeding design in Drosophila serrata, we demonstrated that the micro-environmental variance in a set of morphological wing traits in a randomly mating population had significant additive genetic variance in most single wing traits. Although heritability was generally low (<1%), coefficients of additive genetic variance were of a magnitude typical of other morphological traits, indicating that the micro-environmental variance is an evolvable trait. Multivariate analyses demonstrated that the micro-environmental variance in wings was genetically correlated among single traits, indicating that common mechanisms of environmental buffering exist for this functionally related set of traits. In addition, through the dominance genetic covariance between the major axes of micro-environmental variance and fitness, we demonstrated that micro-environmental variance shares a genetic basis with fitness, and that the pattern of selection is suggestive of variance-reducing selection acting on micro-environmental variance.
Collapse
|
14
|
Chirgwin E, Marshall DJ, Sgrò CM, Monro K. The other 96%: Can neglected sources of fitness variation offer new insights into adaptation to global change? Evol Appl 2017; 10:267-275. [PMID: 28250811 PMCID: PMC5322406 DOI: 10.1111/eva.12447] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/31/2016] [Indexed: 01/07/2023] Open
Abstract
Mounting research considers whether populations may adapt to global change based on additive genetic variance in fitness. Yet selection acts on phenotypes, not additive genetic variance alone, meaning that persistence and evolutionary potential in the near term, at least, may be influenced by other sources of fitness variation, including nonadditive genetic and maternal environmental effects. The fitness consequences of these effects, and their environmental sensitivity, are largely unknown. Here, applying a quantitative genetic breeding design to an ecologically important marine tubeworm, we examined nonadditive genetic and maternal environmental effects on fitness (larval survival) across three thermal environments. We found that these effects are nontrivial and environment dependent, explaining at least 44% of all parentally derived effects on survival at any temperature and 96% of parental effects at the most stressful temperature. Unlike maternal environmental effects, which manifested at the latter temperature only, nonadditive genetic effects were consistently significant and covaried positively across temperatures (i.e., parental combinations that enhanced survival at one temperature also enhanced survival at elevated temperatures). Thus, while nonadditive genetic and maternal environmental effects have long been neglected because their evolutionary consequences are complex, unpredictable, or seen as transient, we argue that they warrant further attention in a rapidly warming world.
Collapse
Affiliation(s)
- Evatt Chirgwin
- Centre for Geometric BiologyMonash UniversityMelbourneVICAustralia
- School of Biological SciencesMonash UniversityMelbourneVICAustralia
| | - Dustin J. Marshall
- Centre for Geometric BiologyMonash UniversityMelbourneVICAustralia
- School of Biological SciencesMonash UniversityMelbourneVICAustralia
| | - Carla M. Sgrò
- School of Biological SciencesMonash UniversityMelbourneVICAustralia
| | - Keyne Monro
- Centre for Geometric BiologyMonash UniversityMelbourneVICAustralia
- School of Biological SciencesMonash UniversityMelbourneVICAustralia
| |
Collapse
|